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Semantic Classification of Diseases in Discharge Summaries
Using a Context-aware Rule-based Classifier

ILLÉS SOLT, DOMONKOS TIKK, VIKTOR GÁL, ZSOLT T. KARDKOVÁCS

A b s t r a c t Objective: Automated and disease-specific classification of textual clinical discharge summaries
is of great importance in human life science, as it helps physicians to make medical studies by providing
statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries,
semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a
patient, or is unmentioned in the document. The authors present a classification technique that successfully solves
the semantic classification task.

Design: The authors introduce a context-aware rule-based semantic classification technique for use on clinical
discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are
removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a
sequence of binary classifiers is applied to assign the appropriate semantic labels.

Measurement: For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its
evaluation measures: F1-macro and F1-micro for measurements.

Results: On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed
very well, and achieved a F1-macro � 0.80 for the textual and F1-macro � 0.67 for the intuitive tasks, and
obtained second place at the textual and first place at the intuitive subtasks of the challenge.

Conclusions: The authors show in the paper that a simple rule-based classifier can tackle the semantic
classification task more successfully than machine learning techniques, if the training data are limited and some
semantic labels are very sparse.
� J Am Med Inform Assoc. 2009;16:580–584. DOI 10.1197/jamia.M3087.
Introduction
Biomedical text mining has become a thriving field because it
proved its efficiency in a wide scope of application areas, such
as the identification of biological entities in text,1 assigning
insurance codes to clinical records,2 facilitating querying in
biomedical databases,3 etc. For a survey see Cohen and Hersh,
2005.4 Discharge summaries offer a rich source of information
for information extraction (IE) tasks, including classification.

Affiliations of the authors: Department of Media Informatics and
Telematics, Budapest University of Technology and Economics (IS,
ZK), Budapest, Hungary; Institute of Computer Science, Humboldt
University in Berlin (DT), Berlin, Germany; Department of Computer
Science, Australian National University (VG), Acton, Australia.

The authors thank György Biró for his machine learning related tips,
and Ferenc P. Szidarovszky for a part of text preprocessing, and
finally Katalin Tóth, MD, for giving some domain-specific hints for
rule creation. The authors thank the challenge organizers for pro-
viding them with this invaluable dataset and research experience;
special thanks to Özlem Uzuner, for her role as organizer and
correspondent.

Domonkos Tikk was supported by the Alexander von Humboldt
Foundation.

Correspondence: Illés Solt, Department of Media Informatics and
Telematics, Budapest University of Technology and Economics,
1117 Budapest, Magyar tudósok krt. 2, Hungary; e-mail:
�illes.solt@tmit.bme.hu�.
Received for review: 12/02/08; accepted for publication: 04/07/09.
Several open challenges have been announced in this field:
automated assignments of insurance codes to radiology re-
ports5 and smoking status identification task.6

The processing of textual medical records like discharge
summaries facilitates medical studies by providing statisti-
cally relevant data for analysis. Analysis of a particular
disease and its comorbidities on sets of patients is an
example of this. The findings drawn from connections
observed between elements of a set of diseases are of key
importance in treatment and prevention issues.

In this paper we present results on the i2b2 Obesity Chal-
lenge shared task, which is a multiclass multilabel classifi-
cation task focused on obesity and its 15 most common
comorbidities (termed diseases). For each document, the task
was to assign for each disease one of the following semantic
labels: present, absent, questionable, or unmentioned (full
description in Uzuner7).

The problem of the Obesity Challenge is an atypical, two-
dimensional classification problem with disease and semantic
dimensions.

The top 10 solutions are dominated by rule-based systems,
while, interestingly, no machine learning based approach
can be found among them (see the survey of Uzuner7 and
the online only version available at www.jamia.org).

Rule-based text classifiers (aka expert systems) were wide-

spread (see, e.g., Hayes et al8) before the steady growth of
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computational capacity made machine learning approaches
more popular. The rule-based approach is often criticized
due to the knowledge acquisition bottleneck (Sebastiani9).
That is, each rule must be manually created, and the
portability and flexibility of such systems are often very
limited. These concerns are valid at categorization problems,
where the rules are domain-dependent and the semantics of
categories may shift. However, if the expert knowledge is
available in knowledge bases (such as ontologies, typical for
the biomedical domain), and the rules can be generated
automatically, the overhead of manual processing can be
minimized to error analysis. Consequently, expert and rule-
based systems are often applied for different problems on
medical domain (see, e.g., Zeng et al10 and Chi et al11).

In the medical field, there is a growing need for interactive
systems; however, the challenge did not address this aspect.
Health experts usually do not trust a system that acts like a
black-box, but instead they want to verify the evidences that
support the decision made. Our system is transparent for
humans, while a system that is using sophisticated and,
hence, not easy-to-understand machine learning techniques
may require additional efforts to achieve this goal.

Next we describe our context-aware rule-based classifier,
present its performance on the i2b2 Obesity Challenge, and
briefly discuss the results and lessons learnt from our study.
For the community, we provide an online appendix to this
paper (available as an online data supplement at www.jamia.
org) and on-line demo (available at categorizer.tmit.bme.hu/
�illes/i2b2/obesity_demo).

Methods
Problem Definition
In general, the problem is a multiclass multilabel classifica-
tion task, but the applied semantic labeling and the selected
evaluation criteria make the problem setting unusual. For
each disease the annotators labeled documents with Y, N, Q,
and U. Here Y means that the disease is present, N means
that it is absent, Q means that it is questionable in the patient,
and U means that the disease is unmentioned in the docu-
ment. The labeling was performed in two different aspects:
textual and intuitive. Textual contains only judgments
strictly based on text; intuitive is based also on implicit
information found in narrative text (and here only Y, N, and
Q labels are assigned).

Systems were evaluated primarily based on their averaged
F1-macro value and secondarily based on their averaged
F1-micro value calculated over the 16 disease classes.

The problem can be considered as a two-dimensional task,
where documents should be assigned to 16 disease classes
and 4 (resp. 3) semantic classes. The two sets of classes are
not independent.

• The semantic classes are distributed very unevenly: there
exist classes even without training examples (6 textual N,
7 textual Q, and 5 intuitive Q classes out of 16).

• For the textual task, the annotators had to assign labels
based on text fragments of documents, however, these
fragments are not marked in the training set. The exis-
tence of such mark up could be extremely helpful when

developing an automatic classifier.
Preprocessing of Text
To address the special characteristics of the tasks and assist
manual exploration of the data, we first applied the follow-
ing preprocessing steps:

Abbreviation Resolution. Resolving abbreviations aids non-
professionals in understanding medical texts, by contrast
decoding and disambiguating abbreviations in medical texts
can improve the accuracy of information extraction.12 It can
be observed that periods, spaces and letter capitalization are
used almost freely. In addition to dictionary lookups and
web searches, we developed a regular expression driven
string replacement dictionary to decode all occurrences of
relevant abbreviations (see the online only version).

The style of abbreviations in a record may be characteristic
of the health care institution where it originates. The dei-
dentification of medical records usually covers only the
obfuscation of named entities, however, we found that
documents could be clustered by their abbreviation style.
Consequently, we suspect that an adversary could bind
documents to the note taking person observing the clusters
and corresponding patterns (with better than uniform prob-
ability), however, we cannot verify this claim due to the lack
of data. Nevertheless, we suggest that concealment of ab-
breviation styles should be the part of the deidentification
process.

Identify Discharge Summary Elements (Zones). The exploration
of documents is facilitated by a visually enhanced version
with text being chunked into zones. Zones were recognized
by the surface features of the headings (e.g., Clinical Course,
Diagnosis, etc).

Classifiers
Next we describe our context-aware rule-based classifier for
both the textual and intuitive subtasks. The classifiers only
differ in the set of rules. When creating rules, we intended to
mimic the work of the annotators. We found most docu-
ments to be labeled with Y/N/Q (textual) if at least one
mention of the disease occurred explicitly in the text, and
with U otherwise. A mention can be various forms of the
disease name or a directly associated term/phrase. Annota-
tors had to decide on the label based on the context of the
mentions.

The Baseline Y-Classifier
We built a dictionary that included for each disease a set of
clue terms. The sets contain the disease’s name and its
alternatives:

• Abbreviations (e.g., HTN for hypertension),
• Synonyms (e.g., cardiac failure for heart failure),
• Plain English equivalents (e.g., high cholesterol),
• Spelling variants (e.g., gall stone instead of gallstones),
• Frequent typos (e.g., dislipidemia instead of dyslipidemia),
• Suffixed forms (e.g., gouty),
• Related terms (e.g., dyslipidemia for Hypercholesterolemia).

Based on the set of clue terms, a rule-based baseline classifier
was created for Y label, which assigned the label if any of the
clue terms was present in the document.

Family History
Obviously, the baseline classifier fails to distinguish between
mentions occurring in different zones. However, the zone

information can be crucial. A typical case is the group of family
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history zones, in which the text is not directly related to the
patient’s health. Therefore, we removed full zones and other
fragments containing family history. During development, the
removed fragments were systematically checked for false-
positive matches. We ignored text fragments with family
history and allergies (see details in the online only version).

Context-aware Partitioning, N- and Q-Classifiers
The baseline classifier was a binary classifier that only
assigns Y labels. We found documents labeled with N (or Q)
if the disease was mentioned in a negative (or uncertain)
context. Since the primary evaluation function is F1-macro,
correctly assigning the rare N and Q labels to documents
was a key issue.

First, we addressed the semantic dimension of the task. All
documents were partitioned into family history, negative,
uncertain, and positive contextual segments by a sequence
of splitters, which reduced the 4-way partitioning problem to
the binary case.

Inspired by NegEx,13 a framework to identify negative state-
ments in medical text, we used trigger phrases to recognize
negative and uncertain contexts. The differences between our
solution and NegEx are the following. We use a different set of
triggers and scope-terminating words. We built our solution
for the Obesity Challenge using solely the given training
records, surprisingly, without resulting in overfitting to the
medical domain (see Section 4.). As an improvement over
NegEx, we also applied midscope and word prefix triggers.
We provide some illustrative fragments with triggers (bold)
not included in the latest version of NegEx:

1. Pre- and postscope triggers
Example: “[?history of diabetes.]uncertain” yields Q for
Diabetes, “[outpatient OSA screen.]uncertain” yields Q for
OSA

2. Scope limiting triggers
Example: “[No other significant past medical history]negative

besides hypertension.” yields Y for Hypertension
3. Mid-scope triggers

Syntax: [words] trigger [words]
Example: “[Right lower lobe pneumonia versus CHF.]uncertain”
yields Q for CHF

4. Word-prefix triggers
Syntax: trigger (non-space characters) Example: “Abdo-
men: soft, [non-obese] , and [non-tender] ”
negative negative

yields N for Obesity
Semantic classification is followed by tackling the disease
dimension. Once the documents were partitioned based on
the context, they were fed to the appropriate binary baseline
classifiers to obtain Q, N, and Y judgments. Thus, more than
one label could be assigned to a document. The conflicts
were resolved as follows. The Q-classifier is the least certain
one: if a disease appears in both an uncertain and positive/
negative context, then the latter rules out the former. Simi-
larly, any positive mention takes precedence over negative
mentions. Therefore, we applied the 3 classifiers in a cascade
like pipeline: first Q labels were assigned, then N labels,
finally Y labels (labels are overwritten), and unlabeled
documents received U labels. The document processing and
classification workflow is depicted in Fig 1.

Our solution separates semantic and disease dimensions: the
Q-, N- and Y-classifiers are based on the same set of rules
that makes the classification simple, but more importantly, it
allows us to use one common training set (per disease) for all
classifiers, which is crucial due to the very limited number of
Q and N labels.

Intuitive Judgments
At this point we have textual judgments. The text- and
rule-based approach of the baseline classifier was less pow-
erful on intuitive judgments, while the corpus had virtually
no textual indicators recognizable by human experts or
rule-based learners. Still, we found some simple rules that,
in addition to those created for textual judgments, improved
performance on the intuitive set. These rules include:

• Disease-specific, non-preventive medications and their
brand names (e.g., SSRI or Zoloft for Depression)

• Related procedures (e.g., panniculectomy for Obesity)
• Symptoms with very high correlation (e.g., leg ulcers for

Venous Insufficiency)

Example
Let us illustrate the complete work of the text splitter and
classifier method, on a paragraph taken from the test docu-
ment #1,058:

“CARDIAC RISK FACTORS: Hypertension, smoking [family
history of coronary artery disease]family and CVA. [No diabe-
tes.]negative she is [not postmenopausal]negative [no history of
elevated cholesterol.]negative [No previous myocardial infarc-

F i g u r e 1. Document process-
ing and classification workflow.
tion history.]negative”
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For this paragraph the overall classifier system would assign
Y for hypertension, N for Diabetes and Hypercholesterolemia,
and U for all others (note: including CAD).

Results
Table 1 includes the main evaluation measures of our best
submissions for both subtasks as calculated by the organizers.
We also present the confusion matrices in Table 2a and 2b.

The choice of F1-macro for the main evaluation metric
motivated participants to focus on sparse classes. Applying
F1 also implies that misclassification from one label to
another is penalized in a degree dependent on the distribu-
tion of labels, and not according to the degree of the
mistake’s seriousness. For example, in the textual case,
misclassifying a document as N instead of its gold standard
Y, is penalized less than misclassifying it as Q, though the
semantics of the labels suggest the opposite. Not concentrat-
ing on the sparsest Q labels—the approach followed by
many other participants—would give an upper bound on
F1-macro of three-fourth (textual), and two-thirds (intuitive).
Our system was able to break both upper bounds.

We achieved a second position in textual and a first position
in the intuitive subtask with our system that was built from

Table 1 y F1-Macro and F1-Micro Results of Our Best
Submissions

Textual Intuitive

F1-Macro F1-Micro F1-Macro F1-Micro

Disease
Asthma 0.9434 0.9921 0.9784 0.9894
CAD 0.8561 0.9256 0.6122 0.9192
CHF 0.7939 0.9355 0.6236 0.9315
Depression 0.9716 0.9842 0.9346 0.9539
Diabetes 0.9032 0.9761 0.9682 0.9729
Gallstones 0.8141 0.9822 0.9729 0.9857
GERD 0.4880 0.9881 0.5768 0.9131
Gout 0.9733 0.9881 0.9771 0.9900
Hypercholesterolemia 0.7922 0.9721 0.9053 0.9072
Hypertension 0.8378 0.9621 0.8851 0.9283
Hypertriglyceridemia 0.9732 0.9980 0.7981 0.9712
OA 0.9594 0.9761 0.6286 0.9589
Obesity 0.4879 0.9675 0.9724 0.9732
OSA 0.8781 0.9920 0.8805 0.9939
PVD 0.9682 0.9862 0.6348 0.9763
Venous insufficiency 0.8403 0.9822 0.8083 0.9625

Overall 0.8000 0.9756 0.6745 0.9590

CAD � coronary artery disease; CHF � congestive heart failure;
GERD � gastroesophageal reflux disease; OA � osteo arthritis;
OSA � obstructive sleep apnea; PVD � peripheral vascular disease.

Table 2a y Textual Confusion Matrix on the Test Set
Y N U Q

Y 2117 8 66 1
N 10 41 14 0
U 71 16 5681 2
Q 5 0 3 9

Rows represent the gold standard, while columns indicate the label

assigned by our system.
scratch: it does not incorporate any third party software, or
other external resources. In comparison with the other top
teams’ submissions, the main advantage of our system over
other participants’ was the low number of misclassified Q
labels, in other aspects its performance is on par with those
ones.

Our system is scalable: the number of rules grows linearly
with the number of classes (health conditions), while the
context identification components (text splitters) can be
entirely reused without modification for the medical domain,
thus reducing development time. Classification rules do not
have to be created manually, they can also be bootstrapped
from domain-specific ontologies (like UMLS14) or obtained
from machine learners.

Though only the most common comorbidities of obesity
were selected for this challenge, the training examples were
still very limited in number, forecasting even sparser data
when scaling up to other conditions. Our system performs
relatively stable across all classes: F1-macro is on average
higher on classes with more data, but drops only slightly for
sparser classes (see Fig 2a in online only version).

We also investigated the portability of our system to other
domains. For comparison, we evaluated NegEx and our
system on the biomedical corpus provided by the
BioNLP2009 Shared Task15 that featured negation and spec-
ulation annotations. The results summarized in Table 3
show that our context-aware system slightly outperforms
NegEx also on the biomedical domain, without any corpus-
dependent adaptation.

Conclusions
In this paper we reported on our approach for the i2b2
Obesity Challenge. We developed a context-aware rule-
based classification model that was able to cope successfully
with this unusual multiclass multilabel classification task by
a two-dimensional approach that handles disease and se-

Table 2b y Intuitive Confusion Matrix on the Test Set
Y N Q

Y 2106 178 1
N 110 4989 1
Q 6 7 1

Rows represent the gold standard, while columns indicate the label
assigned by our system.

Table 3 y Performance of Assertion Classification on
the BioNLP2009 Corpus

Semantic
Class System Precision Recall F1-Measure

Negation NegEx 0.4070 0.5152 0.4548
Negation Our original system 0.5015 0.4626 0.4813
Negation Our adapted system 0.7662 0.7460 0.7561
Speculation NegEx 0.0000 0.0000 0.0000
Speculation Our original system 0.1340 0.0236 0.0402
Speculation Our adapted system 0.6049 0.5472 0.5746

We compared NegEx (v1.01 of Imre Solti’s implementation, code.
google.com/p/negex/), our system developed for the i2b2 Obesity
Challenge, and the adaptation of our system towards the

BioNLP2009 Shared Task (for comparison only).
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mantic classes separately. Thus, we could exploit efficiently
the very limited training data.

Using manually fine-tuned regular expressions for identify-
ing contexts and diseases, the performance could be slightly
increased compared to those systems using preexisting
domain specific tools and resources. By keeping the system’s
structure simple, its output can be presented in a way that
makes human verification quick and easy; our system is thus
suitable for both fully automated black-box operation and
incorporation into interactive systems. Our system scales up
well with the number of classes and is portable to other not
necessarily clinical corpora. As an extension of this paper,
we also provide a detailed online appendix that contains the
resources we applied and an on-line demo with most of the
functionalities of our system.
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