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Concrete, the solid that forms at room temperature from mixing
Portland cement with water, sand, and aggregates, suffers from
time-dependent deformation under load. This creep occurs at a
rate that deteriorates the durability and truncates the lifespan of
concrete structures. However, despite decades of research, the
origin of concrete creep remains unknown. Here, we measure
the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the
nano-meter sized particles that form the fundamental building
block of Portland cement concrete. We show that C–S–H exhibits a
logarithmic creep that depends only on the packing of 3 structur-
ally distinct but compositionally similar C–S–H forms: low density,
high density, ultra-high density. We demonstrate that the creep
rate (�1/t) is likely due to the rearrangement of nanoscale particles
around limit packing densities following the free-volume dynamics
theory of granular physics. These findings could lead to a new basis
for nanoengineering concrete materials and structures with min-
imal creep rates monitored by packing density distributions of
nanoscale particles, and predicted by nanoscale creep measure-
ments in some minute time, which are as exact as macroscopic
creep tests carried out over years.

Concrete is the most-used construction material on earth. The
annual worldwide production stands at 20 billion tons and

increases per annum by 5%. However, the fundamental causes
of concrete creep are still an enigma, and have deceived many
decoding attempts from both experimental (1–3) and theoretical
sides (4–8). In the United States alone, concrete creep is partly
responsible for an estimated 78.8 billion dollars required annu-
ally for highway and bridge maintenance. Although it is generally
agreed that the complex creep behavior of concrete materials is
largely related to the viscoelastic response of the primary
hydration product and binding phase of hardened Portland
cement paste, the calcium–silicate–hydrate (C–S–H), the creep
properties of C–S–H have never been measured directly. C–S–H
precipitates when cement and water are mixed, as clusters of
nanoscale colloidal particles (9, 10) that cannot be recapitulated
ex situ in bulk form suitable for macroscopic testing. Over
decades, therefore, concrete creep properties have been probed
on the composite scale of mortar and concrete (11), with the
conclusion that there are 2 distinct creep phenomena at play
(Fig. 1 A and B): a short-term volumetric creep and a long-term
creep associated with shear deformation (3, 7, 12, 13), with a
creep rate evolving as a power function t�n of exponent n
between 0.9 and 1 (14). The assessment of this long-term creep
is most critical for the durability of concrete structures, and
requires, for a specific concrete composition and structural
application, years of expensive macroscopic testing (11, 14).
After more than 40 years of research (4–8), basic questions
persist regarding the physical origin of this logarithmic creep and
its link with microstructure and composition.

In this study, we investigate the creep properties of C–S–H.
This is achieved by means of a statistical nanoindentation
technique (SNT), described and validated previously (15–17),
which is most suitable for the in situ investigation of mechanical
phase properties and microstructure of highly heterogeneous
hydrated composite materials. Like the classical indentation
technique, an indenter tip (here a 3-sided pyramid Berkovich
tip) is pushed orthogonally to the surface of the cement paste,
and both the load applied to the tip, and the displacement of the

tip with respect to the surface are recorded. By applying
continuum-based constitutive models to the resulting load-
displacement curve, mechanical properties of the indented
material are determined. Applied to heterogeneous and mul-
tiphase materials, the SNT then consists of carrying out a large
array of such nanoindentation tests, and by applying statistical
deconvolution techniques (15, 16) and micromechanical models
to link microstructure to phase properties (17–19).

Results
Nine cement pastes of different compositions representative of
a large range of real Portland concretes, were tested. They
differed by their water-to-cement (w/c) mass ratio ranging from
w/c � 0.15 to w/c � 0.40, heat treatment, and mineral additions,
including silica fumes and calcareous fillers. The samples were
prepared according to a procedure described in a previous study
(20). On each sample 2 series of statistical nanoindentation tests
were carried out that differ in the loading protocol: the first
series assesses the microstructure from indentation hardness and
indentation stiffness results; obtained by a trapezoidal load
history with a maximum load of Pmax � 2 mN, applied in 10 s,
kept constant over 5 s and unloaded in 10 s. Following fast
loading, the 5-s dwelling time is short enough to ensure that the
indentation hardness, H � Pmax/Ac (with Ac the projected area
of contact between the indenter probe and the indented sur-
face), is representative of the strength content (19, 23, 24). In
turn, the unloading is fast enough so that the indentation
modulus M, determined from the unloading slope S � (dP/
dh)h�hmax

at the end of the holding phase truly relates to the
elasticity content of the indented material (25), namely the
indentation modulus M � E/(1 � �2) � S/(2aU), with E
the Young’s modulus, � the Poisson’s ratio, and aU � �Ac/� the
radius of contact between the indenter probe and the indented
surface upon unloading (21, 22, 26). The load protocol of the
second series differs from the first in a 180-s long dwelling
period, which allows the assessment of the contact creep com-
pliance rate, L̇(t) � 2aUḣh/Pmax, and the creep compliance,
L(t) � 2aU�h(t)/Pmax � const, from the time-dependent inden-
tation depth rate ḣ(t) and the change in indentation depth
�h(t) � h(t) � h0 in excess of the indentation depth h0 � 200
nm � 45 nm recorded during the 10-s loading to Pmax � 2 mN
(Fig. 1C). In each series on the 9 samples, 400 nanoindentation
tests were performed, of which on-average 282 indentations were
identified as indents on C–S–H phases, recognized by an inden-
tation modulus and hardness smaller than the C–S–H particle
stiffness and hardness, M � ms � 63.5 GPa and H � hs � 3 GPa,
determined in previous studies (16, 17, 27).

In all tests on C–S–H phases, after correcting for thermal drift
effects of the indenter equipment, a least square fitting of
�h(t) � h(t) � h0 demonstrates an indentation creep compliance
of the C–S–H phases that is logarithmic with regard to time (Fig.
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1D), which translates into a rate L̇(t) 	 t�1. In the 
2,000 tests
on 9 materials, the average error of the fit was 0.48 nm � 0.09
nm, which is on the same order as the noise in the depth
measurement during the 3-min creep phase of 0.39 nm � 0.09
nm; that is, within the noise of the measurement, the logarithmic
function was in almost perfect agreement with the experimental
data (Fig. 1D). The creep rate of the C–S–H phases is thus
governed by L̇(t) � (Ct)�1 where C, which has the same
dimension as an elastic modulus, is justly termed contact creep
modulus (see Materials and Methods).

Similar to the indentation modulus and the indentation hard-
ness, this creep modulus shows a large variability from one test
to another, as one would expect given the high heterogeneity of
the clusters of C–S–H particles in cement paste materials. We,
therefore, deconvolute, for each grid of indentations, the ob-
tained indentation hardness, indentation modulus and contact
creep modulus with Gaussian distributions (15–17). The decon-
volution process demonstrates the existence, in all samples, of 3
significant mechanical phases characterized by their phase prop-
erties (Fig. 2 A–C): indentation modulus, indentation hardness,
and contact creep modulus. Remarkably, an almost perfect
linear scaling of the contact creep modulus with the Berkovich
hardness (C � 200.1 HB, R2 � 0.9385) is observed (Fig. 3B),
whereas this scaling is nonlinear w.r.t. the indentation modulus
(Fig. 3A). We confirmed that these scaling relations equally hold
for cube corner indentations (C � 91.4 HCC, R2 � 0/.897)
operated to a substantially identical indentation depth h � 260
nm � 90 nm with a maximum load of Pmax � 0.5 mN, that
generate another triaxial stress field below the indenter (24); and
for depths 10 times as large, h � 2,020 nm � 440 nm, achieved

with a Berkovich probe loaded to Pmax � 100 mN (C � 299.1 HB,
R2 � 0.984), that sample the composite response of the cement
paste (hydration phases and unhydrated cement) (16).

These scaling relations suggest that the creep rate magnitude
(contact creep modulus C) on one hand, and the strength and
elasticity content (indentation modulus M and hardness H) on
the other hand, are controlled by the same fundamental brick of
C–S–H microstructure: the packing of clusters of nanoscale
colloidal particles with an associated internal pore system (9, 10).

To further investigate this link, we determined the nanopo-
rosity distribution of the C–S–H phases, respectively its com-
plement, the nano-packing density � (‘‘one minus porosity’’), by
means of micromechanics-based scaling relations (28), of the
indentation modulus, M/ms � �M(�,�) (16, 17), and indentation
hardness, H/hs � �H (�,�) (17, 19), with � the Poisson’s ratio and
� the friction coefficient of the solid (Fig. 2 D and E). The
variability in shape and size of C–S–H particles leads to a
distribution of packing densities that appears more continuous
than discrete (Fig. 2F), but in which 3 characteristic packing
densities can be identified. Indeed, after deconvolution, the
analysis of the short-duration (5-s) dwelling tests for all 9 samples
confirms the results in refs. 16–18 and 29–33 that C–S–H exists
in 3 structurally distinct but compositionally similar forms, that
differ merely in their characteristic packing density (Fig. 2F);
that is, for the 9 tested materials: �LD � 0.66 � 0.03 for a
low-density C–S–H phase; �HD � 0.75 � 0.02 for a high-density
C–S–H phase; and �UHD � 0.83 � 0.05 for an ultra-high-density
C–S–H phase. These mean packing densities come remarkably
close to limit packing densities of spherical objects, namely the
random close-packed limit of 64% (34, 35); the ordered face-
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Fig. 1. Results from creep tests at different scales. (A and B) Macroscopic uniaxial creep compliance rate vs. material age for a normal strength concrete (w/c �
0.5) and a high-strength concrete (w/c � 0.33), loaded in uniaxial compression with a constant load at different material ages (adapted from ref. 3). The long-term
creep rate evolves as a power function t�n of exponent n between 0.9 and 1 (14). Macroscopic creep experiments were performed on 16-cm diameter and 1-m
long cylindrical concrete samples (47). (C) Characteristic nano-indentation load–indentation depth curves representative of the nano-indentation response of
3 calcium-silicate-hydrate (C–S–H) phases present in cementitious materials (here a cement paste prepared at a w/c � 0.15 mass ratio): low-density (LD) C–S–H;
high-density (HD) C–S–H; and ultra-high-density (UHD) C–S–H. After a loading in 10 s, a holding at maximum load for 180 s demonstrates the time-dependent
behavior of C–S–H. (D) During the 180-s dwelling time, the change in indentation depth is recorded as a function of time, and fit with a function of the form
�h(t) � x11n(x2t � 1) � x3t � x4. A close inspection of the constants x1, . . . ,x4 shows that x4 � 1.27 � 1.92 nm and x3 � 0.02 � 0.02 nm/s (mean � SD in 
2,000
tests) correct respectively for any inaccuracy in the determination of the beginning of the creep phase, and for the drift of the indentation apparatus (details
provided in Materials and Methods). The characteristic time 1/x2 � 1.66 s is much smaller than the holding time of 180 s, so that the indentation creep compliance
rate L̇ � 2aUḣ/Pmax � 1/(Ct) allows the determination of the contact creep modulus from C � Pmax/(2aUx1), where Pmax is the indentation load kept constant during
the holding phase, whereas aU � �Ac/� is the contact radius at the end of the dwelling phase, with Ac the projected area of contact between the indenter and
the indented surface determined with the Oliver and Pharr method (22). Here, for the displayed P–h curves, C � 95.0 GPa for LD C–S–H; C � 183.9 GPa for HD
C–S–H, and C � 367.6 GPa for UHD C–S–H.

Vandamme and Ulm PNAS � June 30, 2009 � vol. 106 � no. 26 � 10553

EN
G

IN
EE

RI
N

G



centered cubic (fcc) or hexagonal close-packed (hcp) packing of
74% (36), and a 2-scale random packing limit of 1 � (1 �
0.64)2 � 87%. Finally, matching � with C for the 3 phases present
in all 9 materials, the contact creep modulus is recognized to
depend in first order on the specific packing density of each
C–S–H phase (Fig. 3C): CLD � 120.4 � 226 GPa, CHD � 183.6 �
30.5 GPa and CUHD � 318.6 � 32.2 GPa (where mean � SD refer
to the phase values of the 9 tested materials).

Discussion
We now need to reconcile the different observations, namely the
logarithmic creep of C–S–H (Fig. 1D) and the unique depen-
dence of the creep rate (contact creep modulus C) on the
packing density (Fig. 3C). In search for the origin of C–S–H
creep, we note that a logarithmic creep is not only observed for
metals (37, 38), but also for a wide range of granular materials.
It is well known for sands and clays (39) and has been observed
in the compaction of vibrated granular media (40, 41). Further-

more, the linear scaling of C with H (Fig. 3B), but not with M
(Fig. 3A), suggests that the same mechanisms are at play when
C–S–H deforms plastically or creeps. The most likely place for
the creep deformation is thus the particle-to-particle contact of
nanosized C–S–H particles.

We thus hypothesize that C–S–H creep is due to nano-particle
sliding. This sliding leads to a local increase of the packing
density toward the jammed state associated with limit packing
densities (42), beyond which no particle sliding (i.e., deviatoric
creep deformation) is possible without dilation of the granular
media. Close below this jammed state, the volume changes are
small compared with the limit packing density, and are negligible
as regards the mechanical properties of the C–S–H phases. For
this case, the free-volume theory of granular physics (40, 42–44)
provides a plausible explanation for the observed logarithmic
creep (Fig. 1D) and the unique dependence of creep rate and
magnitude of C–S–H on their packing density (Fig. 3C). The
free-volume model describes the compaction of dry granular
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Fig. 2. Results from statistical indentation analysis. (A–C) Probability density plots (PDF, normalized histogram) and phase deconvolution of the indentation
modulus M, the indentation hardness H, and c the contact creep modulus C of a series of 400 nanoindentation tests carried out on a w/c � 0.3 cement paste with
25% of calcareous filler (in weight of cement). The probability density plots (PDF) displayed here, demonstrate the existence of 3 statistically significant C–S–H
phases, identified by their mechanical phase properties. Here, in the w/c � 0.3 material, LD C–S–H [MLD � 23.7 � 5.9 GPa (mean � SD), HLD � 0.68 � 0.18 GPa
and CLD � 121.0 � 41.5 GPa] occupies 13.4 Vol% (surface below the Gaussian curve in the PDF); HD C–S–H 48.2 Vol% (MHD � 36.1 � 3.4 GPa, HHD � 1.01 � 0.16
GPa and CHD � 179.2 � 41.6 GPa); and UHD C–S–H 38.1 Vol% (MUHD � 47.2 � 6.0 GPa, HUHD � 1.60 � 0.31 GPa and CUHD � 308.1 � 133.9 GPa). (D and E)
Micromechanics-based packing density scaling of indentation modulus M and indentation hardness H (17). Superposed on D and E is the probability distribution
(PDF) of the packing density �. (F) A phase deconvolution of the packing density yields 3 characteristic packing densities: �LD � 0.69 � 0.05, �HD � 0.78 � 0.02
and �UHD � 0.87 � 0.03.
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media under mild vibrations inducing some form of pseudo-
Brownian motion. Although the Brownian motion of C–S–H
particles is negligible, force distributions within the highly het-
erogeneous distribution of C–S–H particles are considered to
drive void creation and destruction with a stationary distribution
of sizes. Following the free-volume theory, we thus assume that
the rate decreases exponentially with the excluded volume. To
illustrate our purpose, consider N particles per unit volume of
same volume w having a packing density � � wN. Let �lim �
wNlim be the limit packing density at the jammed state. The free
volume per particle thus is � � w (1/� � 1/�lim), and for small
variations around the limit packing density, � � wx/�lim where
0 � x � 1 � �/�lim �� 1. Consider then a Poisson’s distribution
of the pore size distribution around the free volume � such that
the probability to encounter a pore volume greater than the
particle size w is P(VF 
 w) � exp(�w/v) � exp(��lim/x). This
probability is assumed to determine the rate of change of
packing density, �̇ 	 exp(��lim/x), induced by particle sliding
into free nano-pore volume. Retaining in the integration be-
tween the initial and current states the dominating exponential
term yields t 	 exp(�lim/x); and thus �̇ 	 1/t.

To test this free-volume creep hypothesis associated with small
variations of the packing density, we compare the mean packing
density values of the 3 C–S–H phases for the 5-s and the 180-s
dwelling period test series. We find indeed, for all 3 C–S–H
phases, a densification of the packing due to a prolonged
dwelling period: The LD C–S–H packing increases by 0.7%, the
HD C–S–H packing increases by 2.8%, and the UHD C–S–H
packing increases by 2.0%. Although these changes are small, the
general trend supports our suggestion that concrete’s logarith-
mic creep originates from a rearrangement of nanoscale C–S–H
particles around limit packing densities of 3 compositionally
similar but structurally distinct C–S–H phases: LD C–S–H, HD
C–S–H and UHD C–S–H.

These phases are present in concrete materials in different
volume proportions (Fig. 3D): LD C–S–H dominates cement-

based materials prepared at high w/c mass ratios; HD C–S–H and
UHD C–S–H control the microstructure of low w/c ratio mate-
rials. Hence, compared with the life span of predominantly used
LD C–S–H concretes, the reduced logarithmic creep of HD- and
UHD C–S–H promises to raise the life span of creep-sensitive
concrete structures by a factor of CHD/CLD � 1.5 and CUHD/
CLD � 2.6. In fact, it is precisely the trend that is observed
macroscopically, in the change of the macroscopic creep rate
between the normal strength concrete (high w/c � 0.5) (Fig. 1 A)
and the high performance concrete (low w/c � 0.33) (Fig. 1B),
for which the long-term creep modulus increases from Chs �
1/5.1 TPa � 196 GPa (from Fig. 1 A) to Chs � 1/2.2 TPa � 455
GPa (from Fig. 1B), in close agreement with the values of CHD
and CUHD. The increase in the macroscopic creep modulus of
Chs/Cns � 2.3 is recognized to result from the presence of denser
C–S–H phases with lower creep rates (higher creep modulus) in
the low w/c concrete materials; and it shows that nanoscale creep
measurements in some minute time (Fig. 1D) are as exact as
macroscopic creep tests carried out over years (Fig. 1 A and B).
This illustrates, if need still be, that the insight thus gained into
the link between composition (w/c ratio), microstructure (pack-
ing density distributions) and C–S–H nano-creep properties has
the promise to contribute to the development and implementa-
tion of new concrete materials with minimal creep rates moni-
tored through the packing distributions of nanoscale C–S–H
building blocks.

In summary, the search for the origin of concrete creep has a
long history (1), and progress has been slow because of the
difficulty of measuring the creep properties of nanoscale C–S–H
particles. The statistical nanoindentation testing technique here
proposed allows an in situ probing of C–S–H creep properties.
C–S–H phases creep logarithmically with time, which can be
explained by and monitored via their nanogranular nature. By
probing micrometer-sized volumes of materials, nanoindenta-
tion creep experiments provide quantitative results in a 6 orders
of magnitude shorter time and on samples 6 orders of magnitude
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Fig. 3. Scaling of the contact creep modulus C with (A) the indentation modulus M (C � 1.387 (M/Gpa)1.404;R2 � 0.8710), (B) the indentation hardness H (C �
200.1H; R2 � 0.9385), and c the packing density � for the 9 cement-based materials here investigated. Data points for M, H, and C were obtained from the
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smaller in size than classical macroscopic creep tests. This
‘‘length-time equivalence’’ (large time scales can be accessed by
looking at small length scales) may turn out invaluable for the
implementation of sustainable concrete materials whose dura-
bility will meet the increasing worldwide demand of construction
materials for housing, schools, hospitals, energy and transpor-
tation infrastructure, and so on.

Materials and Methods
Materials and Preparation. Cements were mixed at different w/c mass ratios
(0.15, 0.20, 0.30, 0.4), and different mineral additions [0.22, 0.24, and 0.32 silica
fume/cement mass ratio (sf/c), 0.25 calcareous filler/cement mass ratio (cf/c)] to
generate a sufficiently large range of different compositions. Six samples
prepared at a 0.15, 0.30 and 0.40 w/c mass ratio, with and without silica fumes
or calcareous filler addition, were hydrated at 20 °C for 28 days and stored in
sealed conditions until testing. Three samples prepared with a 0.2 and 0.3 w/c
mass ratio were subject at a material age of 2 days to a 48-h heat treatment
(HT) at 90 °C, representative of a HT protocol used in the field for advanced
concrete solutions. This HT protocol at 2 days was also applied to one mix
prepared at a 0.2 w/c mass ratio and a 0.24 sf/c mass ratio. All heat treated
samples were stored after heat treatment in sealed conditions until testing.
The material age at testing was at least 3 months, which can be associated with
an asymptotic hydration state. For nanoindentation testing specimens were
sliced into 10-mm diameter discs of thickness �3 mm, mounted on a stainless
steel AFM plate (Ted Pella) with cyanoacrylate as an adhesive, and grinded and
polished following a polishing procedure that ensures achievement of as flat
a surface as possible, repeatable results, and that minimizes sample distur-
bance (20).

Nanoindentation Technique. Nanoindentations (h � 1 �m) were performed
with a nanohardness tester enclosed in an environmental chamber, from CSM
Instruments SA implemented at MIT. The nanoindentation depth of h0 � 200
nm � 45 nm was chosen to assess the phase properties of C–S–H clusters (16),
according to the scale separability conditions. That is, the depth of indenta-
tion must be much larger than the elementary size of the C–S–H particle [�5
nm (10, 32)], so that continuum models can be used to extract meaningful
mechanical properties; and it must be smaller than the cluster size visible by,
e.g., scanning electron microscopy [�2 �m (46)]. In return, microindentations
that probe the properties of the composite material (different C–S–H phases,
unhydrated cement), were performed with a MicroTest indenter of Micro
Materials Ltd. also available at MIT. Before testing the machines were cali-
brated, correcting for the machine frame compliance and determining the
shape area function of the used indenter probes (Berkovich and Cube Corner).

Determination of Logarithmic Creep of C–S–H. For each test performed on the
hydration products, during the 180-s dwelling time, the change in indentation
depth is recorded as a function of time, and fit with a function of the form
�h(t) � x1ln(x2t � 1) � x3t � x4, where x1, . . . ,x4 are 4 constants that are fit with

a non linear least-squares solver in Matlab. The average error of this fit is 0.48
nm � 0.09 nm, which is slightly above (but very close to) the noise level. We
then analyze, for all tests (
2,000), the values of x1, . . . ,x4 and come to the
following result: the coefficient x4 � 1.27 � 1.92 nm captures any inaccuracy
in the determination of the beginning of the creep phase. The coefficient x3

� 0.02 � 0.02 nm/s of the linear term has a correlation R 2 � 0.0006 with the
indentation modulus M, and R2 � 0.0050 with the indentation hardness H.
From these very low coefficients of correlation we conclude that x3 is not
material-related and is random. The linear term x3t of the fitting function is
thus recognized as drift of the indentation apparatus. Those drift effects are
well known for indentation equipments, and need to be corrected when
attempting to identify the creep kinetics. The only material-related term in
the fitting function is thus the logarithmic one, from where we infer that the
creep of C–S–H is logarithmic with regard to time. Finally, an inspection of the
characteristic time 1/x2 of the creep phenomenon shows a weak correlation
with the indentation modulus (R2 � 0.042) and with the indentation hardness
(R2 � 0.064). The characteristic time is 1/x2 � 1.66 s � 4.76 s. Because 1/x2 is
much smaller than the dwelling time of 180 s, the logarithmic creep rate
attributed to C–S–H (after correction of the previously identified drift term)
simplifies to ḣ � x1/t. That is, for the logarithmic time dependence of the creep
phenomenon the indentation creep rate is defined by only one parameter of
the fitting function, x1. This parameter x1 enters the definition of the inden-
tation creep compliance rate L̇ � 2aUḣ/Pmax � 2aUx1/(Pmaxt), where aU is the
contact radius upon unloading [determined with the classical tools of inden-
tation analysis, namely the Oliver and Pharr method (22)], and Pmax is the load
applied to the indenter during the dwelling time (Fig. 1C). Finally, we con-
dense the pre-(1/t) term of L̇ into the contact creep modulus C � Pmax/(2aUx1).
Note that we also attempted a power function fit of the form �h(t) � x1tx2 �
x3t � x4, with constants x3 and x4 still correcting for drift and initialization of
the creep phase. Such a fit also provides satisfactory results with a power
exponent in 
2,000 tests of x2 � 0.298 � 0.063, the average error 0.59 nm �
0.25 nm being only slightly greater than that obtained with the logarithmic fit.
In return, this fit requires 2 parameters to determine the creep kinetics, L̇ �
2aUx1x2tx2 � 1/Pmax 	 t�0.7.)

Statistical Nanoindentation Analysis. The statistical indentation analysis is
based on a deconvolution process, which consists of fitting a mixture model of
multivariate normal components to the experimental dataset (M, H, C, �),
using maximum likelihood via the Expectation–Maximization (EM) algorithm
implemented in the EMMIX software (46). The rational of using normal
(Gaussian) components in the mixture model is that they only involve the first
(mean) and second (standard deviation) statistical moments; in contrast to
other components (e.g., log-normal distribution) that introduce a bias
through higher order moments (e.g., skewness) into the analysis of the phase
properties and their volume fraction, and that would not be able to fit the
highly heterogeneous datasets of all cement paste materials.
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