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Abstract
Breast density is a strong risk factor for breast cancer; however, no standard assessment method
exists. An automated breast density method (ABDM) was modified and compared with a semi-
automated user-assisted display method (CM) and the Breast Imaging Reporting and Data System
(BI-RADS) four-category tissue composition measure for their ability to predict future breast cancer
risk. The three estimation methods were evaluated in a matched breast cancer case (n=372) control
(n=713) study at the Mayo Clinic using digitized film mammograms. Mammograms from the
craniocaudal (CC) view of the noncancerous breast were acquired on average seven years before
diagnosis. Two controls with no prior history of breast cancer from the screening practice were
matched to each case on age, number of prior screening mammograms, final screening exam date,
menopausal status at this date, interval between earliest and latest available mammograms, and
residence. Both Pearson linear correlation (R) and Spearman rank correlation ( r ) coefficients were
used for comparing the three methods where appropriate. Conditional logistic regression was used
to estimate the risk of breast cancer (odds ratios [ORs] and 95% confidence intervals [CIs]) associated
with the quartiles of percent density (ABDM, CM) or BI-RADS category. The area under the receiver
operator characteristic curve (AUC) was estimated and used to compare the discriminatory
capabilities of each approach. The continuous measures ABDM and CM were highly correlated with
each other (R=0.70) but less with BI-RADS (r=0.49 for ABDM and r=0.57 for CM). Risk estimates
associated with the lowest to highest quartiles of ABDM were greater in magnitude (ORs: 1.0[ref],
2.3, 3.0, 5.2, p-trend<0.001) than the corresponding quartiles for CM (ORs: 1.0[ref], 1.7, 2.1 and
3.8; p-trend<0.001) and BI-RADS (ORs: 1.0[ref], 1.6, 1.5, 2.6; p-trend<0.001) methods. However,
all methods similarly discriminated between case and control status: AUCs were 0.64, 0.63 and 0.61
for ABDM, CM and BI-RADS, respectively. The ABDM is a viable option for quantitatively
assessing breast density from digitized film mammograms.
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Introduction
Breast density is a significant breast cancer risk factor (1). Various methods have been
investigated for measuring breast density, but to date, no accepted measurement standards exist
(2). The Cumulus user-assisted method (CM) based on soft-copy display intensity thresholding
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(3–5) is considered the de facto standard. It and other similar techniques (6) generate
quantitative measures that have shown, with repeatability, to correlate with breast cancer risk
(1). However, subjective estimates including the American College of Radiology (ACR) Breast
Imaging Reporting and Data System (BI-RADS) four-category tissue composition description
and subjective classifications of breast density have also demonstrated consistent associations
with breast cancer risk (1). Current density estimation methods show strong associations with
risk (1), but they remain time intensive, require operator training (7), and may not be
comparable across studies. Thus, an automated quantitative metric for assessing breast density
is needed that does not require operator interaction. We use the term “automated” to describe
the method of breast density estimation without regard to the digitization or image formation
process. This includes the “automated” labeling of pixel(s) within a given image and the method
used for summarizing the labeled pixels to provide a density estimate.

Current computer based methods for density estimation can be loosely categorized into two
groups: 1) those that compensate for acquisition influences resulting from the inter-patient
variation in the X-ray exposure, target-filter combination, compression height and X-ray
generation voltage (8–13), and 2) those that operate on the image data without considering the
acquisition influences (3–6,14). The acquisition compensation techniques are under various
stages of development and testing for both film (8,10,13) and full-field digital mammography
(FFDM) applications (9,11,12). Whether considering the acquisition or not, film based
approaches require a digitizing step before their application in contrast in those techniques
intended for FFDM applications. Few acquisition based approaches have been replicated or
validated using breast cancer as an endpoint. A recent study comparing the SMF (Standard
Mammogram Format) volumetric method to CM for its ability to discriminate cancer status
found CM to be more strongly associated with risk (15). Other non-acquisition-based
approaches that rely on some form of quantitative summary feature (i.e. skewness, kurtosis,
etc.) derived from the digitized film data resulted in weaker risk associations than the CM
measure (14,16).

Because breast density is an important risk factor whose magnitude of association is stronger
than the majority of established breast cancer risk factors (17), it may improve risk prediction
models for breast cancer (18–20). However, breast density has not been routinely incorporated
into clinical risk prediction, perhaps due to lack of standardized estimates and the technical
expertise required to generate such estimates in the clinical setting. An estimate of density that
could be automatically applied to digitized film and digital data from FFDM would help
alleviate these barriers.

Although the majority of mammography clinics in the US continue to use film mammography,
FFDM is increasing as the screening standard (21) due to its superior sensitivity in dense breasts
(22). In the interim, while both FFDM and film coexist, assessing breast density from digitized
film will continue to be relevant due to the large film archives with serial data and well-
annotated clinical outcomes and the ability to translate clinically relevant findings identified
from film to digital mammography.

In this work, a previously described automated breast density method (ABDM) developed for
digitized film applications (23) was modified and compared with the continuous CM measure
and the radiologists’ classifiction of BI-RADS tissue composition. The correlation of the three
estimates and their ability to discriminate breast cancer was evaluated on digitized films within
a breast cancer case-control study.
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Materials and Methods
Study Population and Image Data

The case-control study used for this work was described in detail previously (24). Eligible
participants provided research authorization for medical record studies at the Mayo Clinic.
Informed consent for this case-control study was waived. All patient data was retrospectively
obtained through medical records, clinical databases or mammogram films; no patients were
contacted for this study. The Mayo Clinic Institutional Review Board approved the study
protocol.

Breast cancer cases (n=372) diagnosed from 1997–2001 were ascertained from the Mayo Clinic
mammography screening practice in Rochester, Minnesota. Eligible cases were at least 50
years old at diagnosis, had at least two prior screening mammograms performed at the Mayo
Clinic two years prior to diagnosis (or corresponding exam date), and lived within a 120-mile
radius. Both invasive (n=300) and in situ (n=72) breast cancers were included. Multiple
mammograms prior to diagnosis were retrospectively collected to investigate changes over
time in mammographic density and breast cancer risk (for another study) as well as to establish
a population of women having routine mammograms. Two controls from the screening practice
with no prior history of breast cancer were matched to each case on age, final screening exam
date, menopausal status at final exam date, time between earliest and latest mammograms,
number of prior screening mammograms, and residence. Since mammograms are only retained
for ten years at the Mayo Clinic, the earliest mammogram available during this period was
defined as the baseline image. The baseline mammogram available for both cases and controls
was used for the analyses. Medical records provided weight, height, and postmenopausal
hormone therapy use for all serial mammogram dates; the measures closest to the earliest
mammogram dates were used (24). Weight and height were available within 1 week of the
baseline mammogram for 85% and 68% of participants, respectively. Postmenopausal
hormone therapy information (ever/never use) was available for 84% of participants. A
mammography database, which is based on self-reported information gathered at each
mammogram (including menopause status, family history in first-degree relatives, age at first
birth, number of births, prior biopsies and prior breast cancer), provided all remaining patient
information.

Mammograms were digitized with a Kodak Lumiscan 75 scanner (LS-75) with 12-bit grayscale
pixel depth. The pixel size was 0.130 × 0.130 mm2 for both the 18 × 24 cm2 and 24 × 30
cm2 films. All four views — left and right mediolateral oblique (MLO) view and left and right
craniocaudal (CC) view — were digitized for each woman. The film background in each image
was manually blacked out to protect patient privacy and increase data compression rates when
archiving the data. For both the MLO and CC views, an edge detection program automatically
segmented the breast tissue from the background image and the delineation was manually
checked by the reader for accuracy. The MLO view additionally required the manual removal
of the pectoral muscle. This process was the same for the estimation of percent density by the
CM and ABDM measures. In practice, the CC views are preferable for automated processing
since they do not require removal of the pectoral muscle (25). However we included the
modified MLO views as another assessment of the ABDM statistical decision process.

The three measures for estimation of breast density are described below.

User-Assisted Thresholding Measure—The semi-automated user-assisted display
method (CM) is a user-guided process that requires manual segmentation and intensity
thresholding to estimate percent mammographic density (3–5), referred to as PD in this report.
The operator set two thresholds: one delineated the breast from the background (done
automatically as defined above) and the other set the threshold between dense and non-dense

Heine et al. Page 3

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pixels (3). The application computed the total area and dense area and then calculated PD by
dividing the dense area by total area, which was a unit-less ratio or proportion. Batch files were
created for both cases and controls with randomly assigned views and sides within person
(26). A single technician analyzed all images for consistency. This technician repeatedly
demonstrated high reliability (R>0.90) while reading over 500 duplicate images across varying
time frames.

The Automated (ABDM) Approach—The ABDM (23) is an extension of earlier work that
analyzed digitized mammograms after applying digital filtering (27). This work showed a
strong correspondence between areas of increased breast density in the raw image (bright image
areas) and areas of increased pixel variance within a special type of high-pass filtered
representation (23) of the raw image. In the original developmental work (23,27), a
deconvolution operation defined the special high pass filter application, which is a pre-
whitening (PW) filter. A PW operation removed the Fourier spectral form of the raw image
leaving a zero mean noise field with little spatial correlation. The PW operation was applied
by first estimating the Fourier spectral form for a given raw image and then constructing a filter
to remove the form. In the work presented here, a wavelet high pass filter was used in place of
the deconvolution operation because it was faster, did not require estimating the raw image
spectral form, and produced similar breast density results in the preliminary (training) analysis.
The wavelet filter methods used here were discussed in detail previously (28,29). The ABDM
operated by applying a statistical test within the filtered image by scanning a small search
window (defined below) across the image. Within each window positioned at a given location,
a statistical test based on the filtered image variance, was applied to detect regions
corresponding to brighter regions in the raw image. The statistical test was based on chi-square
analysis, which followed from the spatial statistical qualities of the filtered image
representation. The ABDM produced a similar area-based measure (a ratio) as the PD, which
was summarized and normalized in the same way once a given image was binary labeled by
the outcomes of the statistical tests. The ABDM measure will be referred to as PDA in this
report.

Briefly, we first converted the image data from the LS-75 digitizer to the digital representation
from the DBA digitizer (DBA Systems, Melbourne FL) used in the earlier work (23,27,28).
Both systems used digitized film data, but the LS-75 is linear in its optical density pixel value
relation while the DBA is exponential. This involved linearly transforming the LS-75 data to
optical density (OD) units and then converting to the older representation using the relation:
original representation = 29891exp (−2.36OD). Next, the breast region field of view was
automatically located relative to the off-breast background. This was done by taking all pixels
with pixel values >0, since the off-breast background had already been blacked out as described
above. Finally, the ABDM was applied to the breast field of view of the filtered image. This
involved automatically dividing the filtered image into a grid of 4 × 4 pixel boxes (the box is
the search window) and then applying an automated statistical decision to each grid location
so that all pixels within a given grid were either labeled as fatty tissue or dense tissue (in the
first stage). A second iteration was performed to refine the labeling of fat and dense tissue,
resulting in the density labeled ABDM output image and overall proportion of density (in the
second stage). The two-stage detection scheme was discussed in considerable detail in the
original report (23).

To establish parameters for the ABDM algorithm, a set of mammogram images on healthy
women (training data) was obtained from a similar Caucasian population. The ABDM has two
adjustable detection parameters corresponding to each detection stage. These values were
estimated via correlation analysis with the CM for the images in the training set. The parameters
were fixed when a maximum correlation was achieved.
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BI-RADS Tissue Composition Descriptions—The BI-RADS four-category tissue
composition assessment has been part of standard clinical practice at the Mayo Clinic since
1992. Mayo Clinic attending radiologists classified BI-RADS tissue composition into one of
four categories as defined in the BI-RADS lexicon (ACR-third edition): 1) the breast is almost
entirely fat; 2) there are scattered fibroglandular densities; 3) the breast tissue is
heterogeneously dense, which may lower the sensitivity of mammography; and 4) the breast
is extremely dense, which could obscure a lesion on mammography. These ratings convey the
relative possibility that a lesion may be obscured in mammography. All four mammogram
views (CC and MLO for ipsilateral and contralateral sides) contribute to the assessment of BI-
RADS breast composition. In our study, we used the BI-RADS estimates that experienced
radiologists assessed in the clinical setting. These radiologists did not systematically assess
BI-RADS composition for this study, but the BI-RADS rating has shown adequate inter-
observer validity (30). The BI-RADS estimate used in current clinical practice includes
quantifying the percentage of breast density into four categories in conjunction with the above
descriptors. However, due to the retrospective data collection, the BI-RADS used in our
analyses followed the older convention that did not include breast density percentages.

Statistical Analysis
Prior results from this case-control study illustrated the association of PD (CM) with breast
cancer was invariant to the mammogram view or (for the cases) whether the view was based
on the cancerous or non-cancerous breast (24). Thus, we restricted our evaluation of the
methods for percent density estimation in this report to the non-cancerous breast and present
results for both the CC and MLO views.

Summaries of the distribution of matching variables were presented as means and standard
deviations or counts and percentages. The distributions of both PD and PDA were
approximately normally distributed in this population. The correlation of PDA with PD was
estimated using the Pearson correlation coefficient (R) for the entire range of breast density
values. The correlations between MLO and CC view for both PD and PDA were also calculated
using this method. Correlation of PD and PDA with the BI-RADS classification were estimated
using the Spearman correlation coefficient (r) due to the discrete nature of the BI-RADS
measure. Linear regression methods and corresponding R-square values (R2) evaluated the
apparent curvilinear relationship between PD and PDA. Conditional logistic regression
examined the associations of the three methods of mammographic density estimation with
breast cancer. PD and PDA were examined as a categorical measure based on quartiles of their
distributions among controls and a continuous measure reflecting an increase of one standard
deviation. For BI-RADS, the four-category classification was used. Odds ratios and 95% CIs
were estimated for these measures of mammographic density. All models were adjusted for
age and body mass index (BMI), which was calculated as weight (kg)/height (m2).

The strength of association for the three methods with breast cancer was summarized with a
modified c-statistic, also known as area under the receiver operator characteristic curve (AUC).
C-statistics reflect how often a model correctly identifies the case in a random case control pair
and range from 0.5 (random chance) to 1.0 (perfect prediction). To take advantage of the case-
control matching, only pairs occurring within matched sets of cases and controls were used in
the calculation of the c-statistic (31).

Results
The average time interval between the earliest mammogram and the diagnosis of cancer (or
corresponding exam date) was 7.1 + 1.5 years for cases and 7.0 ± 1.5 years for controls; these
intervals were greater than 5 years for over 90% of the participants (Table 1). As described
previously, the cases and controls were closely matched as shown by the similarities of age,
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number of screening mammograms, interval between mammograms, menopausal status and
residence (Table 1) (24). Figure 1 illustrates CC mammograms from three women in the LS-75
representation used for PD (Fig. 1a) compared with the converted digital DBA representation
used for PDA (Fig. 1b). The corresponding PD (Fig. 1a) and PDA (Fig. 1b) values are provided
in the figure legends. The converted images appear to have more contrast than the LS-75
representation. The distinct difference between the representations is exemplified by the degree
of bright tissue near the breast-background border region in the LS-75 representation.

For the CC views, the correlation of PD-PDA was R = 0.70 (Fig 2), for PDA-BI-RADS, r =
0.49 (Table 2), and PD-BI-RADS, r = 0.57 (Table 2). Figure 2 illustrates a slight curvilinear
association between the PDA and PD. Inclusion of a quadratic term entered in the linear
regression model improved the model fit, increasing R2 from 0.45 to 0.53 for the CC view
(MLO view R2: 0.42 to 0.50). The range of density was substantially reduced for the ABDM
(6%–32%) compared with the CM (0%–80%). Consequently, the variance of the ABDM is
reduced as well (Table 3). The correlation of PD between the CC and MLO views was higher
(R=0.90) than the between-view correlation for PDA (R=0.78).

All three measures showed expected associations with established breast cancer risk factors,
including inverse associations with age, BMI, parity, postmenopausal status and never
postmenopausal hormone therapy use, although the parity associations were more pronounced
for PD compared to PDA or BI-RADS (Table 3). Table 4 shows associations between these
measures with breast cancer. Positive associations between percent density and breast cancer
were found with all measures and both views. The risk associations for all three density
estimates were comparable. PDA had higher odds ratios (OR) and wider confidence intervals
than the PD and BI-RADS classification; however, the AUCs for all methods were virtually
identical (Table 4). In addition, the AUCs for the continuous PD and PDA measures (per one
standard deviation (SD)) were similar to those from the models that evaluated quartiles of PD
and PDA (Table 4). There was no evidence of a quadratic association for either the continuous
PD or PDA (data not shown).

Discussion
The results of the current study demonstrate that ABDM is a viable option for estimating breast
density. PDA is correlated with the PD and BI-RADS estimates, and the risk estimates for
quartiles of PDA are comparable to reported estimates from a variety of studies (1). Also,
PDA discriminates between case-control status as well as PD or BI-RADS.

Incorporation of breast density into risk assessment models could provide a woman with an
improved estimate of her absolute breast cancer risk. Accurate knowledge of individual risk
results in more informed clinical decisions regarding interventions and screening frequency
and can provide a reference of where a woman lies with respect to average risk (32). Data
shows that clinical radiologists’ BI-RADS categorization, together with age and ethnicity,
provides as much information as the existing Gail model for breast cancer risk prediction
(18), underscoring its relative importance as a marker of risk. Two recent studies evaluated the
addition of breast density to risk prediction models and found some improvement of fit (19,
20). To facilitate the incorporation of breast density into clinical practice and decision making,
the ABDM could be added to existing computer-assisted diagnostic systems (CAD) (33)
currently used in clinical practice to detect suspicious areas on mammograms. This would allow
for a quantitative breast density measure that is automatically and objectively generated,
guaranteeing reproducible and comparable measurements across sites. Also, the ABDM would
result in greater time and cost savings in comparison with user assisted or experienced observer
interpretation methods.
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In addition to improving absolute risk prediction, the ABDM may also be the most appropriate
measure for assessing change in breast density. Change in breast density has been used as an
intermediate biomarker for efficacy of interventions, such as tamoxifen or gonadotropin-
releasing hormone agonist (34,35). When assessing the amount of change in density, a
quantitative measure is preferable because the degree of change is limited to the resolution of
the measure. We (36) and others (35,37,38) have shown that PD changes that occur in
postmenopausal women are small in magnitude and could be missed if assessed solely by the
BI-RADS categorical measure. Thus, for assessment of serial breast density changes especially
in postmenopausal women, a quantitative estimate, such as the ABDM or CM, is preferred.
Furthermore, the ABDM may be preferable for comparability of breast density change across
studies and institutions since the ABDM is independent of operator while the CM requires
user-defined thresholds subject to inter-reader variation.

The ABDM is currently an experimental software/approach that requires further this study,
including both the training data used for initialization of the ABDM parameters and the case-
control study data, were collected by one center and digitized with a single digitizer (LS-75).
The ABDM requires modification to accept image data acquired from various mammogram
detectors (digitized film or FFDM digital acquisition). Preliminary work (39) shows that when
applying the ABDM to FFDM data, the density estimate correlates with a calibrated FFDM
breast density measure (9) when applied to the same dataset. Thus, it is possible that the ABDM
can be applied to FFDM data to discriminate case and control status.

While the ABDM and CM measures are correlated, the range of density was substantially
narrower for the ABDM (6%–32%) when compared with the CM (0%–80%). This difference
in scale is partly due to the different data representations of the LS-75 and the DBA digitizer
outputs. The LS-75 raw image pixel range is compressed relative to the DBA representation.
This difference, together with the way that the parameters of the ABDM - PDA were selected
to maximize its linear correlation with CM - PD, results in different scales for the two breast
density quantitative estimates. However, these scale differences do not represent a serious
obstacle because of the near linear relation. It would be relatively easy to either expand one
scale or compress the other to obtain breast density scores that are similarly scaled. We have
retained the simple estimates from each to make comparisons between the two scales similar
to the way the Celsius and Fahrenheit temperature scales are compared.

On the other hand, there is little evidence indicating that either the PD or PDA scales or the
corresponding breast density representations are optimal or preferable. For example, both
representations follow from binary labeling. This form of labeling implies a pixel labeled as
100% dense breast tissue within the central uniformly compressed region of the breast carries
as much weight as a pixel labeled similarly in the region near the breast-background border
that is not of uniform thickness. As another example, the implications in the extreme case where
a breast is labeled near 100% PD would imply that the breast volume is comprised of 100%
dense breast tissue, which is unlikely.

The ABDM requires a consistent method for segmenting the breast tissue from the digital
image. The work presented here represents an ideal application since each image background
was set to zero prior to ABDM, which made segmentation of the breast tissue trivial. This does
not represent a hindrance to its application on other datasets since many fully automated
routines also segment the breast tissue from the background (40–42).

The generalizability of ABDM is currently limited to film mammography, which comprises
approximately 85% of mammography units in the United States (21). Developing methods for
film-analysis may be questioned in light of the emerging FFDM technology, which may
provide many benefits due to its digital form (43). However, film mammograms are still the
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mainstream for screening, and the associated data archives that span several years are capable
of supporting clinical studies. This is not generally the case for FFDM data. On the other hand,
FFDM data may lend itself to acquisition standardization (or calibration) more easily than film,
but the techniques for this purpose are currently works in progress (9,11,12) that warrant
validation in terms of their short-term and long-term ability to produce a measure that correlates
with risk. Various manufactures of FFDM systems have both raw (inverted data scales) and
display data representations. Some FFDM systems allow easy access to the raw data, whereas
other systems do not. Likewise, some centers discard the raw data due to storage limitations,
which limits the analyses that can be performed on the FFDM images. At this time, both forms
of mammography (film and the various FFDM systems) exist simultaneously, and both can
assist in improving risk estimations.
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Fig. 1.
1a—Craniocaudal (CC) mammogram images displayed in the LS-75 representation (top row)
and the corresponding CM density (PD) labeled images (bottom row) for three women with
varying densities from left to right are 13%, 56%, and 28%.
1b—Craniocaudal (CC) mammogram images displayed in the converted digital (DBA)
representation (top row) and the corresponding ABDM density (PDA) detected images (bottom
row) for three women with varying densities from left to right are 18%, 24%, and 21%.
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Fig. 2.
The correlation between CM (PD)-ABDM (PDA) for craniocaudal (CC) mammogram view
among 703 controls
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Table 3
Association of breast cancer risk factors and percent density assessed by three methods. Controls only*

Mean (SD) %

Variable PDA (ABDM) PD (CM) BI-RADS 4

Age

  <50 23.0 ± 4.6 35.9 ± 13.8 45.2%

  50–59 20.3 ± 5.8 28.7 ± 14.9 36.3%

  60–69 18.5 ± 5.3 23.3 ± 13.7 19.8%

  70+ 17.7 ± 4.9 21.9 ± 12.0 15.1%

BMI Quartiles

  17.1 – 23.5 21.5 ± 4.7 35.5 ± 14.9 42.6%

  23.6 – 26.1 20.0 ± 5.2 27.7 ± 12.2 28.6%

  26.2 – 29.9 19.0 ± 5.8 24.1 ± 13.2 20.1%

  30.0 – 53.7 17.9 ± 5.6 19.3 ± 12.7 18.7%

Menopausal status

  Premenopausal 22.9 ± 4.6 35.4 ± 13.8 47.6%

  Postmenopausal 18.9 ± 5.4 24.8 ± 14.0 23.6%

Postmenopausal Hormones

  Never 19.2 ± 5.5 25.4 ± 14.7 24.4%

  Ever 20.8 ± 5.4 30.4 ± 13.8 35.5%

  Unknown 17.8 ± 4.7 21.5 ± 12.3 28.6%

1st degree Family History Breast Cancer

  None 19.7 ± 5.5 27.1 ± 14.7 28.4%

  Positive 18.9 ± 5.5 23.0 ± 12.9 23.0%

Parity

  Nulliparous 20.7 ± 5.0 32.4 ± 13.8 32.2%

  1–2 children 20.0 ± 5.6 28.4 ± 14.9 32.6%

  3+ children 19.1 ± 5.6 24.3 ± 14.1 24.0%

*
PD and PDA assessed from CC view from contralateral side of 703 controls. BI-RADS estimated using both CC and MLO view.
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