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Abstract
In addition to stem cells providing a better understanding about the biology and origins of gliomas,
new therapeutic approaches have been developed based on the use of stem cells as delivery vehicles.
The unique ability of stem cells to track down tumor cells makes them a very appealing therapeutic
modality. This review introduces neural and mesenchymal stem cells, discusses the advances that
have been made in the utilization of these stem cells as therapies and in diagnostic imaging (to track
the advancement of the stem cells towards the tumor cells), and concludes by addressing various
challenges and concerns regarding these therapies.
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Despite the large amount of research that has been carried out investigating the biology and
treatment of gliomas, the median survival is still 1 year or less for glioblastoma multiforme
(GBM) and approximately 3 years for anaplastic astrocytoma [1-5]. High-grade gliomas have
the ability to infiltrate local structures and migrate long distances, even to the contralateral
hemisphere, leading to disease recurrence despite aggressive resection [6-10]. Even after
seemingly curative resection of the tumor, there are often microsatellites of tumor cells
scattered throughout normal brain tissue that have the potential to continue proliferating and
cause tumor recurrence in other areas of the brain [8,10,11]. Moreover, tumor infiltration of
eloquent areas of the brain often limits the extent of tumor resection [5,9,10,12-14]. In the
1930s, Walter Dandy reported recurrence of contralateral gliomas even after hemispher ectomy
[15]. Radiotherapy [16,17 and chemotherapy [3,18,19] have had limited success in treating
gliomas [2,3]. Both are limited by their toxicity to normal brain tissue that could lead to further
brain damage and decreased quality of life for patients [20-22]. Moreover, the effect of chemo
therapy is often suboptimal because there is limited drug penetration across the blood—brain
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barrier [23-25]. Lastly, gliomas evade the immune system by local suppression of immune
cells within the tumor microenvironment, thus limiting the ability of the immune system to
attack the tumor cells [26,27].

Treatment of gliomas has also been difficult because their origin is still not fully understood
(Figure 1) [28]. A significant number of similarities have been found between normal neural
stem cells (NSCs) and neoplastic cells of neuroectodermal origin in terms of migratory
capacity, self-renewal potential, molecular signature and their ability to integrate themselves
into normal tissue [29,30]. Many now believe that the virulence of brain tumors is maintained
by a subpopulation of ‘stem-like’ cells, which are referred to as brain tumor stem cells (BTSCs)
[31-34]. There is mounting evidence suggesting that BTSCs are responsible for the highly
invasive [35] and resistant [36] potential of many human brain tumors. This unique group of
cells has the ability to migrate long distances in the brain parenchyma [37]. Moreover, they
exhibit profound resistance to both chemotherapy and radiotherapy [38]. Some studies have
even shown that GBMs bordering the lateral ventricle, an area that contains the subventricular
zone NSC niche, may carry a worse prognosis for patients [39]. It is still unclear whether the
origin of these BTSCs emanates from normal progenitor/stem cells that have become neoplastic
or from the dedifferentiation of mature neural cells that have undergone mutations [28]. There
is evidence that both etiologies may be possible [40].

The resemblance of the properties and attributes of stem cells to those of BTSCs has initiated
interest in how stem cells can be armed to track and eradicate tumors [29,41,42]. In this review,
we will discuss the tropism of stem cells for tumors, review the advances in neural and
mesenchymal stem cell (MSC) therapies for gliomas, and finally outline the concerns and
challenges in making stem cells into a treatment modality in humans.

Stem cell tropism for tumors
One of the remarkable properties of both NSCs and MSCs is their tropism for tumor cells
[29,43]. These stem cells have the ability to migrate across the blood—brain barrier into the
tumor when administered intra-arterially [29,44]. Stem cells have also been shown to migrate
from the contralateral hemisphere into the tumor [29,43]. The tumor tropism of progenitor/
stem cells is mediated by several receptor—ligand combinations [45]. The molecular basis of
tumor tropism of stem cells in vivo is still poorly understood, but multiple in vitro studies have
provided insight into the cytokines, growth factors and receptors involved in tumor tropism of
stem cells [46]. These receptor—ligand interactions include SCF/c-Kit (in NSCs) [47-49],
HGF/c-Met (in NSCs) [50], MCP-1/CCR2 (in NSCs) [51] and HMGB1/RAGE (in
mesangioblasts) [52]. Kendall et al. observed that human HGF elicited the strongest
chemotactic response from NSCs and that gliomatropism was critically dependent on c-Met
and Ras—PI3K signaling [53]. EGF and its receptor have also been demonstrated to be
involved in NSC migration [54], as well as the increased migration and invasion of glioma
cells [55].

Malignant gliomas actively recruit mesenchymal progenitor cells by secreting angiogenic
cytokines, such as VEGF [56], IL-8, TGF-ss1 and neurotrophin-3 [57]. In addition to its
angiogenic properties, VEGF has also been shown to play a role in the tropism of NSCs for
glioma cells [58].

Glioma extracellular matrix proteins have also been associated with the tropism of NSCs to
gliomas [59] and MSCs to injured tissues [60]. Adhesion molecules, such as b1- and b2-
integrins and L-selectin, may play a significant role in the mobilization and homing of MSCs
to gliomas [61-63]. Matrix metalloproteases (MMPs) such as MMP2 and membrane type-1
matrix metalloprotease (MT1-MMP), as well as tissue inhibitor of metalloproteases-2
(TIMP-2) have been associated with MSC migration to injured tissues [59,60].
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It is noteworthy to discuss the CXCR4—SDF-1α interaction, which plays an important role in
inflammation, tumor tropism of stem cells and the pathology of gliomas [64-66]. The
chemokine receptor CXCR4 has been found to be expressed in human and mouse NSCs, while
its cognate ligand SDF-1α is expressed by reactive astrocytes and endothelium within regions
of CNS injury and degeneration [64]. SDF-1α expressed by tumor-derived endothelium attracts
NSCs to migrate to the tumor [65,67]. Inhibiting CXCR4—SDF-1α interactions prevented
NSC migration towards gliomas [68]. With regard to its role in glioma pathology, the CXCR4
—SDF-1α interaction increases glioma growth and cell migration as well as tumor
angiogenesis [66,69]. Antagonists of CXCR4 have been shown to inhibit the growth of GBMs
and medulloblastomas in experimental models [70]. The CXCR4—SDF-1α interaction may
also play a role in metastatic malignancies to the brain [71]. It has been found that the CXCR4
receptor is expressed in breast cancer cells while SDF-1α is expressed on brain endothelium,
thus providing a basis for the migration of circulating metastatic cells through the blood—brain
barrier [71]. Inhibiting CXCR4 has been shown to prevent breast cancer metastasis to the brain
in animal models [72].

Neural stem cells
The working definition of a stem cell includes the ability to self-renew and differentiate into
several cell types [73,74]. Several immunocytochemically detectable markers have been
proposed for NSCs, the most important being CD133 [75] and nestin [76,77]; but other less-
used markers include mushashi1 [78-80] and Sox1/2 [81-83]. However, there are no markers
that are sufficiently specific and sensitive to define a NSC and, thus, many rely on the
operational definition of NSCs [84]:

• Multipotency in which the neurospheres have the ability to produce mature cells in
all three of the fundamental neural lineages (neurons, astrocytes and
oligodendrocytes)

• The ability to populate a developing region of the nervous system and/or an ablated/
degenerated area of the nervous system with appropriate cell types

• The ability to be serially transplanted
• Self-renewal properties in which they are able to produce new NSCs

There are several potential sources of human NSCs [85], including the adult brain [86-90],
fetal brains [91,92] and embryonic stem cells [93,94]. Within the adult brain, NSCs have been
found in the sub ventricular zone (SVZ) [95-97], hippocampus [87-89], subcortical white
matter [90], cerebellum [98] and olfactory bulbs [99]. Although adult NSCs and embryonic
stem cell-derived neural progenitors exhibit many of the same properties, a few subtle
differences in behavior and signaling pathways have been described [100]. For instance,
embryonic stem cell-derived neural progenitors have a greater tendency to form neurons and
have enhanced MAPK signaling, thus contributing to the high proliferation rate of these cells.
Other sources of NSCs that have been explored include MSCs [101], adipose tissue stem cells
[102] and skin stem cells [103], all of which have been demonstrated to have the potential to
be reprogrammed into NSCs.

The progeny of NSCs are capable of integrating structurally and functionally into the
surrounding host nervous system, thus having the potential to serve as treatments for nervous
system repair [104-109]. The migratory capability of NSCs, along with their tropism for
intracranial pathologies, make them attractive therapeutic agents for several neurological
diseases, including stroke, Parkinson’s and Alzheimer’s disease, as well as brain tumors [79,
92,110-113].
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Mesenchymal stem cells
Mesenchymal stem cells are another stem cell population with the ability to self-renew as well
as give rise to multiple tissue types [114]. These primitive progenitors exist postnatally and
are multipotent, with the ability to generate cartilage, bone, muscle, tendon, ligament and fat
[114]. There is a paucity of developmental stage-specific markers for MSCs [115]. However,
markers such as STRO-1 have been used in the isolation of MSCs. For isolation of MSCs, our
laboratory uses flow cytometry to isolate for a cell population with the following cell marker
characteristics: CD31- CD45-CD90+CD105+CD106+ [116-118].

Mesenchymal stem cells can be acquired from a variety of sources, including embryonic stem
cells [119], bone marrow [120,121], peripheral blood [122], placenta [123], adipose tissue
[124], skin [125 and umbilical cord blood [126-128]. Studies are being performed

Box 1
Summary of neural stem cell therapies for gliomas.

Chemotherapeutic vehicles

• Cytosine deaminase [23,110]

• HSV-thymidine kinase [109,112]

• Deoxycytosine kinase (not yet used in NSCs) [113]

• Carboxylesterase (not yet used in NSCs) [114-116]

Viral delivery vehicles

• Replication-conditional HSV-1 vectors [111]

• Conditionally replicating adenovirus [118,119]

Immunotherapeutic vehicles

• IL-4 [120,121]

• IL-12 [122]

• IL-23 [123]

• TRAIL [127-132]

• IFN-β [137]

Inhibition of glioma migration

• PEX [140]

HSV: Herpes simplex virus; NSC: Neural stem cell; PEX: Hemopexin-like domain of MMP-2; TRAIL: TNF-related
apoptosis-inducing ligand

to determine the best sources of MSCs. Kern et al. observed that bone marrow-derived MSCs
had a lower proliferation capacity in vitro than MSCs from adipose tissue or umbilical cord
blood, making the latter two sources very appealing as sources of MSCs [129]. Moreover, a
recent study by Kim et al. demonstrated that the IL-8-mediated glioma-tracking behavior of
umbilical cord MSCs is much stronger than that of bone marrow-derived MSCs and that this
phenomenon is due to overexpression of the IL-8 receptor and CXC chemokine receptors 1
and 2 on umbilical cord MSCs [130]. Due to this difference in receptor expression, umbilical
cord-derived MSCs have a much greater capacity to migrate towards glioma cells than bone
marrow-derived MSCs [130].
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NSCs & MSCs as a therapy for brain tumors
Both NSCs and MSCs have potential use in therapy for brain tumors (see BOXES 1 & 2 for a
summary). Studies have suggested that unmodified endogenous NSCs may have a natural
ability to suppress tumor growth [131]. It has been demonstrated that endogenous NSCs exhibit
significant tropism for gliomas and migrate from the SVZ to surround the tumor graft [131].
The same study found that the endogenous precursor cell accumulation around gliomas
decreased with the age of the recipient; this correlated with increased tumor size and decreased
survival times in aged mice [131]. Furthermore, when GBM cells were cocultured with
unmodified NSCs, the rapid increase in tumor cell number was suppressed and there was
increased GBM cell apoptosis [131]. This observation had also been documented in earlier
studies by Weinstein et al. [132] and Staflin et al. [133].

In 2000, Aboody et al. demonstrated that modified NSCs migrated great distances to tumor
masses when introduced in various locations of the brain, including the ipsilateral and
contralateral hemispheres, relative to the glioma [29]. NSCs were

Box 2
Summary of mesenchymal stem cell therapies for gliomas.

Chemotherapeutic vehicles

• HSV-thymidine kinase [172]

Viral delivery vehicles

• Conditionally replicating adenovirus [173]

Immunotherapeutic vehicles

• IL-2 [34,174,175]

• IL-18 [176]

• IL-23 [124]

• TRAIL [177]

• IFN-α [178]

• IFN-β [36]

HSV: Herpes simplex virus; TRAIL: TNF-related apoptosis-inducing ligand.

also able to migrate to the intracranial glioma when introduced via the systemic circulation
[29]. On histological studies, it was found that NSCs traveled toward and positioned themselves
in direct juxtaposition to microsatellites of glioma cells that had migrated away from the tumor
bulk and invaded normal brain tissue [29]. Finally, Aboody et al. demonstrated that treatment
with NSCs genetically modified to deliver a drug-activating enzyme resulted in a reduction in
the size of the tumor and increased host survival [29].

The ability of stem cells to efficiently cross the blood—brain barrier, home in on tumor cells
and then secrete a therapeutic molecule provides a very enticing approach to treat tumors of
the CNS. Compared with some of the other experimental therapies being studied, such as viral
therapy, stem cells are showing potential to be much more powerful treatments because, in
addition to being able to home in on tumor cells, they are fully capable of transcriptional,
translational and post-translational expression of large amounts of genetic information,
allowing them to secrete therapeutic substances into the tumor microenvironment [46].
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NSCs & MSCs as chemotherapeutic vehicles
There are several ways that stem cells can be used to treat gliomas. One such way is for the
stem cells to locally convert a nontoxic prodrug into a toxic drug that will kill tumor cells in
close vicinity [29]. This strategy takes advantage of the ability of stem cells to migrate towards
areas of tumor mass and distribute themselves evenly throughout the bulk of the tumor to
produce high concentrations of prodrug-converting enzyme. Systemically administrated
prodrug penetrates through the blood—brain barrier into the CNS and is converted into a toxic
form only in the close vicinity of tumor cells, thus killing the cancer cells through a ‘bystander
effect’ and sparing normal tissue from the toxic effects of the drug.

Aboody et al. demonstrated in vivo efficacy of murine NSCs transduced to express cytosine
deaminase (CDA), which converts the nontoxic prodrug 5-fluorocytosine (5-FC) into 5-fluoro
uracil (5-FU), which is incorporated into the newly created DNA of proliferating tumor cells,
causing chain termination and subsequent cell death [29]. There was a significant reduction in
tumor burden in mice with intracranial gliomas when the mice were injected intracranially with
CDA-expressing NSCs and given systemic 5-FC [29]. In 2003, Baressi et al. also demonstrated
regression of intracranial gliomas when they used neural progenitors genetically modified to
locally convert 5-FC to 5-FU in the tumor microenvironment [134]. If the CDA-expressing
NSCs were to be recruited by the tumors to contribute to the tumor bulk, CDA would function
as a suicide gene for these NSCs [135]. However, tumor recruitment of these stem cells is not
a concern because evidence exists that exo genous NSCs do not contribute to the tumor
[136]. Another drug-activating enzyme that has been studied is thymidine kinase 135]. In 2005,
Li et al. demonstrated increased survival in rats that were treated with NSCs transduced with
herpes simplex virus thymidine kinase (HSV-tk) and then given systemic gancyclovir [135].
Uhl et al. demonstrated that migratory HSV-tk-transduced NSCs had the ability to eliminate
glioma cells purely by means of a gap junction-mediated bystander effect and that the efficacy
of the treatment correlated with connexin-43 expression in glioma cells [137]. Deoxycytosine
kinase, which activates cytosine arabinoside into a toxic form, is another enzyme that has been
used in viral therapies for intracerebral gliomas and has potential for stem cell therapies
[138]. Furthermore, carboxylesterase, which converts convert CPT-11 (irinotecan) to SN-38,
may be yet another genetic modification to consider in future NSC therapies [139-141].
Another idea that may be interesting to look into is genetically modifying stem cells to activate
radiotherapy-sensitizing agents in the tumor microenvironment.

As with NSCs, MSCs can be engineered to locally convert nontoxic compounds into a toxic
drug that will kill glioma cells in close vicinity [142]. In 2007, Miletic et al. demonstrated that
bone marrow-derived MSCs genetically engineered to express HSV-tk were highly effective
in the treatment of gliomas in rodents [142]. Tumor cells were not detected on serial histological
sections in the brains of surviving mice who received the tk-MSCs with adjuvant gancyclovir.
Only a cavity and scar tissue from the initial tumor mass, which had been successfully treated,
was observed in long-term survivors; this tissue was found to be infiltrated by CD45+

inflammatory cells [142]. There are several more drug-activating enzymes that can be explored
in MSC-based therapies for gliomas.

NSCs & MSCs as viral-delivery vehicles
The delivery of viruses via NSCs that have the ability to home in on areas of pathology and
locally produce virus is a significant improvement to the older methods of viral therapies using
injection of viral supernatants or immobile virus-producing fibroblasts [143]. NSCs have also
been used to deliver oncolytic viruses to kill glioma cells [136]. The modified NSCs home in
on tumor cells and release oncolytic viruses, thereby transfecting the tumor cells to express
oncolytic genes. An advantage of this form of viral delivery to tumors is that the dispersion of
NSCs throughout the tumor bulk allows more extensive delivery of the oncolytic viruses not
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only to the tumor bulk but also to glioma cells that have invaded into normal brain parenchyma
[136]. The HSV-tk system mentioned earlier has also been used in the form of viral therapy in
which replication-conditional HSV-tk viruses are delivered by murine NSCs to transfect tumor
cells [136]. The systemically administered prodrug, ganciclovir, is then converted into its toxic
form in tumor cells that have been transduced to express thymidine kinase [135]. Lastly, NSCs
have also been used to deliver conditionally replicating adenovirus to gliomas, and studies have
shown that NSC-mediated delivery of the adenovirus enhanced the intratumoral distribution
of the oncolytic vector compared with injection of the virus alone [144,145].

Mesenchymal stem cells can also be engineered to deliver oncolytic viruses to glioma cells
[146]. Sonabend et al. engineered human MSCs to deliver replication-competent oncolytic
adenovirus (CRAd) in a model of intracranial malignant glioma in rodents and showed that,
when injected away from the tumor site in vivo, MSCs migrated to the tumor and delivered
46-fold more viral copies than injection of the virus alone [146]. More studies utilizing MSCs
to deliver oncolytic viruses are currently underway.

NSCs & MSCs as immunotherapy
Neural stem cells can also be used as a form of immunotherapy to elicit an immune response
against tumor cells by locally secreting cytokines in proximity to the tumor cells [147].
Depending on the cytokine used, a variety of effects can be achieved, including direct
cytotoxicity to the tumor cells, arrest of growth and differentiation and host immune system
modulation to elicit a stronger anti-tumor response [46]. One such cytokine that has been used
is IL-4, which increases T-cell-mediated response to tumor cells [147]. Benedetti et al. found
that treatment of mice bearing intracranial gliomas with NSCs transduced to express and secrete
the IL-4 cytokine increased survival [148]. The group of mice with C6 rat gliomas treated with
IL-4-secreting NSCs had a 90-day survival of over 80%, whereas 0% of the untreated mice
survived for even 30 days [148]. Likewise, similar treatment with GL261 tumors resulted in
71% of the treatment group surviving compared with 33% of tumor-bearing mice that received
control NSCs with no genetic modifications [148]. IL-12 is another cytokine that has
therapeutic potential [149]. It is a T-cell-stimulating factor that can stimulate the growth and
function of T cells, stimulate the production of IFN-γ and TNF from T cells and natural killer
(NK) cells, enhance the cytotoxic effects of NK and CD8+ cytotoxic T lymphocytes, and has
anti-angiogenic activity. In 2002, Ehtesham et al. used IL-12-secreting murine NSCs to treat
GL261 tumor-bearing rats [149]. The local expression and secretion of IL-12 in the tumor
microenvironment elicited a significant amount of tumor infiltration by T lymphocytes [149].
Another cytokine that has been studied for stem cell therapy for tumors is IL-23, which
promotes an inflammatory response by promoting angiogenesis, increasing MMP9 and
reducing CD8+ T-cell infiltration [150]. There has been some concern that IL-23 may actually
promote tumor incidence and growth [150]. However, Yuan et al. demonstrated that bone
marrow-derived neural stem-like cells engineered to secrete IL-23-inhibited tumor growth in
C57BL/6 glioma-bearing mice, and the surviving mice treated with these engineered stem cells,
were resistant to tumor rechallenge [151].

TNF-related apoptosis-inducing ligand (TRAIL) is a cell membrane protein that has sparked
interest in tumor therapies because it has been shown to specifically induce apoptosis in cancer
cells and not in normal tissue [152,153]. Injection of TRAIL-expressing NSCs into nude mice
with intracranial GBM xenografts resulted in tumor apoptosis and reduction of the tumor bulk
[154]. Similar results have been achieved with human NSCs isolated from the telencephalon
of human fetal cadavers (13 weeks’ gestation) [155]. Shah et al. improved on this treatment
by designing a secreted version of TRAIL (S-TRAIL), which increased the delivery of TRAIL
to its molecular target [156]. Intracranial injection of NSCs expressing S-TRAIL resulted in a
greater than 80% decrease in tumor growth [156]. Furthermore, NSCs have been engineered
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to secrete S-TRAIL in combination with small hairpin RNA (shRNA) targeting BCL-2 [157]
or with micro-RNA-21 inhibitors [158]. Hingtgen et al., in 2008, demonstrated that combined
treatment with NSCs secreting S-TRAIL and temozolomide induced cell killing and markedly
upregulated proapoptotic proteins in glioma cells that were least sensitive to TRAIL [159].

Although originally described as antiviral proteins, type I interferons (α/β) also exhibit
pleiotropic anti-tumor effects, including direct tumor cytotoxicity [160], immunomodulation
[161] and inhibition of angiogenesis [160,162,163]. In a study by Dickson et al., HB1.F3 NSCs
engineered to deliver IFN-β were injected into tumor foci with the intent to normalize tumor
vasculature before administering cytotoxic agents so that these agents would more extensively
penetrate the tumor mass and thus increase the anti-tumor efficacy of the drug [164]. The
delivered IFN-β resulted in the maturation of the vasculature inside the tumor, which
consequently made it unable to expand to support the tumor growth [164]. The maturation of
the tumor vasculature also significantly increased the delivery and anti-tumor effect of adjuvant
therapy [164].

Similar to NSCs, MSCs have also been genetically engineered to deliver various
immunological cytokines (FIGURE 3) [43]. One of the first studies to explore the effect of
genetically altered MSCs for the treatment of gliomas was by Nakamura et al. in 2004, where
they demonstrated that the MSCs were able to migrate across the corpus callosum to the
contralateral hemisphere towards the glioma cells [43]. When MSCs were implanted directly
into the tumor, the MSCs localized mainly at the border between the tumor cells and normal
brain parenchyma, but they also infiltrated into the tumor bed [43]. Finally, the study
demonstrated that genetically modifying the MSCs to secrete IL-2 limited tumor growth and
prolonged the survival of tumor-bearing rats [43]. Implantation of IL-2 MSCs induced
lymphocyte infiltration into the gliomas, whereas there was minimal inflammatory cell
infiltration in the untreated controls [43]. Other studies have also demonstrated that genetically
modified MSCs expressing IL-2 slowed tumor development when injected into intracranial
gliomas [165,166]. Another cytokine that has been studied in MSC-based therapy is IL-18,
which is a proinflammatory cytokine that induces the production of IFN-γ in T cells and NK
cells. Xu et al. demonstrated that MSCs genetically modified to produce IL-18 inhibited glioma
growth and prolonged the survival of glioma-bearing rats [167]. Transplantation of these IL-18-
secreting MSCs was associated with increased T-cell infiltration of the gliomas and long-term
anti-tumor immunity [167]. Yuan et al. showed that IL-23-expressing neural stem-like cells
can be generated from the bone marrow of adult mice and, when implanted into the brains of
mice with intracranial gliomas, these cells were able to track into the tumor mass as well as to
tumor islands that had infiltrated deep into brain tissue [151]. Intratumoral implantation of
bone marrow-derived NSCs transduced with IL-23 led to decreased glioma growth and
significantly prolonged the survival of treated mice [151].

In 2008, Kim et al. demonstrated that human umbilical cord blood-derived MSCs that were
genetically modified to secrete TRAIL significantly inhibited tumor growth and prolonged the
survival of mice bearing gliomas compared with controls [168]. In 2005, Nakamizo et al.
demonstrated that human MSCs transduced to express IFN-β significantly increased animal
survival compared with controls in an intracranial glioma model [44]. Another study
demonstrated that MSCs engineered to secrete IFN-α significantly prolonged the survival of
brain tumor-bearing rats [169]. The same study found that transfection of the MSCs with EGF
receptor (EGFR) enhanced the migratory responses of the MSCs in glioma-conditioned media
and that EGFR MSCs were able to migrate toward GL261 gliomas or B16 melanoma in
vivo, even after injection into the contralateral hemisphere of mice [169].

It is noteworthy to also mention that activating MSCs with certain cytokines, such as IL-2,
IL-15 and GM-CSF, increases the cytotoxicity of genetically modified MSCs [170,171]. In
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Kang et al., activation of umbilical cord blood-derived MSCs with cytokines did not increase
the number of differentiated immune effector cells in the tumor; however, activated umbilical
cord blood-derived MSCs did secrete more immune response-related proteins such as IL-4 and
IFN-γ than the MSCs that were not activated [171].

NSCs to inhibit glioma cell migration & invasion
The human metalloprotease-2 (MMP-2) fragment PEX inhibits the proliferation and migration
of endothelial and glioma cells, in addition to decreasing angiogenesis [172,173]. In 2005, Kim
et al. demonstrated that intratumoral injection of the hemopexin-like domain of MMP-2 (PEX)-
secreting HB1.F3 NSCs reduced tumor volume by 90% and decreased angiogenesis by 45%
and cell proliferation by 24% [174]. Histological ana lysis showed that these stem cells
migrated to the tumor boundary [174]. This is a desirable location for the NSCs to situate
themselves considering that the main goal is to inhibit tumor cell migration away from the
tumor bulk. Since migration and invasion are such lethal characteristics of glioma cells,
additional approaches to inhibit metalloproteases and other proteins conducive to glioma cell
invasion should be explored in future therapies. This therapeutic approach should also be
explored in MSCs.

Diagnostic imaging using NSCs & MSCs
Since stem cells have a tendency to track down cancer cells in the tumor mass as well as those
that have migrated away from the bulk of the tumor into the brain parenchyma, studies have
explored the use of stem cells as an imaging modality to determine the extent of tumor
infiltration and to determine where the therapeutic stem cells are positioned (FIGURE 2) [175].
Utilizing routine bioluminescence imaging, Tang et al. were able to explore the macroscopic
migratory abilities of luciferase-expressing murine neural progenitor cells toward brain tumors
and demonstrated their persistence in brain tumor tissue 4 weeks after implantation in living
mice [176]. Another interesting finding from the study was that intraventricular injection of
the NSCs resulted in a greater number of NSCs migrating to the tumor than the intravenous,
intracranial or intraperitoneal routes [176]. In a later study, the same group demonstrated that
NSCs could be transduced with both S-TRAIL and luciferase to provide for the tracking of in
vivo migration of the NSCs as they delivered tumoricidal S-TRAIL to glioma cells [177].
Another imaging modality relies on the internalization of tat peptide-derivatized magnetic
nanoparticles in hematopoietic and neural progenitor cells and then using MRI for in vivo
tracking and recovery of the cells [178]. Zhang et al. used MRI to demonstrate that neural
progenitor cells and MSCs labeled with lipophilic dye-coated superparamagnetic particles
migrated toward intra cranial gliomas after injection into the cisterna magna or the rat tail vein
[179]. Using MRI, they were able to track the migration of as few as 1000 labeled NSCs in
vivo [179]. Slotkin et al. demonstrated that fluorescent semiconductor quantum dots can be
effectively used to label mammalian neural stem and progenitor cells in vivo [180]. Lastly,
nanoshells are a new class of optically tunable nanoparticles that may provide imaging of NSC
migration as well as therapeutic photothermal therapy to treat glioma cells [181]. Loo et al.
engineered immunotargeted nanoshells that are able to scatter light in the near-infrared region
(enabling imaging of the tumor) as well as absorb light (allowing selective destruction of
targeted carcinoma cells through photothermal therapy) [181]. This combined imaging and
therapeutic modality has great potential in gliomas.

Mesenchymal stem cells can also be labeled so that they can be tracked in vivo. In 2005,
Anderson et al. demonstrated that MRI can detect the incorporation of magnetically labeled
bone marrow-derived precursor cells into tumor vasculature as part of ongoing angiogenesis
and neovascularization [182]. This labeling of stem cells can be used to directly identify tumor
neovasculature in vivo and to facilitate gene therapy by noninvasively monitoring these cells

Kosztowski et al. Page 9

Expert Rev Anticancer Ther. Author manuscript; available in PMC 2009 July 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as gene-delivery vectors. In 2008, Wu et al. showed on MRI that superparamagnetic iron oxide
nanoparticle-labeled MSCs, which were systemically transplanted, migrate toward gliomas
with high specificity [183]. Fluorescent quantum dots are another modality for biological
imaging [184] and work has already been carried out to label MSCs in vitro [185] and in
vivo [186].

Concerns involving stem cell-based therapies
One of the major concerns involving stem cell therapy is that genetically modified stem cells
may generate secondary malignancies [187]. Allogeneic stem cell lines used as therapy for
gliomas could theoretically become tumorigenic by three mechanisms [188]:

• Expression of the gene used to immortalize the cell line could transform the cells
• The genetic modification of the stem cells could result in insertion of the gene into a

critical locus, dysregulating the normal cell behavior and inducing cancer cell
behavior

• The therapeutic stem cell may fuse with endogenous cells, resulting in cells with a
transformed phenotype that could potentially be cancerous

With regard to the concern that genetic modifications to immortalize cells can lead to the
transformation of the stem cells, there is evidence that several cell lines immortalized with
human telomerase reverse transcriptase (hTERT ) gene and simian virus 40 (SV40) large T
fragment were observed to be unstable with respect to chromosome number and karyotype
[189]. Nevertheless, immortalization of cell lines is important to be able to develop stem cell
lines that can proliferate long enough to be well characterized, genetically modified and then
amplified to therapeutic quantities [188]. Studies have shown that immortalization of stem cell
lines with v-myc [188], as well as the use of cells that have only undergone a few passages
[190], may decrease the risk for neoplastic transformation of the stem cells. The concern that
genetic modification of the stem cells may lead to genetic insertion that will transform the cells
into cancer emphasizes the need to establish cloned, extensively characterized stem cell lines
in which all the insertion sites can be carefully scrutinized for their safety. Finally, with regard
to therapeutic stem cells fusing with endogenous cells, resulting in cells with a transformed
phenotype that could potentially be cancerous, there have been no reports of hyperdiploid cells
in any of the animals treated with stem cells [188]. Embryonic stem cells do have a greater
capacity for fusion than fetal or adult stem cells [191,192], which suggests that nonembryonic
stem cells should preferentially be used in stem cell-based glioma therapies.

Another major concern is the recruitment of the stem cells to contribute to the tumor. The
capacity of NSCs to self-renew and invade suggests that aberrant NSCs may transform into
BTSCs, creating the bulk of the tumor [193-195]. This is an area of heavy research that many
laboratories, including ours, are exploring. There is also concern that MSCs may enhance or
initiate tumor growth [196,197]. Chen et al. suggested that systemic administration of human
MSCs can contribute to angiogenesis in the pathological brain [198]. In 2006, Tso et al. found
that a subset of primary GBM tumors and their derived tumor cell lines express cellular and
molecular markers that are associated with MSCs [199]. They also found that GBM cultures
can be induced to differentiate into multiple mesenchymal lineage-like cell types [199]. These
findings suggest that a subset of primary glioblastomas derive from transformed stem cells
containing MSC-like properties or that glioblastomas activate a series of genes resulting in the
mesenchymal properties of the cancer cells and providing sustained tumor growth and
malignant progression [199]. However, Hall et al. pointed out that many of these studies that
have shown MSCs to possess tumorigenic properties used extensively passaged and/or
genetically altered MSCs [190]. It has been demonstrated in several papers that lower-passage
MSCs do not form tumors in vivo [200-202]. Whether or not NSCs and MSCs are recruited by
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the tumor cells to participate in the expansion of the tumor, it has been demonstrated from
numerous animal studies using genetically modified NSCs or MSCs that stem cell therapy
actually decreases the tumor burden.

There have also been concerns regarding the immunologic response to therapeutic NSCs or
MSCs, especially that stem cells can suppress the immune response to tumors [203,204].
However, we have discussed earlier the many studies that used genetically modified NSCs or
MSCs to control tumor growth and stimulate an anti-tumor immune response [44,169]. Another
immunologic concern is whether these stem cells will be accepted by the recipient’s immune
system. As noted by Yip et al., the NSCs used for the treatment of tumors may not necessarily
need to be matched to the recipient [46]. If the tumor-infiltrating NSCs were to elicit an immune
reaction against themselves, this would attract immune cells into the tumor microenvironment,
increasing the immune response to the tumor as well [46]. Thus, it may be feasible to have a
universal, readily available stem cell line for use as a therapy.

There are also several practical concerns about the use of these stem cell therapies for the
treatment of gliomas before they can be applied to humans. For example, one major concern
with NSCs is how autologous NSCs and MSCs would be obtained for patient treatment. There
is concern about whether an adequate number of stem cells can be obtained from each patient
and the amount of time it would take to make these stem cells ready for treatment. These
harvested stem cells then need to be cultured, grown out, genetically modified and then
characterized and tested for safety, all of which would take a considerable amount of time. As
these stem cells are passaged and prepared for therapy, there is also concern that the original
stem cells can significantly change outside their intrinsic in vivo environment. Moreover,
genetic modifications may actually make these stem cells harmful to the patient rather than
beneficial. The most practical way to make stem cells readily available for treatment in patients
would be to create universal, immortalized stem cell lines that have been thoroughly
characterized for genetic stability, biodistribution, safety and toxicity [188]. These cell lines
would be kept in master cell banks and be readily available for clinical use.

Expert commentary
As noted earlier, the current standard of care for many brain tumors, which includes radiation
and chemotherapy combined with surgical resection, is limited in its ability to extend survival
[2,3,16-18]. Many high-grade gliomas fail to respond to therapy for a variety of reasons,
including extensive seeding of microsatellites of tumor cells away from the tumor bulk into
normal brain [11] and the resistance of glioma cells to radiation and chemotherapy, in particular
BTSCs [36]. Stem cells represent a powerful new way to treat gliomas. Numerous studies have
documented the tropism of stem cells for tumor cells and their ability to migrate to areas of
pathology [29,43,44]. This behavior of stem cells is exciting in that it provides a novel way to
provide therapy and/or elicit an immune response to all glioma cells, even those that have
invaded deep into normal brain tissue [205].

In 1995, Brem et al. demonstrated the safety and efficacy of controlled drug delivery by
biodegradable polymers that were implanted into the tumor resection cavity to release the
chemotherapeutic drug carmustine [206]. In the future, we may be able to implant similar
biopolymer wafers or gels into the tumor resection cavity to locally release genetically
engineered stem cells to track down tumor cells and release tumoricidal substances/viruses as
well as elicit a powerful immune response against the tumor cells [207]. Future stem cell
therapies will probably be even more effective at tracking down tumor cells, controlling tumor
growth, amplifying the anti-tumor immune response and limiting invasion of glioma cells into
normal tissue.
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Five-year view
Before stem cell therapy can be applied for the treatment of human brain tumors, much more
research must be conducted to investigate the biology of stem cells and brain tumors. Thus, in
the next 5 years, we believe that significant advances will be made in the understanding of how
tumors, stem cells and the immune system interact with one another, and how these interactions
can be utilized from a therapeutic standpoint. Further research needs to be carried out in finding
new and more powerful genetic modifications to stem cells so that their anti-tumor effects are
maximized. As these stem cell therapies advance and become more sophisticated, stem cells
will probably be engineered to have multiple genetic modifications and thus be equipped to
apply several different therapeutic strategies towards treating the cancer cells. More studies
must also be carried out to elucidate the chemotactic factors and signaling pathways involved
in the gliomatropic behavior of stem/progenitor cells. Understanding the signals involved in
the tropism of stem cells for gliomas will enable better engineering of therapeutic stem cells
so that they are more sensitive to signals secreted from the tumor environment and thus better
able to track tumor cells. Moreover, there are still many potential applications that have not
been explored. For example, there have been no studies that have looked at ways that stem
cells can, for instance, increase the radiosensitivity of glioma cells.

Human trials of stem cells for the treatment of gliomas are still a long way off. Before stem
cell therapy can be applied to the treatment of gliomas in humans, further in vivo human safety
and efficacy data must be compiled in terms of cell distribution and duration of survival, and
genomic insertion sites for exogenous genes that would minimize the risk of inducing
neoplastic mutations in the cell must be identified.

Although there is still much work to be done, the progress in stem cell therapies has provided
us with new hope that, in the future, we will be able to better treat aggressive brain tumors such
as GBM.

Key issues
• Stem cells have a tropism for glioma cells, enabling them to home in on glioma

cells in the tumor bulk as well as in distant tumor microsatellites scattered
throughout normal brain tissue.

• Several genetic modifications have been performed on neural and mesenchymal
stem cells to increase their tumor cytotoxic effects, their stimulation of an anti-
tumor immune response and their glioma-tropic tracking behavior.

• Stem cells can also be used as an imaging modality to track the migration of these
stem cells on tumor cells.

• Further research must be performed into the exact role that neural and
mesenchymal stem cells play in the tumor environment and whether there is any
tumor recruitment of stem cells.
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Figure 1. Three models on the origins of CNS malignancies
(A) Normal adult NSCs are recruited to the site of tumor and help to regenerate tumor stromal
cells. (B) NSCs undergo malignant transformation into a brain tumor stem cell. (C) Fully
committed adult brain cells accumulate mutations over time to transform into brain tumor stem
cells.
NSC: Neural stem cell.
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Figure 2. MSCs labeled with SPIO injected into intracranial glioma-bearing mice
The SPIO-labeled MSCs migrate towards the area of the brain containing the tumor. This
modification of MSCs and the idea that MSCs home in on tumor cells allow for another way
to image brain tumors and the extent of tumor infiltration into normal brain parenchyma. More
importantly, it allows for the surveillance of the location of the therapeutic stem cells. Such
labeling will be important in future therapies because it will allow clinicians to know whether
the therapeutic stem cells have positioned themselves in a location that will be effective for
the treatment of the tumor bulk and microsatellites.
MSC: Mesenchymal stem cell; SPIO: Superparamagnetic iron oxide.
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Figure 3. Potential clinical application of genetically engineered IL-12 hMSCs
In our laboratory, we are using hMSCs harvested from bone marrow as well as from adipose
tissue. The advantage to adipose-derived MSCs is the ease of harvesting patient-specific MSCs.
During surgery for resection of the brain tumor, the surgeon also takes a small fat graft from
the patient. These MSCs can then be cultured and transduced to express various proteins, such
as IL-12. Ideally, in future therapies, the genetically modified MSCs would be injected intra-
arterially through the carotid artery, and the MSCs would migrate to the site of glioma and
induce an anti-tumor immune response.
hMSC: Human mesenchymal stem cell; MSC: Mesenchymal stem cell.
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