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Here, we describe the ‘‘temporal lens’’ concept that can be used for
the focus and magnification of ultrashort electron packets in the
time domain. The temporal lenses are created by appropriately
synthesizing optical pulses that interact with electrons through the
ponderomotive force. With such an arrangement, a temporal lens
equation with a form identical to that of conventional light optics
is derived. The analog of ray diagrams, but for electrons, are
constructed to help the visualization of the process of compressing
electron packets. It is shown that such temporal lenses not only
compensate for electron pulse broadening due to velocity disper-
sion but also allow compression of the packets to durations much
shorter than their initial widths. With these capabilities, ultrafast
electron diffraction and microscopy can be extended to new
domains,and, just as importantly, electron pulses can be delivered
directly on an ultrafast techniques target specimen.

attosecond imaging � ultrafast techniques

W ith electrons, progress has recently been made in imaging
structural dynamics with ultrashort time resolution in both

microscopy and diffraction (ref. 1 and references therein).
Earlier, nuclear motions in chemical reactions were shown to be
resolvable on the femtosecond (fs) time scale using pulses of
laser light (ref. 2 and references therein), and the recent
achievement of attosecond (as) light pulses (for recent reviews,
see refs. 3–6) has opened up this temporal regime for possible
mapping of electron dynamics. Electron pulses of femtosecond
and attosecond duration, if achievable, are powerful tools in
imaging. The ‘‘electron recombination’’ techniques used to
generate such attosecond electron pulses require the probing
electron to be created from the parent ions (to date no attosec-
ond electron pulses have been delivered on an arbitrary target)
and for general applications it is essential that the electron pulse
be delivered directly to the specimen.

In ultrafast electron microscopy (UEM) (7), the electron
packet duration is determined by the initiating laser pulse, the
dispersion of the electron packet due to an initial energy spread
and electron-electron interactions (see, e.g., ref. 8). Because
packets with a single electron can be used to image (1, 7), and
the initiating laser pulse can in principle be made very short (�10
fs), the limiting factor for the electron pulse duration is the initial
energy spread. In photoelectron sources this spread is primarily
due to the excess energy above the work function of the cathode
(8), and is inherent to both traditional photocathode sources (9)
and optically induced field emission sources (10–13). Energy-
time uncertainty will also cause a measurable broadening of the
electron energy spread, when the initiating laser pulse is de-
creased below �10 fs. For ultrafast imaging techniques to be
advanced into the attosecond temporal regime, methods for
dispersion compensation and new techniques to further com-
press electron pulses to the attosecond regime need to be
developed.

A recent article by Baum and Zewail (14) has proposed a new
technique for compressing free electron packets, from durations
of hundreds of femtoseconds to tens of attoseconds, using
spatially dependent ponderomotive potentials. The numerical

results showed that a train of attosecond pulses can be created
and used in ultrafast electron imaging. Because they are gener-
ated independent of the target they can be delivered to a
specimen for studies of transient structures and electronic
excitations on the attosecond time scale. In reference (14), the
proposed compression concept was examined using numerical,
electron trajectory calculations. The deflection of electrons [as
in the Kapitza–Dirac effect (15)] by the ponderomotive potential
of intense lasers (16) and the diffraction (17) of electrons in
standing waves of laser light have been observed, and so is the
possibility (described through computer modeling) of spatial/
temporal focusing with combined time-dependent electric and
static magnetic fields (18).

This article develops the ‘‘temporal lens’’ description that
analytically expresses how ponderomotive compression can be
used to both compensate for the dispersion and magnify (in this
case compress) the temporal duration of electron packets. We
obtain simple lens equations that have analogies in optics and the
results of ‘‘electron ray optics’’ of temporal lenses reported here
are entirely consistent with the findings of ref. 14, but now allow
for analytical expressions and for the design of different schemes
using geometrical optics. Here, we consider 2 types of temporal
lenses: thin and thick.

For the realization of the temporal thin lens, a laser beam
with a Laguerre–Gaussian transverse mode, radial index � �
0 and azimuthal index l � 0 [or, in common nomenclature, a
‘‘donut’’ mode (19–21)], is used. In the center of the donut
mode, electrons will experience a spatially varying pondero-
motive potential (intensity) that is approximately parabolic.
This potential corresponds to a linear spatial force that, for
chirped electron pulses, can lead to compression from hun-
dreds of femtoseconds to �10 fs. The second type, that of a
thick lens, which is the concept outlined in ref. 14, is based on
the use of 2 counterpropagating laser beams to produce a
spatially dependent standing wave that copropagates with the
electrons. A train of ponderomotive potential wells are pro-
duced at the nodes of the standing wave, leading to compres-
sion but now with much ‘‘tighter focus’’ (thick lens). Because
the electron copropagates with the laser fields the velocity
mismatch is no longer a problem (14). Here, analytical ex-
pressions are derived showing that this lens has the potential
to reach foci with attosecond duration, in agreement with the
results of ref. 14. Finally, we discuss methods for creating
tunable standing waves for attosecond pulse compression, and
techniques for measuring the temporal durations of the com-
pressed pulses. Space-charge dispersed packets of electrons
that have a linear spatial velocity chirp (22, 23) may also be
compressed with the temporal lenses described here.
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Results and Discussion
Preliminaries: Temporal Lens Concepts. All electron sources, both
cw and pulsed, have an initial energy spread. For pulsed electron
sources this is particularly relevant as electron packets created in
a short time disperse as they propagate. The initial energy spread
leads to an initial spread in velocities. These different velocities
cause the initial packet to spread temporally, with the faster
electrons traveling a further distance and the slower electrons
traveling a shorter distance in a given amount of time. The
dispersion leads to a correlation between position (along
the propagation direction) and electron velocity (see Fig. 1). The
linear spatial velocity ‘‘chirp’’ can be corrected for with a
spatially dependent linear impulsive force (or a parabolic po-
tential). Thus, if a pulsed, spatially dependent parabolic potential
can be made to coincide appropriately with the dispersed
electron packet, the slow trailing electrons can be sped up and
the faster leading electrons can be slowed down. The trailing
electrons, now traveling faster, can catch the leading electrons
and the electron pulse will thus be compressed.

Consider a packet of electrons, propagating at a speed v0 along
the x axis, with a spread in positions of �xo � v0�to, at time t �
to; see Fig. 1. At t � 0, a potential of the form U(x) � 1⁄2Kx2

interacts with the electron packet for a duration � in the lab
frame. The waist, or spatial extent of the potential (temporal
lens) is chosen to be w, whereas the duration � is chosen such that
it is short compared with w/v0. When this condition is met the
impulse approximation holds, and the change in velocity is
�v � ��/m(dU(x)/dx) � ��Kx/m, for x �w, where m is the
electron mass. After the potential is turned off, t��, the electrons
will pass through the same position, xf � x � (v0 ��v)tf, at the
focal time tf � �x/�v � m/(K�). To include an initial velocity
spread around v0 (due to an initial �E), consider electrons that
all emanate from a source located at a fixed position on the x axis.
An electron traveling exactly at v0 will take a time t0 to reach the
center of the potential well at x � 0. Electrons leaving the source
with other velocities v0�vk will reach a location x � vkto at t �
0 (Fig. 2). The image is formed at a location where electrons
traveling with a velocity v0 and a velocity v0 � vk intersect, this
is, when v0ti � x � (v0 � �v � vk)ti. The image time ti is then
ti � �x/(�v � vk).

For the object time, to � x/vk, image time ti � �x/(�v � vk) and
the focal time tf � �x/�v, the temporal lens equation holds,

1
to

�
1
t i

�
1
t f [1]

Ray tracing for optical lenses is often used to visualize how
different ray paths form an image, and is also useful for
visualizing how temporal lenses work, see Fig. 2. As derived in
later sections the magnification M is defined as the ratio of the
electron pulse duration (�ti) at the image position to the electron
pulse duration (�to), and is directly proportional to the ratio of
the object and image times (�ti/to) and distances (�xi/xo).

Femtosecond Thin Lens. In polar coordinates a Laguerre–Gaussian
(LG0

1) mode has a transverse intensity profile given by, I(r,�) �
I0exp (1)2r2exp(�2(r/w)2)/w2 where w is the waist of the focus
and I0 the maximum intensity (19–21). This ‘‘donut’’ mode has
an intensity maximum located at r � �2�w�/2 with a value of I0
� 2EP�ln2/�3/(w2�) where EP is the energy of the laser pulse
and � is the full-width-at-half-maximum of the pulse duration,
assuming a Gaussian temporal profile given by exp(�4ln2(t/�)2).
The ponderomotive energy UP(x) is proportional to intensity
(24),

Up	x
 �
1
2�e2�2 exp(1)I0

2�2m�0c3w2 �ln 2
�
� x2 � 1

2
Kx2, [2]

where m is the electron mass, e is the electron charge and � the
central wavelength of the laser radiation and replacing r with x.
Near the center of the donut mode focus (or x �� w) the intensity
distribution is approximately parabolic, and hence the pondero-
motive energy near the donut center is also parabolic. In analogy
with a mechanical harmonic oscillator, the quantity in the square
brackets of Eq. 2 can be referred to as the stiffness K; it has units
of J/m2 � N/m, and at 800 nm has the numerical value of,
K�3.1 � 10�36EP/(w4�). For this parabolic approximation to be
applicable, the spatial extent of the dispersed electron pulse, at

Fig. 1. Dispersion of an ultrashort electron packet. At t � to, the packet is
created from a photocathode and travels with a velocity v0. As it propagates
along the x axis it disperses, with the faster electrons traveling further, and the
slower ones trailing for a given propagation time t. At t � 0 a parabolic
potential is pulsed on, giving an impulsive ‘‘kick’’ to the dispersed electron
packet. After the potential is turned off, t � �, the trailing electrons now have
a greater velocity than the leading electrons. After a propagation time t � ti,
the pulse is fully compressed.

Fig. 2. Ray diagrams for spatial and temporal lenses. (Upper) Depicts 3
primary rays for an optical thin spatial lens. The object is located at yo, and the
spatial lens has a focal length, f. A real image of the object is created at the
image plane, position yi. (Lower) Ray diagram for a temporal thin lens. The
diagram is drawn in a frame moving with the average speed v0 of the electron
packet. The slopes of the different rays in the temporal diagram correspond
to different initial velocities that are present in the electron packet. As shown
in the diagram a temporal image of the original electron packet is created at
the image time ti. The initial packet (object) is created at a time to with �to �
�xo/v0, where the spatial extend of the pulse is directly related to the temporal
duration of the object. The lens is pulsed on at t � 0 and the temporal focal
length of the lens is tf. The lens represents the ponderomotive potential and
in this case is on for the very short time �.
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t � 0, �x (0) � v0�to � �voto must be much smaller than the laser
waist, where the object velocity spread is �vo � �E/�2mE (8).

The effect of this parabolic potential on an ensemble of
electrons emitted from a source will now be analyzed (for
detailed derivation, see SI Appendix). The velocity distribution of
the ensemble is centered around v0, with an emission time
distribution centered on �to, where all electrons are emitted
from the same location xo � �v0to. Assuming a single donut-
shaped laser pulse is applied at t � 0, and centered at x � 0, the
electron ensemble is then influenced by the potential U(x) �
(1/2)Kx2. The kth electron in the ensemble has an initial velocity
v0 � vk and emission time �to � tk. Using a Galilean transfor-
mation to a frame moving with velocity v0, the propagation
coordinate x (lab frame) is replaced with the moving frame
coordinate x̃ � x � v0t. At t � 0 the potential exists for the
ultrashort laser pulse duration �, giving the electron an impulse
(or ‘kick’) dependent on its instantaneous position in the par-
abolic potential. In both frames, the position of the electron at
t � 0 is xk (0) � x̃k (0)'�v0tk � vkto � vktk, where xk(t) and x̃k(t)
are in the lab and moving frames, respectively. Using the impulse
approximation the electron trajectory immediately after the
potential is turned off becomes,

x̃k	t
 � vkt � x̃k	0
	1 	 t/tf) [3]

where tf � m/(K�) is the focal time. The electron trajectories,
before and after t � 0, can be plotted in both frames to give the
equivalent of a ray diagram, Fig. 3. Electrons emitted at the same
time, i.e., tk � 0, but with different velocities, will meet at the
image position, x̃k � 0 in the moving frame at the image time ti.
The image time is found by setting x̃k(ti) � 0, from Eq. 3, with
tk � 0, x̃k(ti) � vkti � vkto(1 � ti/tf) � 0, which is equivalent to the
lens equation, Eq. 1: to

�1 � ti
�1 � tf

�1.
An expression for the magnification can be obtained when

electrons that are emitted at different times tk and different
velocities vk are considered (see SI Appendix for detailed deri-
vation). If the magnification is defined as M � �ti/to then the
temporal duration at the image time becomes,

�ti � M� t0, [4]

where �to and �ti are the duration of the electron packet at the
object and image time, respectively. Durations achievable with a
thin temporal lens follow from Eq. 4.

An experimentally realistic temporal lens would use a 50-fs,
800-nm laser pulse with 350 
J energy, focused to a waist of w �
25 
m. These values result in a stiffness of K � 5.5 � 10�8 N/m
and a focal time of tf � 0.3 ns; tf � m/(K�). If the lens is applied
10 cm from the source, electrons emitted at v0 � c/10 (3 keV)
would have an object time of to � xo/v0 � 0.1/(c/10) � 3.0 ns.
Using the temporal lens equation, Eq. 1, ti is obtained to be 0.33
ns. Hence, a magnification of M � �ti/to � 0.1. Consequently, a
thin temporal lens can compress an electron packet with an
initial temporal duration of �to�100 fs, after it has dispersed, to
an image duration of �ti�10 fs. Although the example presented
here is for 3 keV electrons, the thin lens approximation holds for
higher energy electrons as long as � is chosen to be short
compared with w/v0. Experimentally, the thin temporal lens can
be used in ultrafast diffraction experiments (25), which operate
at kHz repetition rates with lasers that typically possess
power that exceeds the value needed for the ponderomotive
compression.

Attosecond Thick Lens. In the previous section it was analytically
shown that free electron packets can be compressed from
hundreds to tens of femtoseconds using a temporal thin lens,
which would correspond to a magnification of �0.1. However,
the analytic solutions used rely on an impulse approximation that
may not generally hold for the temporal lens described in ref. 14.
For example, ref. 14 numerically showed that a �300-fs duration
electron packet can be compressed to a train of �15 as pulses,
which corresponds to a magnification of M�5 � 10�5; the
associated image time of ti � 2 ps is comparable with the laser
pulse duration of � � 0.3 ps. Because M �� 1 and ti and � are the
same order, it is unclear whether the impulse approximation
would accurately describe the results.

Another issue that needs to be addressed is how an initial

Fig. 3. Thin lens temporal ray diagrams for the lab and copropagating frames. (Upper Left) Ray diagram drawn in the lab frame showing how different initial
velocities can be imaged to a single position/time. The gray lines are rays representing electrons with different velocities. (Lower Left) Ray diagram drawn in a
frame moving with the average velocity v0 of the electron packet. The rays represent velocities of v0/67, v0/100, and 0. In the copropagating frame, the relationship
between �to and �ti can be visualized as �ti � ��toti/to. One major difference between the lab frame and the moving frame is that in the latter the position
of the object and image are moving. The lines representing the object and the image positions are drawn with slopes of �v0. (Upper Right) Experimental
geometry for the implementation of a thin temporal lens. Note that the laser pulse and electron packet propagate perpendicular to each other, and that the
interception point between the electrons and photons is at x � 0 and t � 0. (Lower Right) Shows how the parabolic (idealized) potential compares to the
experimentally realizable donut potential. The colored dots indicate the position of electrons following the rays indicated in Lower Left.
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source velocity spread and dispersion affects the ability for the
temporal lens in ref. 14 to compress electron packets. The
simulation done in ref. 14 predicted �15 as electron pulses,
where the duration was determined solely by the sinusoidal
deviation from the optimal parabolic potential, and did not allow
the electron packet to disperse before compression. In the thin
lens case, an initial velocity spread results in a nonzero pulse
duration even with a parabolic potential. Developing a model
incorporating an electron packet that is allowed to disperse
before encountering a parabolic potential will answer whether or
not an initial velocity spread is detrimental to attosecond pulse
compression.

The attosecond compression scheme presented in ref. 14 relies
on the presence of a standing wave that copropagates with an
ultrashort electron pulse. The copropagating standing wave is
created by using 2 different optical frequencies, constructed by
having a higher frequency (�1) optical pulse traveling in the same
direction as the electron packet and a lower frequency (�2)
traveling in the opposite direction. When the optical frequencies
�1, �2, and the electron velocity v0 are chosen according to v0 �
c(�1 � �2)/(�1 � �2), a standing wave is produced in the rest
frame of the electron (14) (see Fig. 4). If the electron has a
velocity v0 � c/3, and �1 � 2�2 then the copropagating standing
wave has a ponderomotive potential of the form (24),

Up	x
 �
1
2� e2�̃2E0

2

8�2mc2� cos2	 k̃x
 , [5]

where E0 is the peak electric field, �̃ the Doppler shifted
wavelength (14). The envelopes of the laser pulses are ignored
in this derivation, but they can be engineered so that the standing
wave contrast is optimized (26).

To find an analytic solution in the thick lens geometry, each
individual potential well in the standing wave is approximated by
a parabolic potential that matches the curvature of the sinusoidal
potential, UP(x) � (1/2)[e2E0

2/(2mc2)]x2 ' (1/2)Kx2. Using the
exact solution to the harmonic oscillator the focal time is,

tf � cot	�p�
 /�p � � , [6]

where �p � �Km and � is the duration that the lens is on. For
�3 0, tf3 m/(K�), which is identical to the thin lens definition.
The image time, ti, has a form,

ti � 	1/�p
2 � t0tf 	 t f� � �2
 /	 t0 	 t f � �
 , [7]

and after the 2 assumptions, � 3 0 and to��1/(tf�p
2) becomes

equivalent to Eq. 1, the lens equation: to
�1 � ti

�1 � tf
�1.

The standard deviation of the compressed electron pulse at
arbitrary time ta is,

�ta � �t f
2	 �̃2 � 4 ta

2�vo
2
 � ta

2�̃2 	 2 t fta�̃
2

48t f
2v0

2 , [8]

which is valid for an individual well (detailed derivation in the SI
Appendix). The time when the minimum pulse duration occurs
is ta � tf�̃2/(�̃2�4tf

2�vo
2) � tf and for experimentally realistic

parameters is equal to tf. This implies that the thick lens does not
image the initial temporal pulse; it temporally focuses the
electrons that enter each individual well. Because there is no
image in the thick lens regime, the minimum temporal duration
is not determined by the magnification M as in the thin lens
section, but is a given by,

�tf � � t f
2�̃2�vo

2

12v0
2	 �̃2 � 4 t f

2�vo
2)

	
t f�vo

v0
22�3

, [9]

which is equivalent to Eq. 6 in ref. 14. It should be noted that
neither the temporal focal length nor the temporal duration are
directly dependent on the Doppler shifted wavelength �̃, as long
as the condition to � v0�to/�vo is met.

An example illustrates what temporal foci are obtainable. A
source emits electrons with an energy distribution of 1 eV and
a temporal distribution of 100 fs. Electrons traveling at v0 � c/3
and having an energy E � 31 keV gives a velocity distribution of
�vo � 1670 m/s. If the distance between the source and the
temporal lens is 10 cm, to � 1.0 ns is less than v0�to/�vo � 6.0 ns,
satisfying the condition to � v0�to/�vo and Eq. 9 is then valid. If
the 2 colors used for the laser beams are 520 nm and 1040 nm,
the Doppler-shifted wavelength is �̃ � 740 nm. For a laser
intensity of 3 � 1012 Wcm�2 (available with repetition rates up
to megahertz), the oscillation frequency in the potential well is
�p � 2 � 1012 rad/s, which gives a focal time of tf � 1 ps. With
these parameters, Eq. 9 gives a temporal duration at the focus of
�tf � 5 as. To support this �5 as electron pulse, time-energy
uncertainty demands an energy spread of �50 eV. The pon-
deromotive compression imparts an energy spread to the elec-
tron pulse, which can be estimated from �E � mv0�̃(2tf), giving
�50 eV similar to the uncertainty limit. This �E is very small
relative to the accelerating voltage in microscopy (200 keV) and
only contributes to a decrease of the temporal coherence. In
optical spectroscopy such pulses can still be used as attosecond
probes despite the relatively large �E when the chirp is well
characterized (27). Combining the anharmonicity broadening of
15 as (as discussed in ref. 14), we conclude that ultimately
temporal pulse durations in the attosecond regime can be
reached.

Tunable Thick Lens. In the temporal thick lens case, the use of �
and 2� to create a copropagating standing wave requires v0 � c/3.
However, the velocity of the electrons, v0, can be tuned by
changing the angle of the 2 laser pulses. A copropagating
standing wave can still be obtained by forcing the Doppler-
shifted frequencies of both tilted laser pulses to be equal. A laser
pulse that propagates at an angle � with the respect to the
electron propagation direction has a Doppler-shifted frequency
�̃ � �(1 � (v/c)cos�), where � is the angular frequency in the
lab frame, v� � vx̂ is the electron velocity, and  � 1/�1 � v2/c2

(28). When the 2 laser pulses are directed as shown in Fig. 4, a
copropagating standing wave occurs for an electron with a
velocity v0 � c(k1 � k2)/(k1cos�1 � k2cos�2), where the laser
pulse traveling with the electron packet has a wave vector of
magnitude k1 and makes an angle of �1 with the electron
propagation axis; the second laser pulse traveling against has a
wave vector magnitude of k2 and angle �2, in the lab frame. An

Fig. 4. 2D schematic of tilted laser pulse concept for copropagating standing
wave used for attosecond electron compression (thick temporal lens). When
�1 � �2 � 0, then v0 � c/3 for � and 2� beams (14). With frequencies of � and
2� the velocity of the copropagating standing wave can be tuned by tilting the
2 laser pulses angles �1 and �2. When the 2 angles are chosen according to �2 �
arcsin(2sin�1), the wells in the standing wave are perpendicular to the electron
propagation.
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electron moving at v0 will see a standing wave with an angular
frequency,

�̃ �
2(cos�1 � cos�2)
2cos�1 � cos�2

�(1 	 �), [10]

where 2k � k1 � 2k2 for experimental convenience, � � kc, and
the wavelength is �̃ � 2�c/�̃ � 2�/�̃.

The standing wave created with arbitrary angles �1 and �2 will
be tilted with respect to the electron propagation direction,
which will temporally smear the electron pulse. This tilting of the
standing wave can be corrected for by constraining the angles �1
and �2 to be: �2 � arcsin(2sin �1).

For �1 � 150 (forcing �2 � 310), electrons with velocity v0 �
0.36c (E � 33 keV) see a standing wave. A 1 eV electron energy
distribution at the source gives a velocity distribution of
�v0�1630 m/s, at 33 keV. Using the same laser intensity as in the
thick lens case, and the new v0 and �vo, the condition to �
v0�to/�vo is still satisfied, allowing Eq. 10 to be used, resulting in
a duration at the focus of �tf � 4.6 as. Using the tunable thick
lens makes the experimental realization more practical, allowing
for easy optical access and electron energy tuning, while at the
same time keeping �tf approximately the same. For additional
tunability, an optical parametric amplifier can be used so that the
laser pulse frequencies are not restricted to � and 2�.

Detection Proposals. The ability to create electron pulses with
duration from �10 fs to �10 as raises a challenge regarding the
measuring of their duration and shape. Two different schemes
are presented here for measuring pulses compressed by thick and
thin temporal lenses. For measuring the thin lens compressed
electron packet, the focused packet could be intersected by a
laser pulse with a Gaussian spatial focus (Fig. 5). An optical
delay line would control the time delay between the measuring
laser pulse and the compressed electron packet. As the time
delay, �t, is varied, so is the average energy of the electrons, as
shown in Fig. 5. If the delay time is zero, then the average
electron energy will be unaffected, because there is no force. If
the delay line is changed so that the Gaussian pulse arrives early
(late), then the average energy will decrease (increase). The
change in the average energy depends on the duration of the
electron pulse, and the intensity of the probing laser pulse. If
the electron pulse is longer than the duration of the measuring
laser pulse, then the change in the average energy will be
reduced. The steepness of the average energy as a function of
delay time, E� (�t), is a direct measure of the electron pulse
duration, and by using femtosecond-pulsed electron energy loss
spectra (29) this scheme can be realized.

For the thick lens a similar method was proposed in ref. 14 and
described in more detail here. At the focal position and time of
the compressed temporal electron packet, a second copropagat-
ing potential is introduced. The positions of the individual wells
in the second copropagating standing wave can be moved by
phase shifting one of the two laser beams that create the probing
potential (Fig. 5). By varying the phase shift, the potential slope
(and hence the force) that the electrons encounter at the focus
is changed. If no phase shift is given to the probing standing
wave, no average energy shift results. When a phase shift is
introduced, the electrons will be accelerated (or decelerated) by
the slope of an individual well in the standing wave, and as long
as the phase stability between the electrons and the probing
standing wave is appropriate, attosecond resolution can be
achieved. As the electron pulse duration becomes less than the
period of the standing wave, the average electron energy change
increases. The electron temporal duration of the compressed
electron packet can be determined directly by the steepness of
the E� (�) curve.

Conclusion and Outlook. The attosecond electron imaging regime
is possible only when the electron pulses are compressed to the
attosecond duration. Current efforts in employing attosecond
technologies (primarily electron recombination) require the
target specimen to be part of the electron generation, causing the
pump and the probe to be coupled. Here, we have described 2
temporal lens designs and obtained analytical expressions con-
sistent with the proposal of Baum and Zewail (14). With a thin
temporal lens, the capability to image an electron packet tem-
porally is illustrated with compressibility (or magnification) of
the pulse duration from 100 fs to 10 fs. A thick temporal lens can
focus an initial dispersed electron packet (hundreds of femto-
seconds) into a train of attosecond pulses; this case is discussed
in ref. 14 using electron trajectory simulations.

The ultrashort pulses produced by the temporal lenses de-
scribed here, or by using other compression schemes (18, 30, 31),
will have a wide range of applications in UEM (1, 7) and
femtosecond-pulsed electron energy loss spectroscopy (29).
Although single electron packets develop a linear velocity chirp
due to dispersion, packets with linear chirp can be imaged with
the temporal lenses described in this article. For an initial packet
with an ellipsoidal distribution of electrons, electron-electron
interactions (space charge) result in a linear spatial chirp in the
propagation direction (23). This linear chirp due to space charge
can be used to increase the temporal resolution of ultrafast

Fig. 5. Detection schemes for measuring femtosecond and attosecond
compressed electron packets. (Upper) Depicts how femtosecond electron
packets can be measured by intersecting the packet at the image position/
time. (A) Spatial profile of the donut mode temporal lens. (B) Gaussian profile
of the measuring laser pulse. As the time delay, �t, between the measuring
Gaussian laser pulse and the electron packet is varied the average energy of
the electron pulse changes. (Lower) depicts the scheme for measuring the
duration of attosecond pulses. (C) The spatial profile of the temporal lens at
t � 0 is shown (green). (D) The second standing wave that is used to measure
the pulse duration of the attosecond electron packets at t � tf is displayed. The
blue lines in C and D give the spatial distribution of the electron packets at t �
0 and t � tf, respectively. To measure the duration of the attosecond pulses,
a second copropagating standing wave is made to coincide with the electron
pulse at the focal position. Instead of using a temporal delay a phase shift, ��,
is introduced into one of the laser pulses that creates the probing standing
wave. By varying this phase shift the nodes of the standing wave shift position.
The average electron energy can thus be plotted versus this phase shift. As the
electron pulses become shorter than the period of the standing wave the
change in the average energy will increase.

10562 � www.pnas.org�cgi�doi�10.1073�pnas.0904912106 Hilbert et al.



electron diffraction experiments through energy filtering (22) or
pulse compression with radio-frequency fields (32). In principle,
the concepts presented here can also be used to compress
space-charge dominated pulses of electrons extending the range
of applicability for temporal lenses.

Finally, temporal lenses have the potential to increase by
orders of magnitude the quantum degeneracy of an electron
packet (33). The first use of electron quantum degeneracy in free
space—the demonstration of the Hanbury Brown and Twiss
effect for electrons (antibunching)–reached a degeneracy value
of 10�4 (34, 35) and in other sources could be 10�6 or less. This
was done with a continuous electron beam from a field emission

tip (34). By using pulsed sources and temporal lenses the
degeneracy factor can become significantly closer to the quan-
tum limit of one because of the increased current density during
the pulse duration. In this limit, the potential for ‘‘electron
quantum optics’’ becomes real.
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