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A System for Classifying Disease Comorbidity Status from
Medical Discharge Summaries Using Automated Hotspot and
Negated Concept Detection

KYLE H. AMBERT, AARON M. COHEN, MD, MS

A b s t r a c t Objective: Free-text clinical reports serve as an important part of patient care management and
clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical
practice, but remain an under-used source of information for clinical and epidemiological research, as well as
personalized medicine. The authors explore the challenges associated with automatically extracting information
from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2)
2008 Natural Language Processing Obesity Challenge Task.

Design: A text mining system for classifying patient comorbidity status, based on the information contained in
clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot
filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-
correcting of output codes with linear support vector machines.

Measurements: Performance was evaluated in terms of the macroaveraged F1 measure.

Results: The automated system performed well against manual expert rule-based systems, finishing fifth in the
Challenge’s intuitive task, and 13th in the textual task.

Conclusions: The system demonstrates that effective comorbidity status classification by an automated system is
possible.
� J Am Med Inform Assoc. 2009;16:590–595. DOI 10.1197/jamia.M3095.
Introduction and Background
The application of Natural Language Processing (NLP) tech-
niques within clinical medicine is of growing interest to both
physicians and machine learning theorists. These methods can
potentially be used to reduce the amount of time and money
spent carrying out repetitive text-related tasks, and to increase
biomedical knowledge by recognizing complex patterns across
large datasets that are impossible for humans to recognize.

The overall goal of the Integrating Informatics with Biology
and the Bedside (i2b2) 2008 NLP Obesity Challenge Task
was to assess classification algorithms for determining pa-
tient disease status with respect to Obesity and 15 of its
comorbidities, based on the information extracted from
medical discharge summaries. Two human clinical experts
annotated each discharge summary as either Positive, Neg-
ative, Questionable, or Unknown, for each comorbidity
(listed in Table 1), using either “textual” or “intuitive”
decision criteria. In the textual task annotators used only the
information explicitly stated in a record, whereas in the
intuitive task they used their best clinical judgment, in-
formed by the content of the record. Because of this, the
“Unknown” class label was excluded from the intuitive task.
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In the textual task, disagreements between the annotators
were resolved by a third obesity expert, whereas in the
intuitive task annotator disagreement led to the record being
excluded from that particular disease’s dataset.

Methods
General System Description
Our approach to the 2008 i2b2 Obesity Challenge Task
incorporates a variety of automated techniques, and consists
of five steps: preprocessing, tokenization, vectorization, fil-
tering, and classification. We used 5 � 2-way cross-validation
on the training data to select and tune the best-performing
procedure for each step, including the best in our official task
submission. Our best-performing submission used automated
hot-spot passage isolation (AutoHP), whitespace, and punc-
tuation-based tokenization, binary feature vectorization,
either with or without negation term detection (NegEx),
empty feature vector filtering (ZeroVF), and classification
using Error-Correcting Output Codes (ECOC) with inverse
class frequency-weighted linear support vector machine
(SVM) classifiers.

System Components

Preprocessing: Automated Isolation of Hotspot Passages
(AutoHP) and Negation Detection

Our preprocessing procedure identified and extracted pas-
sages of text that were likely to contribute the most relevant
information to the classification task. We have previously
shown that manual identification and isolation of such

passages, or hot-spots, in patient discharge summaries can
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greatly improve the accuracy of medical text classification.1

We hypothesized that a similar approach would be effective
here, and that automating our previously described tech-
nique would lead to improved performance.

The AutoHP technique takes a set of features from a text
collection as input, orders them based on their information
gain (IG), and identifies those meeting a specified cut-off
value. These features are located in the original document,
and all text within 100 characters on either side of the feature
is kept as the sample text, tokenized, and modeled as a
binary feature vector the text outside the window is dis-
carded (see Fig 1, for an example).

This hotspot passage, along with all the others that were
identified for the comorbidity, are tokenized and modeled as
a binary feature vector; all features not found in these
hotspots would be included in this model. For the i2b2
Obesity challenge, the optimal cut-off setting was deter-
mined by cross-validation on the training data. We found
that the best-performing IG cut-off value was marginally
different for each comorbidity (data not shown), but that,
overall, the range of optimal values was fairly narrow
(�textual � 0.10, �textual � 0.06; �intuitive � 0.08, �intuitive �
0.05).

Previous work has shown that clinical narratives contain
useful information within their negated and pseudonegated
terms.2 We hypothesized that the accuracy of our classifier
would be improved by taking such information into ac-
count. In our implementation of Chapman et al.’s NegEx

Table 1 y Macro-averaged F1 textual and intuitive
scores for our best-performing submission in the
2008 i2b2 Obesity Challenge Task. In addition to
presenting scores for each comorbidity within each
task, our system scores are included, which was the
basis for ranking team submissions by the i2b2
Challenge organizers

Macro-Averaged F1

Textual Intuitive

System 0.598 0.634
Asthma 0.483 0.970
CAD 0.600 0.630
CHF 0.710 0.612
Depression 0.962 0.935
Diabetes 0.641 0.915
Gallstones 0.632 0.961
GERD 0.486 0.579
Gout 0.959 0.981
Hypercholesterolemia 0.484 0.912
Hypertension 0.827 0.899
Hypertriglyceridemia 0.727 0.876
OA 0.945 0.631
Obesity 0.489 0.973
OSA 0.654 0.653
PVD 0.955 0.623
VI 0.675 0.725

CAD � coronary artery disease; CHF � congestive heart failure;
GERD � gastroesophageal reflux disease; OA � osteo arthritis; OSA �
obstructive sleep apnea; PVD � peripheral vascular disease; VI �
venous insufficiency.
negation identification procedure (AutoHP� NegEx), any
individual negated hot-spot features (identified in the pre-
vious step) were identified within the hotspot passages
using the NegEx regular expressions; these terms were
marked as negated features before the passage was passed
to the tokenization and vectorization procedures, and the
original nonnegated feature was discarded. An important
difference between our use of NegEx and Chapman’s original
implementation, is that Chapman et al. use an NLP-based
named entity recognition engine, (e.g., MetaMap3) to identify
negated concepts. Our implementation was simpler, only ex-
amining the source text for negations of hotspot terms. Since
the hotspot terms were highly associated with the disease
status, we hypothesized that these would be the most impor-
tant concepts with which to recognize instances of negation.

Simple Tokenization and Binary Vectorization
All passages isolated by the AutoHP and AutoHP� NegEx
techniques were tokenized into individual features using the
same simple algorithm, in which individual words were token-
ized into features based on space and punctuation separation.

The tokenized set of features was next modeled as a binary
vector, in which each position corresponded to a feature
retained after preprocessing the training set. Text samples
were assigned binary values at each position of the vector,
indicating the presence or absence of the corresponding
feature (or negated feature, where relevant).

Zero-vector Filtering (ZeroVF)
Pre-processing sometimes resulted in a zero-valued feature
vector, especially for those comorbidities where the optimal
AutoHP IG threshold was moderately high (e.g., Gout and

F i g u r e 1. Diagrammatic example of our automated hot-
spot filtering procedure. In this example, the information
gain associated with the word asthma identifies it as a
hot-spot feature, so a 100-character window around it is
extracted as the hot-spot passage and passed on to the

tokenization and vector modeling steps.
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Asthma). We hypothesized that these samples would not
contribute any useful information to the classification algo-
rithm, thus, we automatically assigned such samples to the
most common class label in the training set. The results of
cross-validation experiments showed that the ZeroVF pro-
cedure was almost universally helpful across comorbidities
(data not shown); it was therefore included in all subsequent
cross-validation experiments.

Classification: Error-correcting Output Codes and
SVM
In both the textual and intuitive problems, samples were
classified using the ECOC technique, an approach that has
proven effective for multiple classification problems.4,5

Briefly, the ECOC approach formulates a multiple classifi-
cation problem as a set of several binary classification
decisions between all possible subsets of the original classes.
When classifying new documents, each of the subclassifiers
makes a prediction, and the document is classified according
to the class with the most similar result vector, based on the
sum of the fractional bitwise differences (L1-distance) be-
tween them. Where an error made by a lone classifier would
result in misclassification, with ECOC, an error made by any
one subclassifier is less likely to affect the final classification.
For a fuller treatment of how ECOC is used in multiway text
classification, see Cohen1 or Dietterich and Bakiri.6

While any classification algorithm could be used to carry out
the binary subclassification problems with ECOC, we and
other authors1,7,8 have obtained good results with the
libSVM implementation of Vapnik’s linear SVM technique.9

One advantage of libSVM, is that it provides a parameter for
specifying class-specific weights. We used this parameter to
adjust the cost of misclassifying a sample according to the
prior probabilities of the class:

wclass �
N � Nclass

N

where N is the total number of samples, and Nclass is the
number of samples in a particular class.

i2b2 Evaluation
The i2b2 Obesity Challenge Task was evaluated using the
Macro F1 measure, with precision and recall weighted
equally (� � 1). The Micro F1 measure was also computed
and used as a secondary performance measure. The textual
and intuitive tasks were evaluated separately by the task
organizers, with the overall performance of systems across
comorbidities used to assign a score to each submission.

Follow-up Experiments
We conducted several post-hoc experiments to understand
how the comorbidity-specific characteristics of the training
and test collections affected performance. In particular, we
wished to understand the relative contribution of AutoHP
and AutoHP� NegEx to the performance of our system, and
the characteristics of the data that contributed.

Characteristics of the Document Collections
We were interested in the role that sample size played in the
less-than-ideal performance of our system on certain comor-
bidities. To address this, we compared the performance of
our submitted system on the combined training and test
collections, using 2-, 4-, and 8-way cross-validation, strati-

fied by class count. In contrast with standard cross-valida-
tion, here the classifier was trained on the smaller partition
(one-half, one-quarter, or one-eighth of the combined data-
set), and evaluated the performance on the remaining par-
tition. This allowed us to estimate performance over a range
of training data sizes, and quantify the contribution of small
sample sizes to the performance of the submitted system.

Relative Contribution of the Pre-Processing Procedures
To examine the efficacy of AutoHP and AutoHP� NegEx,
we compared the performance of each to a baseline system
not using preprocessing, and using a linear SVM classifier
without preprocessing or ECOC. We also wished to under-
stand why, for certain comorbidities, the addition of NegEx
to the preprocessing stage failed to improve performance
over and above AutoHP alone. Examining the negated terms
extracted by the algorithm revealed that, although it often
correctly identified negated terms, sometimes these nega-
tions were incorrect. For example, both “. . . she does not
have a history of asthma or copd”, and “. . . no beta blockers,
given history of asthma” were identified as containing a
negated form of asthma, even though this is true only in the
former case. The negative class was often very rare, so the
NegEx-induced error rate was high enough to compromise
its overall effectiveness as input to the classifier. We hypoth-
esized that NegEx’s contribution could be improved by
following it with a classifier trained to distinguish NegEx
negations associated with the negative class from those
associated with the other classes.

As a step in this direction, we developed an SVM classifier to
distinguish “true negations” (those associated with the
negative class) from “false negations” (those not associated
with the negative class). Using the combined training and
testing document collections and replacing all the hotspot
terms with $TERM$ as a placeholder, we located occur-
rences of NegEx-matched comorbidity-related phrases in the
full texts, assigning “true negation” to the phrases from the
negative class, and “false negation” to all others. We tested
our classifier individually on each comorbidity after training
it on the negation terms found in the combined data
collections from the other comorbidities, and compared its
performance to that of the NegEx algorithm alone, as
implemented in our i2b2 submission.

Results and Discussion
Our cross-validation results are depicted in Fig 2 (black); the
performance of our top submission is shown in gray. We
found that the performance of our best method on cross-
validation studies was positively correlated with that on the
test collection (Table 1, and the gray bars in Fig 2; textual:
correlation: 0.762, t(14) � 4.407 [p � 0.05]; intuitive: correla-
tion: 0.559, t(14) � 2.523 [p � 0.05]). This system scored 13th

out of all runs submitted for the textual task, and fifth out of
those submitted for the intuitive task.

Our textual submission suffered on those comorbidities
having one or two rare disease classes. We found that no
matter what adjustments were made to our system, in-
stances of these classes tended to be mislabeled as the most
prevalent class in the training collection, especially in the
textual task. In contrast, our performance on the intuitive
task for many of these comorbidities was dramatically better
(e.g., Asthma or Hypercholesterolemia). Since these comor-

bidities did not have as many rare classes in the intuitive
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task, this supports the hypothesis that the problem in the
textual task can be attributed to misclassification of rare
classes. Such misclassifications are common to scalable ma-
chine learning-based approaches applied to highly skewed
data.10 Where possible, the best solution to this is obtaining
more examples of the rare classes—an approach that worked
for us in this instance. We combined the training and testing
collections into a single dataset, and performed 2-, 4-, and
8-way cross-validation using the smaller partition for train-
ing, and the larger for testing using our submitted system.
Therefore, the larger the number of cross-ways corresponds
to having less training data per iteration. Figure 3 depicts
our results for both the textual (black) and intuitive (gray)
classification tasks. For many comorbidities—hypercholes-
terolemia included—performance improved with the size of

F i g u r e 2. Macro-averaged F1 scores across comorbiditie
(black), and training on the training collection, and testing o
(bottom) tasks. Bars for which only one color is visible indic
was not significant. Abbreviations: AST—Asthma, CAD—C
Depression, DIA—Diabetes, GST—Gallstones, GRD—Gastroe
HRT—Hypertension, HTR—Hypertriglyceridemia, OA—Osteoa
viral Depression, VI—Venous Insufficiency.

F i g u r e 3. Macro-averaged F1 scores by co-
morbidity for 2-, 4-, and 8-way cross-validation
using the combined training and testing docu-
ment collections in both the textual (black) and
intuitive (gray) tasks. For most comorbidities,
performance decreased with smaller datasets,
for a few it remained invariant.
the training set. In these situations, one could reasonably
expect that additional training data (especially for the rare
classes) would improve performance. The data support this
conclusion on 12 of the 16 textual and intuitive tasks.

There were, however, also situations where performance did
not significantly vary with the size of the data (e.g., Asthma
or Obesity for the textual). In these cases, additional data
would not likely improve performance. For intuitive
Asthma and textual Depression, the performance was al-
ready very high. For Asthma, on the textual task, and
Obesity, on both tasks, it would be necessary to improve the
classification algorithm or the feature set itself.

Post-hoc experiments indicated that AutoHP provided the
most significant contribution to our system’s performance.

ross-validation studies on the training document collection
test collection (gray), for both the textual (top) and intuitive
at the difference between training and testing performance
ry Artery Disease, CHF—Congestive Heart Failure, DEP—
eal Reflux Disease, GT—Gout, HCH—Hypercholesterolemia,
, OBS—Obesity, OSA—Obstructive Sleep Apnea, PVD—Post-
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Figure 4 compares the AutoHP (light gray) and AutoHP�
NegEx (dark gray) preprocessing procedures against that of
a system using no preprocessing procedure (black), for both
tasks. For some comorbidities, AutoHP provided as much as
a 0.30 performance increase over baseline (e.g., OA in the
textual task, or Gallstones in the intuitive task). It is likely
that, in these situations, only a small textual region of the
discharge summary is important for classification and that
including more text will mislead the classifier with irrele-
vant features.

Although NegEx never significantly decreased performance,
the addition of NegEx to AutoHP only improved the CAD,
Diabetes, and Hypertension comorbidities in the textual
task. To address why this might have happened, we exam-
ined the comorbidity-related terms negated by NegEx, and
the classes with which they were most often associated.

F i g u r e 5. Error rate for the plain NegEx
(solid line) regular expressions and Enhanced
using Support Vector Machine (SVM) (dashed
line) procedures across comorbidities and vary-
ing window sizes during 2-way cross-validation
on the combined training and testing docu-
ments collections for the textual task. For all but
one comorbidity, the Automated Negation
Finder tended to extract fewer falsely negated
terms (negated terms not actually associated
with the negative class). For the Hypertriglycer-
idemia and Venous Insufficiency comorbidities,
no NegEx features were found.
Quite frequently, negated features were found in multiple
classes for a single comorbidity, decreasing their predictive
power for binary classification. In its ideal form, a negation-
detection procedure should distinguish between negations
that are associated with the negative class, and those which
are not (false negations).

To see whether we could extend the NegEx procedure to
avoid false negations, we trained an SVM classifier to use the
features surrounding a negated hot-spot feature to distin-
guish false negations from those associated with the nega-
tive class. We compared the performance of this negation
system to that of our standard NegEx procedure by exam-
ining their respective error rates (Fig 5). The SVM� NegEx’s
improved accuracy in all but one comorbidity, achieving up
to 100% separation of true and false negations (e.g., Depres-
sion, Obesity, OSA). In future work, we will further develop

F i g u r e 4. Macro-averaged F1
for the AutoHP (light gray), Au-
toHP� NegEx (dark gray), and
None (black) preprocessing proce-
dures across comorbidities for the
textual (top) and intuitive (bot-
tom) classification tasks. The ad-
dition of NegEx only provided
small improvement in perfor-
mance over and above that
provided by AutoHP for a few
topics, which showed consis-
tent improvements over the
system having no pre-process-
ing procedure. See Figure 1 for
abbreviation definitions.



Journal of the American Medical Informatics Association Volume 16 Number 4 July / August 2009 595
this idea and examine how automated negation detection
can be incorporated into a clinical narrative text classifica-
tion system.

Conclusions
We have demonstrated the effectiveness of several auto-
mated techniques for multiple-classification with clinical
narrative text. All our techniques are generalizable and fully
scalable for classification problems including many more
diseases, especially if a large amount of data is available. No
aspect of our system requires a-priori knowledge of a
disease, expert medical knowledge, or manual examination
of the patient records beyond the training labels themselves.
Future work will focus on automated negation detection,
and explore methods for efficiently using additional training
data.
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