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It is commonly accepted that proteins have evolutionarily conserved
3-dimensional structures, uniquely defined by their amino acid se-
quence. Here, we question the direct association of structure to
sequence by comparing multiple models of identical proteins. Rapidly
growing structural databases contain models of proteins determined
independently multiple times. We have collected these models in the
database of the redundant sets of protein structures and then derived
their conformational states by clustering the models with low root-
mean-square deviations (RMSDs). The distribution of conformational
states represented in these sets is wider than commonly believed, in
fact exceeding the possible range of structure determination errors,
by at least an order of magnitude. We argue that differences among
the models represent the natural distribution of conformational
states. Our results suggest that we should change the common notion
of a protein structure by augmenting a single 3-dimensional model by
the width of the ensemble distribution. This width must become an
indispensible attribute of the protein description. We show that every
protein contains regions of high rigidity (solid-like) and regions of
high mobility (liquid-like) in different and characteristic contribution.
We also show that the extent of local flexibility is correlated with the
functional class of the protein. This study suggests that the protein-
folding problem has no unique solution and should be limited to
defining the folding class of the solid-like fragments even though
they may constitute only a small part of the protein. These results limit
the capability of modeling protein structures with multiple confor-
mational states.

conformational ensemble � conformational states � protein folding

Our basic understanding of the structure of a protein has
been radically changing with time (1, 2). The initial notion

that proteins are basically unstructured has been replaced by the
notion of uniquely and beautifully folded rigid structures (3, 4).
Currently, even this notion is being gradually modified to include
elements of mobility necessary for protein function (5, 6).
Understanding the protein function at the molecular level is an
extremely daunting problem in biology (7, 8).

Structural studies of proteins (rigid models) provided important
results leading to a better understanding of many biological pro-
cesses. However, proteins must undergo significant energy and
volume fluctuations (9). Despite the mounting evidence that
changes in protein structures are necessary to produce a desired
function (10), the dominant paradigm of protein structure-function
relationship is still based on the concept of a rigid protein with a
unique structure. Pictures of solid, apparently rigid structures
dominate textbooks, scientific magazines, and even the popular
press. Although crystallographers at large are well aware of con-
formational variability of proteins, a change of a paradigm is
gradual as expressed in a series of recent papers (11, 12). Moreover,
recent discoveries of intrinsically disordered proteins have in-
creased our awareness of the flexibility of protein structures (13).

One of the main reasons proteins are represented by solid,
rigid bodies is that the dominating experimental technique of
structural biology is X-ray crystallography. This technique pro-
duces a single structure. Here, we argue that because of the rapid

growth of the Protein Data Bank (PDB) (14), we now have a
valuable and unanticipated window into the wide range of
protein conformational f lexibility. A systematic review of the
accumulated protein structures has allowed us to gain insight
into the structural differences between independently obtained
models of identical proteins.

Availability of multiple models of the same or very closely
related proteins was studied earlier to establish the principles of
structure/sequence co-conservation. In a classical paper, Cho-
thia and Lesk (15) explored the divergence of structures with
reduced homology. Brian Matthews (16) investigated the resil-
ience of structure to sequence changes and Martin Karplus (17,
18) investigated conformational variability of the crystal struc-
tures of a single protein. Only recently the availability of multiple
structures allowed us to explore this subject in a more quanti-
tative manner (19). However, none of these studies addressed the
question of the structural uniqueness and identity of the indi-
vidual protein nor performed a comprehensive review of the
available structures of identical proteins present in the PDB.

Although some experimental techniques, such as NMR, pro-
vide direct measures of the flexibility of a protein (20), X-ray
crystallography provides only limited information about protein
mobility. There is, however, an additional source of information
about a protein’s mobility that only recently has come into focus
(21). When 2 (or more) models of the same protein are deposited
into the PDB, they can vary by as much as 0.1–0.4 Å (14). When
the conditions vary the changes can reach tens of angstroms (22).
Such ‘‘redundant’’ depositions now dominate the PDB (�50,000
depositions represents �15,000 proteins) (14).

This redundancy is largely ignored in most large-scale analyses of
protein structures, and a given analysis is usually performed on
non-redundant (or ‘‘culled’’) sets of PDB proteins (23, 24). Non-
redundant sets are very useful for some purposes, such as classifying
proteins into fold groups but, as we argue here, not for other
purposes, such as analyzing the conformational ensemble for a
single protein (25, 26). To investigate the latter, we have prepared
a redundant set of proteins by specifically selecting clusters of
independently solved models of the same protein. This particular
database will be the focus of most of our analyses, as described in
the Research and Methods of this paper.

A recent paper explored this database of ‘‘redundant’’ protein
structure and reported the discovery of dual-personality (DP)
fragments that can be found in either an ordered or a disordered
state among different members of the same cluster (21). The DP
fragments have unique features that differentiate them from both
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regularly folded and intrinsically unstructured/disordered frag-
ments. An analysis of these differences among redundant structures
can provide insights into intrinsic proteins’ variability and into how
a protein structure reacts to small changes in its environment.

In this paper, we study the structural differences in ‘‘redundant’’
structures. For many types of analyses, a general description of an
ensemble for a single protein would be needed (27). It is needed not
only for assessing proteins’ similarities, or in more general tasks
such as classifying proteins or building databases of distantly
homologous domains, but also in practical tasks like solving protein
structures by molecular replacement. Finally, in anticipation of the
next Critical Assessment of Structure Prediction (CASP) compe-
tition the description of the structural ensemble could serve as a
valuable tool for properly assessing the modeling results (28).

Results
I. The Database of Redundant Protein Structures. The database of
redundant protein structures we used was generated from the
collection of X-ray structure files deposited in the PDB before
July 2007. The PDB is highly redundant because an average
protein is represented more than 4 times. Different chains in one
protein structure (the same PDB ID) were treated as separate
entries, which further increased the redundancy. A total of
68,881 entries (independent protein chains) were collected for
processing. After removing the data in accordance with the
procedures specified in the Methods section (deposited before
1990; resolution � 2.5; R-value � 0.25), we reduced this number
by 37% to 43,525 individual entries.

The clustering at the 100% level sequence identity resulted in
12,406 clusters (individual proteins). Out of these 7,206 (54%) were
represented by more than 1 entry and were therefore included in
our further analysis. Out of 7,206 multiple representative clusters
about 50% had a single pair of structures to compare. The size of
individual clusters varied from approximately 220 to 2 structures in
the cluster. Approximately 600 clusters contained more than 10
structures in the cluster; the majority of the clusters in the database
contained less than 10 structures in the cluster.

The total number of non-redundant pairs used in the analysis
was 220,345. The size of the proteins varied from less than 100

residues to approximately 1,500 residues. The largest number of
structures and the resulting pairs was in the range of 100–400
amino acids in length, representing 5,298 clusters (individual
proteins) that constituted 73% of the clusters.

II. Distribution of RMSDs. Our analyses were constructed using the
most commonly accepted measure of similarity of protein struc-
tures: the root mean square deviations (RMSD) calculated between
backbone atoms of selected pairs of structures. The results (Fig. 1
and S1) showed a large divergence in the RMSDs in individual
clusters, as well as in the entire database. The 47,615 pairs,
representing 3,720 clusters, had RMSDs larger than 1 Å. The largest
divergence measured was 23.4 Å. An example of the RMSD
frequency distribution in cluster 29 is presented in Fig. S1. The plot
shows several maxima that correspond to different conformational
substates, represented by 7 models in the cluster. The distribution
of the entire set of RMSDs representing all of the clusters (Fig. 1)
shows a large peak near 0.3 Å (compatible with crystallographic
errors estimated to be �0.25 Å) but with a large shoulder that
extends to 24 Å (Fig. 1). Different scales in the Insets show the
details of the extended tail of the distribution with several smaller
maxima around 3, 7 10, and 15 Å. These maxima originated from
a relative overabundance of individual structures in clusters that
have large conformational changes. The logarithmic scale accen-
tuates the relationship, suggesting a hidden scaling principle of
structural divergence.

It is commonly believed that upon binding of a ligand the
structures rigidify, and therefore, one would expect that the distri-
bution calculated for proteins only containing a ligand should be
different with a diminished contribution of large RMSDs. To
investigate this possibility we identified the structures containing
non-metal ligands. We subdivided the entire set of models into 2
subsets, liganded and unliganded (or native). Subsequently, we
calculated the distributions within each of these states. In Fig. 1, we
present the distributions for all RMSDs, ligand-containing struc-
tures, unliganded structures, and RMSDs between liganded and
nonliganded. Contrary to our expectation, all those distributions
appear to have the same shape on a linear as well as on a logarithmic
scale, suggesting that the distribution has a universal character.

Fig. 1. Global distributions of pair-wise
RMSDs combined for all of the clusters. The
distribution is wide and maximum reaches 23.7
Å. Panels A and C show the distributions within
the maximal range of 24 Å and panels B and D
within 5 Å RMSD. The blue line represents all-
to-all RMSDs, red line ligand-ligand, yellow
line ligand-native RMSDs, and dark-blue line
native-native RMSDs distribution. Insets show
the smaller frequency scale to show similarity
of the different distributions regardless of the
scale. Panels C and D show the same plots as in
A and B with frequency in logarithmic scale.
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Another naive expectation is that the RMSD should increase with
the length of the protein. Again, contrary to this expectation, there
is no clear dependence of the RMSD values versus the length of the
proteins (Fig. 3). This fact testifies to the universal character of the
obtained distributions as they describe the proteins’ design princi-
ples versus the errors of experimental methodologies.

III. Distribution of Conformational States. To avoid the weaknesses
inherent in a direct interpretation of the RMSD distribution
(overrepresentation of many similar structures and the influence
of outliers), we designed a method to derive conformational
states. The method relied on subclustering of models with similar
RMSD values. This clustering procedure directly produced a tree
of conformational states that represent individual subclusters as
branches obtained at a particular level of RMSD. An example of
‘‘deep’’ and ‘‘shallow’’ trees is shown in Fig. 4. In Fig. 5, we show
the global distribution of conformational states (subclusters or
branches) present in all clusters in our database. The number of
conformational states is derived by ‘‘cutting’’ the tree (repre-
sented in Fig. 4) at a particular RMSD value and counting the
branches. This distribution shows a main peak centered below 1
Å RMSD and between 2–3 conformational states with a very
wide shoulder. The main peak extends toward larger RMSDs
and a higher number of conformational states. The main body of
the peak extends smoothly up to 5 Å RMSDs and 10 confor-
mational states. Beyond those limits the distribution levels off
and decays at approximately 25Å and 50 conformational states.

IV. Sliding RMSD. An individual crystal structure can be interpreted
as a snapshot taken from a full ensemble of possible conformational states. This interpretation leads us to ask about the physical origin

of the structural divergence. Is a protein structure deforming
elastically or is it comprised off a small number of rigid components
moving against each other? We designed a technique to address this
question. We calculated the RMSD of a small fragment (for
instance ‘‘window RMSD’’ of 25 amino acids) and then slid the
superposition window by 10 residues along the sequence. If the
fragments are relatively rigid, the window RMSD plotted along the
sequence shows broad valleys with low RMSD. However if a hinge
is encountered in the structure, a sudden increase in RMSD is
observed. The method is therefore sensitive to sudden and localized
changes between compared proteins. The sensitivity of the method
depends on the size of the sliding fragment and the rate of sliding.
Use of a larger fragment imparts a greater averaging effect on small
changes and accentuates large conformational changes.

The method was applied to several clusters. The clusters were
selected to show different type of a protein’s behavior such as the
size of the maximal RMSD and the number of conformational
states. The results for clusters 48, 633, 8,791, and 11,575 are
presented in Figs. 5 and S2. Cluster 48 represents a very large but

Fig. 2. Plot of the RMSDs versus the length of the protein sequence.

Fig. 3. Example of trees of conformational states obtained by subclustering
the RMSDs in individual cluster.

Fig. 4. Global distribution of the conformational states of all clusters
obtained by subclustering the RMSDs in individual cluster. A single bar rep-
resents the number of clusters with the given number of subcluster (confor-
mational states) in reference to the RMSD cutoff at which the number was
obtained. (�) The global distribution in full scale. (R) The same distribution as
in A with a scale of frquency limited to 50 models.
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rigid molecule (transhydroxylase) with a maximum RMSD of
approximately 0.5 Å and only a single conformational state at the
RMSD approximately 0.5 Å. Cluster 633 represents a large but less
rigid molecule (diphtheria toxin) with 2 conformational states at the
level of 1 Å. The structure has a single hinge motion. Cluster 8,791
represents calmodulin, which has a large number of conformational
states and a 2-domain structure. Finally, cluster 11,575 represents
a fragment of apolipoprotein A, a highly mobile structure with the
largest number of conformational states detected in this study.

Fig. 5 and Fig. S2 shows 2 panels for each structure. Both show
the sliding window RMSD as a function of a window position in the
protein. The first panel shows a collection of all RMSDs for the
particular sliding window position. A collection of dots represents
clustering of conformational states and the magnitude of RMSD.
The clustering of dots at the bottom of the figure describes a
fragment of high rigidity. The clustering of dots at the top of the
figure defines a hinge in the structure (represented by several
models). The second panel shows the sliding RMSD for 3 pairs
selected to illustrate a small, intermediate, and large structural
divergence.

As expected from the maximal RMSD for the cluster 48, the
divergence of RMSDs is small and the frequency of small RMSDS
is very high as shown in Fig. 7, which displays the global frequency
of the individual RMSDs. When the structure is rigid the distribu-
tion is narrow and the peak located in the region of small RMSD.
For clusters 633, 8,791, and 11,575 the main peak gradually dimin-
ishes describing decreasing rigidity and the center of the distribution
moves toward the higher RMSD values. The shift in the peak of the
distribution is a direct measure of how rigid the molecule is. The
distribution appears to be unique for every molecule tested and
suggests that every molecule has its own optimization principle.

This optimization leads to the characteristic balance between
rigidity and mobility, for the particular structure. Our method
provides another quantitative measure of this balance. The plots in
Fig. 5 can be subdivided into regions of low and high RMSD. The
number and identity of residues belonging to each category can be
easily computed and the results provide the basis for a new
classification regarding the contents of mobile fragments. This
property appears to be directly correlated with the functional class
of the protein as represented by 4 particular clusters.

This classification can also be augmented by directly corre-
lating the functional class with the number of conformational
states. We have tested this idea by asking whether an individual
keyword such as a ‘‘motor,’’ or a ‘‘transduction,’’ or an ‘‘enzyme’’
present in the PDB description record, can be directly associated
with the average number of conformational states measured at
a given RMSD level (for instance 0.6 Å). The preliminary results
indicated that clusters having ‘‘motor’’ and ‘‘transduction’’ as
keywords had a higher average number of conformational states
than the remainder of the database. The keyword ‘‘enzyme’’ in
contrast had a comparable average number of conformational
states to the rest of the database.

Two caveats must be taken into account when interpreting our
preliminary result: (i) the keywords in the PDB are not accurate
descriptors of the proteins in individual clusters and (ii) an indi-
vidual protein (cluster) can have several functional associations. For
instance, the largest number of conformational states found in our
database belongs to the cluster describing CDK2 kinase, an enzyme
associated with signal transduction. Other proteins with a high
number of conformational states were hemoglobin and insulin.
Both proteins are difficult to classify in a single functional category.
Nevertheless, we clearly demonstrated the utility of the above
approach in classifying the proteins in the PDB. In the future, the
statistical characteristics of the individual clusters relating to the
number of conformational states can be used as an aid in assigning
additional function to an individual protein.

V. Detailed Examples. We studied, in detail, 4 clusters 48, 633,
8,791, and 11,575. We also focused on the SRC kinase that
showed the largest structural divergence for a single protein.
The clusters were selected to show the wide divergence of
protein structure behavior and correlation of the functional
class with the level of mobility in the individual cluster. Cluster
48 represents a large but very rigid molecule. It contains only
2 crystal structures but each has 6 independent chains so the
resulting number of individual RMSDs is statistically signifi-
cant. The number of sliding RMSDs is proportional to the
length and number of chain pairs and therefore it is quite large.
As shown in Figs. 5–7, the structure appears to be very rigid
and shows only a single conformational state.

The second example illustrates a single conformational
change. Cluster 633 represents the diphtheria toxin. The cluster
is comprised of 7 structures with 3 of them having 2 independent
chains. The total number of chains was comparable to that of
cluster 48. The clustering procedure, as Fig. 5 clearly shows,
produced 2 dominant conformational states with a hinge local-
ized around residue 370. Fig. 5 clearly suggested by the increase
in a local RMSD the presence of 2 potential hinges around
residues 150 and 350. This very localized mobility created a
substantial change in the sliding RMSD global distribution by
shifting the maximum from approximately 0.2 Å to 0.4 Å and
producing a much longer tail (Fig. 6) in the distribution.

The third example was cluster 8,791, which represents calmod-
ulin. This very well-investigated signaling molecule is traditionally
described by 2 conformational states (open and closed). The
analysis of the global distribution of RMSDs as well as the sliding
RMSDs provides an interesting picture. As seen in Fig. S2, cal-
modulin possesses a near continuum of conformational states that
represent a wide range of bent angles. However, the commonly

Fig. 5. Global distribution of the conformational states of all clusters
obtained by subclustering the RMSDs in individual cluster. A single bar rep-
resents the numberof clusters with the given number of subcluster (confor-
mational states) in reference to the RMSD cutoff at which the number was
obtained. (A) The full scale distribution of conformational states in the PDB,
(B) The samedistribtion with frequency scale limited to 50.
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assumed stable structures of the C and N-terminal lobes appear to
be much more flexible than commonly assumed, producing a
significant shift in the maximum of the sliding RMSDs around 0.7
Å and with a much more pronounced shoulder. This result suggests
that calmodulin has an intrinsic mobility designed into its helical
segment and also into its relatively well-folded terminal domains.

The fourth example is the cluster 11,575 representing apolipopro-
tein A. This structure is one of the most mobile, and it does not have
a defined tertiary structure. It is dominated by the helical arrange-
ment that appears to change from molecule to molecule. This
flexible design is most visible in the shift of the maximum in sliding
RMSD distribution to approximately 0.9 Å, and a shoulder that
represents a significant proportion of RMSDs in excess of 3.5 Å.
This design strongly suggests a synergism with highly flexible
structures of the phospholipids.

The largest conformational change we detected was in cluster
1,168 that represents the Src kinase. A change of almost 24 Å was
detected between 2 crystal forms of the protein. The structure
that can be subdivided into 4 domains undergoes a pronounced
transformation with 2 pairs of domains twisting away. The
changes are caused by the activation process, which releases the
autoinhibitory fragment upon binding of an inhibitor. This
conformational change was described in detail earlier (26).

Discussion
As indicated in the introduction, our understanding of the
protein structure and its connection with the sequence has
changed over the years (10). After an initial period accentuated
with a common belief in unstructured proteins, a new paradigm
has emerged. The new paradigm declared that the sequence
uniquely determined the 3-dimensional structure of the protein.
Two discoveries reinforcing this notion were rewarded with
Nobel prizes. Dr. Pauling received it for predicting the secondary
structure organization (29), and Dr. Anfinsen was rewarded for
formulating the thermodynamic theory of protein folding (30).
However, later developments in the field of protein folding,
especially the Paracelsus challenge (31, 32) and the discovery of
intrinsically unstructured proteins (13) in combination with the
existence of prions (33, 34), substantially modified the view
regarding the association of a sequence with its corresponding
protein structure. Additionally, an example of a complete struc-
tural ambiguity was also published recently (35).

Recently, a new paradigm emerged based on the notion of the
conformational ensemble. This view has been most prominently
propagated in the works of the Frauenfelder, Freire, Nussinov, and
Wolynes groups (6, 36–39). The experimental hints in support of
this new paradigm, were provided over the years by a variety of
different techniques (40, 41), in particular by NMR (19) and other
spectroscopic methods (42). Recently, single-molecule studies al-
lowed us to glimpse into the distribution itself (ion channel opening,
kinesins walking on tubulin). This latest paradigm is clearly capable
of describing a full spectrum of behavior of different proteins from
very stable, self-folding proteins to intrinsically unstructured pro-
teins. This new paradigm is reflected in a recent call by crystallog-
raphers to change the representation of protein models deposited
in the PDB from a single model to a multimodel representation
(11). A single X-ray data set cannot describe a full ensemble of
conformational states, even if during the X-ray structure determi-
nation the molecular dynamics was used (41, 43). To provide such
a description multiple structure determinations must be carried out.

This study showed that a majority of proteins in the PDB have
multiple conformational states. The differences between the states
are significantly larger than a possible crystallographic error, or an
in-the-crystal structure variation (��0.3 Å). Actually, only about
25% of the models of high-resolution structures represent a single
conformer in the PDB. The remaining 75% show at least 2
conformers with RMSD divergence greater than 0.6 Å, but some
proteins apparently have as many as approximately 40 conforma-
tional states. Some of these changes could be associated with the
environmental changes such as structural changes upon ligand
binding. The results of this study suggest that they represent a
natural conformational distribution. This view is confirmed by the
results of the calculations performed for apo-structures as well as
liganded structures that produced a very similar distribution of

Fig. 6. An example ofthe 25 amino acds sliding window RMSD distribution
in cluster 633 (diphtheria toxin). (A) Dots represent all individual 25 a.a. RMSDs
wherens B shows examples of 3 models with conformational states with small
(yellow), intermediate (red), and large divergence (blue).

Fig. 7. Examples of proteins representing different ‘mobility classes’ found in
the PDB. (A) cluster 48 representing a large enzyme transhydroxylase (1,236
amino acids) with a single conformational state. (B) Cluster 633 representing
diphtheria toxin with a single hinge that represents a movement of the entire
domain shown in yellow and red models. (C) Cluster 8,791 representing calmod-
ulin that has the entire family of different conformational states represented.
Threeofthesestatesaredepicted;greenanopenstate,bluehalf closedstate,and
purple the completely closed state. (D) Cluster 11,575 representing a fragment of
apolipoprotein A. Three conformational states are represented out of many
available in 2 independent crystal structures. (E) The Src kinase representing the
largest conformational change detected in the PDB models represented in our
database that comprises 23.7 Å RMSD between models 2src and 1y57.
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conformational states (Fig. 1). We have concluded, in agreement
with previous results (11, 12) that any individual protein cannot be
described by a single model, despite the fact that the original model
was obtained by X-ray crystallography. This conclusion is true even
when the structural picture is supplemented by the B-factors
(quasi-dynamical information).

Protein structure is, in reality, a broad ensemble of individual
models (conformers) sampling a wide conformational space (20).
The individual proteins differ, sometimes significantly, in the width
and shape of this ensemble as it relates to function (8). Independent
crystallographic experiments sample the distribution at different
points, providing a lower bound estimate of its size. The last point
is especially important, because every additional experimental
technique will only make the distribution broader (vide NMR), and
cannot make it narrower. A rapid increase in size of the PDB can
only expand and further emphasize the picture we present above.
This view is further strengthened if lower resolution structures
present in the PDB are included.

The experiments with sliding window RMSDs allowed us to study
the internal mechanism of protein flexibility. Preliminary results
suggest that every protein has a unique composition of rigid (solid)
and mobile (liquid) components. The simplified view of the protein
as individual folding units (rigid body elements) connected by
flexible loops has to be replaced with an elastic medium model in
which certain fragments of the protein are stiffer than the others
and the remaining fragments differ in plasticity. This view supports
the success of the Gaussian network model capable of explaining
internal protein mobility (44).

A varying degree of protein flexibility indicates that the classical
formulation of the protein folding problem might not have a unique
solution and the coexistence of many conformers at the particular
set of conditions may be the case. This fact was recently suggested
as a mechanism for evolving new functions and most likely for
protein evolution in general (35, 45). The sequences that do not

code for a particular preference in the secondary structure forma-
tion play an important role in changes of the structure and the
formation of new functions (35).

Observations presented here are the tip of an iceberg. A statis-
tical analysis of the rapidly growing body of structural information
on proteins is certain to provide greater insight into the nature of
the protein structure. Many more structures that are added to the
PDB each day, certainly will improve chances for a better template
selection for modeling of an unknown structure. However, this work
defines a limit on our ability to produce a reliable model in the
absence of knowledge of the entire ensemble. This work also offers
a clear delineation of possible limits on our predictability of protein
structures in general and associated with it capability of inferring
the function. One thing is certain, that a classical paradigm of a
DNA sequence defining the protein structure, which in turn defines
protein function, has to be reinterpreted to provide for a broader
understanding of a protein structure and biology in general.

Methods
The methodology used in this paper follows closely the one described in our
previous publication (21). More details can be found in the SI Text. We con-
structed the database of redundant protein structures deposited in the PDB on or
before January, 2007. We used the structures that fulfilled the criteria: (i) depos-
ited after 1990; (ii) resolution higher than 2.5 Å; (iii) R-value � 0.25.

We used ‘‘SEQRES’’ records of all of the PDB entries to identify identical
proteins and to align them using ‘‘blast2seq’’ program in the National Center for
Biotechnology Information (NCBI) toolkit. We removed artifacts such as Sel-Met
by converting to Met and removed His-tags. Subsequently, we computed the
RMSD in all clusters of the same sequence proteins in an integrated environment
of BOS (v3.0) (www.helixgenomics.com). The numerically close RMSDs were used
to cluster models with the UPGMA algorithm (unweighted pair group method
with arithmetic mean). Clustered RMSDs were used to determine the nodes of
conformational speciation. To study the local structural divergence, we calcu-
lated the RMSD for 25 amino acid structural pairs by sliding it along the structure.
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