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Abstract
Tau aggregates into neurofibrillary tangles in Alzheimer’s disease and tauopathies. There is ongoing
debate about whether tau aggregation is toxic and which form of tau is toxic. Based on recent studies
showing that mature tau tangles can be dissociated from neuronal loss and cognitive deficits, it can
be hypothesized that the intermediate pre-fibrillar tau aggregate is the predominant neurotoxic tau
species. The toxicity of tau aggregation includes loss of physiological functions of native tau and
gain of pathological functions of pre-fibrillar tau species. Mature tau tangles per se might be relatively
inert or even represent failed cytoprotective efforts of protein quality control machineries in response
to accumulating toxic tau species. Further studies on the mechanisms of tau aggregation, the structure
of intermediate tau forms and their toxicity are needed to settle this debate.
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INTRODUCTION
In 1986, the microtubule-associated protein tau was demonstrated to be the major component
of neurofibrillary tangles (NFTs), a neuropathological hallmark of Alzheimer’s disease (AD)
[21,23]. Since this time, researchers have made significant progress in unmasking the possible
mechanisms of tau aggregation, and the relationship between the pathogenic processing of tau
and the aberrant effects of amyloid-β peptide (Aβ), which is the major component of senile
plaques, the other neuropathological hallmark of AD. However, the question about whether
tau aggregation is cytotoxic or cytoprotective is still under debate. Tau aggregation in AD and
tauopathies, similar to aggregation of many other proteins such as Aβ in AD, α-synuclein in
Parkinson’s disease and huntingtin in Huntington’s disease, is a complex and yet to be fully
elucidated process in which tau monomers likely form intermediate pre-fibrillar structures
ranging from dimers, oligomers to higher ordered multimers, which eventually form the fully
organized mature fibrils or NFTs [24]. Therefore, the question about the toxicity of tau
aggregation indeed comes down to whether the mature fibrillar tangles, which occur in the
final stages, or the earlier staged intermediate forms or “pre-aggregates” are the predominant
toxic tau species involved in the pathogenesis of AD and tauopathies.
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HYPOTHESIS: INTERMEDIATE PRE-FIBRILLAR TAU FORMS ARE THE
MAJOR TOXIC TAU SPECIES

As we seek to answer the question of which form(s) of tau is toxic, it would help to take a
closer look at a similar question regarding the neurotoxic species of Aβ. Early studies provided
evidence that Aβ aggregation was likely essential for neurotoxicity [10,38], and given that the
highly organized insoluble Aβ fibrils were readily detected in both human brain and transgenic
mice, it was initially assumed that the fibrillar aggregates mediated the observed toxicity of
Aβ. However, this assumption has been challenged at several levels. First, it was shown that
the load of amyloid plaques does not correlate positively with the severity of cognitive deficits
[48]. Furthermore, over the past ten years, studies have actually shown a correlation between
soluble non-fibrillar Aβ and the extent of neurodegeneration [31,50], supporting the hypothesis
that the pre-fibrillar Aβ assemblies are potent neurotoxins whereas the organized fibrils or
plaques are relatively inert, although the exact characteristics of the toxic forms of soluble
Aβ in brain are yet to be defined [49]. Similar studies on pre-fibrillar protein aggregates and
their inherent cytotoxicity have been extended to polyglutamine proteins, α-synuclein and even
a range of proteins not associated with amyloid diseases, supporting the concept that
aggregation-prone proteins with distinct primary sequences and functions might share a
common pathway of fibrillization, common structure of pre-fibrillar aggregates and even
common mechanisms of toxicity [32,44].

Due to the intrinsic high solubility of tau and the technical difficulties in studying the assembly
of paired helical filaments (PHFs), the major basic element of NFTs, it has been difficult to
determine whether or not PHFs are actually amyloid fibrils [30]. However, studies have
demonstrated that PHFs isolated from AD brain, and filaments assembled in vitro from
recombinant tau, contain a β-structure core that typically defines amyloid fibrils [5,7]. Thus,
based on the amyloid nature of tau fibrils and the generic property of amyloid formation of
different proteins, it can be hypothesized that in the case of tau, the primary pathogenic species
might well be the pre-fibrillar aggregates and not the highly organized mature NFTs.

NFTs CAN BE DISSOCIATED FROM NEUROTOXICITY
Several layers of evidence support the hypothesis that NFTs can be separated from
neurotoxicity. First, the cytotoxicity of pro-aggregation prone mutant tau preceded the
appearance of thioflavin S positive tau aggregates in an inducible cell model of tauopathy
[22]. Similarly, in a triple transgenic AD mouse model memory dysfunction was detected
before the appearance of NFTs [35]. Additionally, in a mutant tau transgenic Drosophila model
progressive neurodegeneration occurred without NFT formation [52]. This indicates that
certain forms of tau lacking the fibrillar feature are probably toxic and the NFTs are not required
to confer toxicity, at least in the early stages of disease progression. Second, in a repressible
tau transgenic mouse model for tauopathy, turning off tau expression attenuated the memory
impairment and neuronal loss, but NFTs continued to accumulate [43]. Furthermore, inhibition
of tau hyperphosphorylationin another tauopathy mouse model prevented severe motor deficits
and reduced the amount of soluble tau aggregates without affecting NFT counts [26]. These
two studies suggest that NFTs are not sufficient to cause neuronal death and cognitive decline
and more importantly, by reducing the expression or pathogenic modification of mutant tau,
the neurotoxicity can be at least partially reversed. Third, reduction of endogenous wild type
tau prevented behavioral abnormalities in an amyloid-β protein precursor transgenic mouse
model, in which substantial neurofibrillary pathology is absent [41]. Therefore, NFTs alone
can be dissociated from and are likely not the major cause of neuronal toxicity and cognitive
deficits. This conclusion seems contradictory to the observation that the amount of NFTs
correlates positively with the extent of cognitive impairment [20]. It is also well established
that the NFT load can be used as a marker to clinically classify the stages of disease progression
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[8]. However, the correlation between NFTs and cognitive deficits is not sufficient to
demonstrate a cause-effect relationship. Nonetheless, before we can conclude that pre-fibrillar
tau forms cause toxicity, in addition to the indirect evidence cited above, there needs to be
direct evidence showing that the early stage aggregated tau species do exist and they do exert
neurotoxicity.

EXISTENCE OF INTERMEDIATE TAU AGGREGATES
Based on studies of the formation of tau filaments in vitro and the structure of isolated PHFs
from AD brain, a model for tau fibrillization has been proposed. In this model [25], tau
monomers experience critical conformational changes that make tau competent to assemble.
The increased concentration and stabilization of these assembly-competent conformations
initiate the process of nucleation and elongation to form fibrils. This dynamic process is
controlled by the equilibrium between non-fibrillar intermediate tau species and tau fibrils.
Though technically challenging due to the very hydrophilic nature of tau, intermediate tau
forms during the formation of tau filaments have been detected in in vitro assays using
recombinant tau [11,29].

The existence of intermediate tau aggregates in AD brain has been demonstrated by
immunohistochemistry showing non-fibrillar deposits that display a punctate staining pattern
in the cytoplasm and are not reactive with fluorescent dyes recognizing β-sheet structure
[16]. Furthermore, granular tau oligomers, as detected by atomic force microscopy, precede
PHF formation and are elevated in the prefrontal cortex in Braak stage I AD brain compared
with stage 0 [28]. Recently, using biochemical approaches including fractionation by
centrifugation and size exclusion chromatography, Berger et al. detected two forms of tau
multimers with molecular weight of 140 and 170 KDa in mouse models of tauopathy. These
tau multimers, either soluble or sarkosyl-insoluble, accumulated early in the development of
tau pathology but only the levels of insoluble tau species (sarkosyl-insoluble and possibly other
unknown insoluble tau forms) correlated with memory loss [6]. In contrast, in other studies,
reducing soluble tau assemblies contributed to improved cognitive function [26,36]. The
discrepancy with regard to toxic tau species in these studies (insoluble vs. soluble) could be
due to different mouse models and different techniques and criteria used to define solubility
of tau fraction. But in a way, this discrepancy points to the necessity of characterizing the exact
composition and biophysical nature of these tau species. And more importantly, although these
studies are some of the first efforts to relate behavioral impairments to specific potentially
pathogenic tau species, the mechanisms of how they exert their toxicity are not known yet.

POTENTIAL TOXICITY OF TAU AGGREGATION: LOSS OF FUNCTION AND
GAIN OF FUNCTION

Studies have shown that the pathogenic events induced by amyloid oligomers include
membrane permeabilization, Ca2+ disturbances, elevated levels of reactive oxygen species and
mitochondrial dysfunction [18,44]. However, because of the lack of knowledge of the
structures of intermediate tau aggregates, and difficulties in isolating these aggregates for in
vitro studies, research aimed at pinpointing the mechanisms of toxicity induced by these tau
species has largely been hampered. Considering that the primary toxicity of protein aggregates
could be generic, it would not be unwise to hypothesize that tau oligomers might share similar
mechanisms of pathogenesis. First, tau has the ability to interact with the plasma membrane
through its N-terminal region, which is believed to be part of the mechanism of the involvement
of tau in cell signaling pathways such as those involving Src-related kinases [9]. It is tantalizing
to speculate that the conformational changes accompanying the formation of tau oligomers
might enhance the interaction between tau and the membrane and as a consequence, the
membrane structure could be disturbed and thus affect cellular homeostasis. In addition, the
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cell signaling pathways that tau is involved in might also be disrupted. Second, our lab has
observed decreased Ca2+ buffering capability and a loss of mitochondrial membrane potential
and integrity in thapsigargin challenged immortalized cortical cells that stably express tau
truncated at D421, but not in cells expressing full-length tau [13]. Tau cleavage at D421 by
caspase occurs in AD brain and enhances tau polymerization in vitro [17,40]. The cleavage of
tau by caspase may be an important link between Aβ and tau pathology as Aβ treatment of
cortical neurons results in the cleavage of tau at D421, and there is evidence that tau cleavage
at this site may occur in the early stage of NFT formation [17,40]. The inter-molecular
association of tau and tau cleaved at D421 has been shown by FRET analysis in situ [12] and
furthermore, we detected the formation of tau oligomers (at least tetramers) using a β-
galactosidase complementation assay [13]. This raises the possibility that the compromised
Ca2+ regulation and mitochondrial dysfunction could be associated with oligomeric truncated
tau.

The toxicity of tau aggregation may originate not only from the gain of pathological functions
of the intermediate non-fibrillar tau species described above, but also from the loss of
physiological functions of the native tau. Although the driving force of tau aggregation in
vivo is yet to be elucidated, in vitro studies show that hyperphosphorylation of tau, at least at
certain sites, promotes its aggregation [1,3]. Although it is still controversial as to whether
hyperphosphorylation of tau is required for the initiation of tau aggregation, it is widely
accepted that one of the consequences of hyperphosphorylation is a decrease in the binding of
tau to microtubules, which may contribute to tau aggregation and fibrillization by increasing
the concentration of free cytosolic tau. Furthermore, the decrease in the affinity of tau for
microtubules may result in a decrease in the stability and function of microtubules [2]. In turn,
the dynamics of microtubule network cannot be maintained and axonal transport that relies on
microtubules is impaired. Axonal abnormalities and transport deficits have been proposed to
be one of the earliest pathogenic events in AD pathogenesis [45]. Therefore, the loss of tau
function resulting from early stage tau aggregation is closely associated with neurotoxicity.
Interestingly, microtubule-stabilizing drugs can reverse axonal transport deficits and
ameliorate motor impairments in a tauopathy model, presumably by offsetting loss of tau
function [54].

MATURE TANGLES: A CYTOPROTECTIVE EFFORT BY PROTEIN QUALITY
CONTROL MACHINERIES?

It is often found that heat shock proteins (Hsps), ubiquitin ligases and proteasome components
co-exist with microscopically detectable large tau aggregates in cell culture models, transgenic
mouse models and AD brain [14,15,19,37]. The mechanism of how these critical proteins in
charge of protein quality control are related to the accumulation of tau aggregates is still
unknown. One possible explanation is that these proteins co-aggregate with tau. But this is
unlikely in light of the observation that protein aggregation exhibits exquisite specificity even
among extremely hydrophobic substrates expressed at very high levels [39]. Another more
intriguing and likely explanation is that these cellular machineries are mobilized as part of the
cell defense mechanism to either solubilize or refold “misfolded” tau (by Hsps), or clear
intermediate irreversible tau aggregates (by proteasomal degradation and autophagy). This idea
has gained support from the finding that Hsp90 and Hsp70 promoted tau solubility and
facilitated tau partitioning to microtubules [14], and the pivotal roles of chaperones in
influencing the conformation and aggregation of other proteins such as α-synuclein, huntingtin
and superoxide dismutase 1 [34]. Thus, the presence of chaperones in tau aggregates itself
might already suggest the inherent toxicity of intermediate tau species. However, due to the
continuous accumulation of potentially harmful tau species, the chaperone system might be
overwhelmed and cannot keep up with the need for refolding and disaggregation. At the same
time, prolonged occupation of chaperones by tau might deplete them from performing their
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functions in other important cellular events, which has been proposed to partially account for
the secondary cytotoxicity induced by tau aggregation.

In addition to refolding “misfolded” proteins through the activity of chaperones, cells are also
endowed with the ability to eliminate large protein aggregates. In a conditional transgenic
mouse model of Huntington’s disease, suppression of mutant huntingtin led to the
disappearance of inclusion bodies [53]. Silencing expression of pro-aggregation prone mutant
tau in both conditional cell model and mouse model can also lead to attenuation of sarkosyl-
insoluble tau aggregates and even tangles, although the tangles composed of endogenous
mouse tau seemed irreversible, possibly due to the continuous synthesis of mouse tau [22,
33]. The clearance of late stage protein aggregates may involve proteasomes and autophagy
[42,51]. Given the potential toxicity of scattered intermediate aggregating species and the
reversibility of concentrated late stage aggregates, it has been hypothesized that the formation
of large aggregates such as tangles could be cytoprotective by sequestering diffuse small
aggregates to minimize their toxicity and eventually clearing them by proteasomal activity and
autophagy [4,42]. This is supported by data collected from cell models of polyglutamine
diseases and Parkinson’s disease, in which increased toxicity was observed when the formation
of large aggregates was disrupted [46,47]. However, it is yet to be directly tested in animal
models, and whether the same phenomenon happens with tau pathology also needs to be tested.
Further elucidation of the mechanisms involved in sequestration and clearance of aggregates
should help develop new approaches to clarify this issue.

CONCLUSION
Taking everything together, the answer to the question as to whether tau aggregation is toxic
or protective may not be simply one way or the other. On the one hand, tau aggregation causes
loss of physiological functions of tau and produces intermediate tau aggregates that may gain
pathological functions. On the other hand, the mature tangles may be relatively inert or even
may represent a cytoprotective effort by protein quality control machineries when facing the
challenge of accumulating toxic tau species. Despite the evidence suggesting that “pre-tangle”
forms of tau are toxic, the possible toxic effects of tau tangles cannot be ruled out. Considering
the intrinsic lability of PHFs shown in vitro [27], it is possible that tau tangles are dynamic in
such a way that individual tau molecules or aggregated intermediate tau comes on and off
tangles depending on the equilibrium. Thus, tau tangles could serve as a reservoir for toxic tau
species at certain stages of disease progression. Nonetheless, there is still a long way to go
before a conclusion to this question can be drawn. Further intensive studies on the structures
of different intermediate tau species and mechanisms involved in the formation of tau fibrils
in vivo will provide a solid basis to study the toxicity of tau aggregation and justify therapeutic
strategies targeting toxic tau species.
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Fig. 1.
Diagram of potentially toxic and protective processes in the formation of tau tangles.
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