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Abstract
Treatment-related changes in neurobiological rhythms are of increasing interest to psychologists,
psychiatrists, and biological rhythms researchers. New methods for analyzing change in rhythms are
needed, as most common methods disregard the rich complexity of biological processes. Large time
series data sets reflect the intricacies of underlying neurobiological processes, but can be difficult to
analyze. We propose the use of Fourier methods with multivariate permutation test (MPT) methods
for analyzing change in rhythms from time series data. To validate the use of MPT for Fourier-
transformed data, we performed Monte Carlo simulations and compared statistical power and family-
wise error for MPT to Bonferroni-corrected and uncorrected methods. Results show that MPT
provides greater statistical power than Bonferroni-corrected tests, while appropriately controlling
family-wise error. We applied this method to human, pre-and post-treatment, serially-sampled
neurotransmitter data to confirm the utility of this method using real data. Together, Fourier with
MPT methods provides a statistically powerful approach for detecting change in biological rhythms
from time series data.
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Introduction
Treatment-related changes in neurobiological rhythms are of increasing interest. However,
characterizing changes in biological rhythms can be challenging. Rhythmic patterns in time
series data can be extracted by spectral analytic methods like Fourier-transforms, but statistical
methods are needed to compare rhythms within subjects. Common methods for analyzing time
series data compress information to only a small number of values (e.g., Matthews et al.,
1990), which rarely represent the complexity of biological rhythms. Although data sets
comprised of many measurements improve the description of complex processes, performing
multiple statistical tests introduces problems. For instance, the statistical comparison of many
data points (i.e., multiple testing) increases family-wise error, which is the probability of
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finding at least one false positive out of a set, or “family,” of related research questions. The
most common method for controlling family-wise error is the Bonferroni correction
(Bonferroni, 1936), which is often overly conservative (Perneger, 1998). In this paper, we
assess the use of multivariate permutation tests (Blair & Karniski, 1993; Troendle, 1995;
Westfall & Young, 1993) for controlling family-wise error in an analysis of medication
treatment effects on Fourier-transformed biological rhythms.

A desire to test for antidepressant treatment effects on rhythmicity in neurotransmitter levels
in depression motivated this study. Neurotransmitters, such as serotonin, norepinephrine, and
dopamine, are implicated in the pathophysiology of depression, and antidepressant medications
and other treatments that target neurotransmitter function both restore normalcy of peripherally
measured rhythms (Benedetti et al., 2007; Souetre et al., 1989) and improve depressive
symptoms (Benedetti et al., 2007; Loosen et al., 2000). A study of cerebrospinal fluid was
conducted in a small number of patients to examine the effect of antidepressant treatment on
neurotransmitter rhythms through a 24 h cycle. The study estimated the impact of
antidepressant treatment on neurotransmitter-level rhythms at different times of day. Common
methods for comparing spectra, such as comparing peak intensities (of domain frequencies)
and cross-spectral analyses (Warner, 1998), were inadequate because they only compare global
qualities of the spectral findings. Uncorrected paired t-tests on each of the frequencies
throughout the day (n = 930) would have produced Type I error rates larger than our specified
α = .05, while Bonferroni-correction methods would be overly conservative.

Multivariate permutation tests (MPT) compute statistical significance for large numbers of
tests while controlling family-wise error rates (Blair et al., 1994; Pesarin, 2001; Westfall &
Young, 1993). In the remainder of this article, we describe standard Fourier transformations
and MPT methods. We then report results from a simulation study testing the application of
MPT to Fourier-analyzed data, and compare MPT to more traditional methods for controlling
family-wise error. Finally, we demonstrate the application of MPT methods using a previously
published data set (Salomon et al., 2005)

Fourier Analyses
Analysis of time series data in the time domain provides a global measure of changes in a signal
(e.g., trend analysis). In contrast, frequency domain approaches using spectral analysis (e.g.,
harmonics) detect rhythmic patterns. One type of spectral analysis, Fourier analysis, identifies
periodic patterns by partitioning the data into individual sinusoidal signals of different
frequencies (Shumway & Stoffer, 2006; Warner, 1998). Fourier analyses are widely accepted
as the best expression of regularity of a time series (Shumway & Stoffer, 2006).

Origins of Fourier analysis can be traced to a series of papers on heat transfer by Jean Baptiste
Joseph Fourier (1768–1830). In these papers, Fourier demonstrated that naturally occurring
time series could be decomposed into a unique set of independent sine waves in which each
wave is defined by an amplitude and frequency parameter. The weighted sum of these
component waves reconstructs the original composite time series. Fourier coefficients are
simply the amplitudes of the sine waves at each frequency. The introduction of efficient
algorithms for computing Fourier coefficients (Cooley & Tukey, 1965) and high-speed
computers have made Fourier analysis an accessible and powerful method for analyzing time
structured data (see Figure 1). The application of Fourier analysis to subsets of data, or
sequential windows in the time series, produces a spectrogram (i.e., a two-dimensional matrix
of Fourier coefficients arranged by time and frequency). In contrast to a periodogram—which
uses single Fourier analysis to provide a single set of coefficients in the frequency domain—
spectrograms present a series of frequency coefficients over time.
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Analytic Challenges
Large numbers of coefficients from Fourier transforms present a challenge for statistical
testing. Fourier coefficients are neither normally distributed (Shumway & Stoffer, 2006, pp.
280–281) nor independent, two central assumptions for parametric statistics. Although some
parametric statistics are robust to minor violations of normality, nonparametric statistics can
have greater power to detect group differences in highly skewed data (e.g., Blair & Higgins,
1980; Chernoff & Savage, 1958; Hodges & Lehmann, 1956). For example, in tests of paired
samples using a chi-square distribution (df = 1), the Wilcoxon Signed Rank (WSR) test shows
a consistent power advantage over the paired samples t test (Blair & Higgins, 1985).
Nonparametric statistics can be performed on non-normal data; however, the issue of
independence would still remain. Some methods exist to reduce the dependency, or
correlations, between Fourier coefficients (Shiavi, 2006), but these are only partially
successful.

The multivariate permutation test (MPT) controls family-wise error and does not require data
normality or independence. Moreover, past research suggests this approach has greater
statistical power than standard multiple comparison methods (Blair et al., 1996; Karniski et
al., 1994; Yoder et al., 2004), especially when there are multiple dependent outcome variables.
In the next section, we describe the underlying logic of univariate permutation tests followed
by a description of the extension to multiple outcome variables, the multivariate permutation
test.

Permutation Tests
Permutation tests represent a simple and intuitive method for determining significance levels
for a statistical test (Edgington, 1995; Fisher, 1935, 1966;Good, 2000; Pitman, 1937, 1938),
without assumptions of normal data distributions. Permutation tests use the study data to create
an empirical distribution of test statistic values under the null hypothesis. For example, for
treatment studies, the null hypothesis is often that the data are random observations from a
population with no treatment-related differences. With two observations per subject, under the
null hypothesis, we expect the pre- and post-treatment observations to be equivalent, with any
individual differences randomly distributed between the two time points. To create a null
hypothesis distribution, each subject’s data are randomly assigned to either the pre- or post-
treatment condition, and a test statistic (e.g., t value) is computed and recorded. This process
is repeated many times. The aggregate of these statistics defines a distribution of the test statistic
under the null hypothesis of no treatment effect. Using this distribution, a p value is computed
as the probability of observing a test statistic as extreme as or more extreme than the observed
test statistic.

Although permutation tests do not require normal data distributions, observations must be
exchangeable. Exchangeability means that the observations are equivalent and can be
substituted across groups. That is, “under the null hypothesis of no differences among the
various experimental or survey groups, can we exchange the labels on the observations without
affecting the results?” (Good, 2000). Independent observations from equal distributions are
exchangeable. Examples of situations where data will not be exchangeable are confounding
variables or differences in error variance (between groups or time points).

Multivariate Permutation Tests
MPT extends permutation tests to multiple outcome variables using three modifications. First,
MPT simultaneously permutes all outcome variables as a single set, thereby preserving their
natural correlations. Second, a multivariate statistic (e.g., the largest absolute t) is used to
produce a single statistic value for each permutation. Third, a “step-down” procedure
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(Hochberg, 1988; Holm, 1979) controls for family-wise error by incrementally relaxing the
significance criterion following each significant result (Blair & Karniski, 1994). A step-by-
step description of the MPT method is provided in Table 1.

MPT methods were introduced independently by Troendle (1995), Westfall and Young
(1993), and Blair and Karniski (1993), and have been discussed elsewhere in detail (Blackford,
2007; Pesarin, 2001). MPT methods have been used successfully to test within-subjects
differences in frequent and rare auditory waveform potentials (Blair & Karniski, 1993) and
dipole separation (Karniski et al., 1994). Yoder and colleagues (2004) used MPT to test
correlations between voxels from an electroencephalogram and various behavioral measures.
To our knowledge, the current study is the first evaluation of MPT for Fourier coefficients.

In summary, we suggest that the understanding of medication treatment effects will be
increased by examining multiple measurements representing biological rhythms instead of
global summary measures from a time series. We identify MPT as a possible statistical method
for significance testing of treatment effects in Fourier-derived multiple rhythm measures
because MPT methods can be used on non-normal, correlated data and have been shown to
provide good family-wise error protection for other types of data. To test the performance of
MPT methods for significance testing, we conducted a simulation study comparing MPT to
two standard methods, multiple tests with and without Bonferroni corrections. We chose the
paired t-test as the primary statistic for the simulation study because the t-test is commonly
used to test for within-group differences and the implementation of MPT for paired t-tests has
been previously described (Blair & Karniski, 1994; Edgington, 1995). To provide a
comprehensive test of MPT, we also used a second nonparametric statistic, the WSR test, for
the two standard significance testing methods. We hypothesized that for Fourier-transformed
time series data, MPT would have more statistical power than the Bonferroni correction and
would better control family-wise error (to the specified a) than either the Bonferroni-corrected
or uncorrected method.

Simulation Study
Materials and Methods

Overview—We used simulation methods to compare statistical power and family-wise error
for three methods of determining statistical significance for the paired t-test: MPT, Bonferroni-
corrected tests, and uncorrected tests. The Bonferroni and uncorrected methods were also tested
for the WSR test statistic. We used each method to test the significance of Fourier coefficients
for three sample sizes (10, 20, and 30) and seven levels of treatment effect (10–40%, in 5%
increments). For each combination of method, sample size, and treatment effect, we performed
5,000 experiments. The R statistical software (http://www.r-project.org; version 2.5.1; R
Development Core Team, 2007) was used for all simulations and statistical analyses. The R
fft function (R Stats package) computed Fast Fourier Transforms, and a custom-written
program performed the MPTs (see Appendix; also available at
http://www.blackfordlab.com/publications/).

Data Simulation—We simulated the time series data for this study because known treatment
effect values are required for measurement of statistical power and Type I error. We chose the
sinusoid to model periodic data because this basic waveform provides well-defined Fourier
coefficients, allowing precise specifications of treatment effects. To test for both statistical
power and Type I error within a single simulation study, the model must include both signals
that show change (to test for power to detect a treatment effect) and signals that are unchanged
(to test for Type I error when there is no treatment effect). Therefore, a complex signal was
modeled by summing three independent sinusoids of 144 time points, but only one of the
sinusoids became more powerful in the post-treatment signal. A treatment effect (Te) was
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modeled by increasing the amplitude of the sinusoid in the post-treatment signal by one of
seven amounts (Te = 1.10–1.40, in .05 increments). The pre- and post-treatment signals were
as follows:

where i runs from 1, 2, … , 144. Normally distributed (μ = 0, σ2 = 1), random noise time series
were added to each subject’s pre- and post-treatment signals. The signal plus noise time series
were transformed using a Fast Fourier Transform and a Hanning filter (Blackman & Tukey,
1959) to produce 72 Fourier coefficients for each treatment time (pre/post) and subject.

Significance Test Methods—For the two standard significance testing methods, both
paired t and WSR statistics were used. In the uncorrected test condition, p values were
determined using standard distributions (Student’s t or WSR) and were not adjusted for
multiple testing. The Bonferroni correction condition also used the standard distributions, but
the α level was adjusted using the Bonferroni method (i.e., p value/number of tests). For the
multivariate permutation test condition, permutation methods (see Table 1) for paired data
(Edgington, 1995) were applied to the Fourier coefficients. The permutation consisted of 1,000
data rearrangements and used the largest absolute t value across the 72 Fourier coefficients to
form the test distribution. A step-down significance testing process iteratively assessed
statistical significance for the Fourier coefficients.

Outcome Measures—Statistical power, family-wise error rate, and effect size were
computed from the results of 5,000 experiments for each study condition (i.e., sample size by
treatment effect). We modeled treatment effects as the percent increase in the amplitude of the
signal to provide a standard metric across samples sizes. The largest Fourier coefficient
represented the treatment effect, and all other coefficients represented no treatment effect. As
is standard in Monte Carlo simulations of this type (Mooney, 1997), statistical power was
computed as the percentage of experiments for which the true treatment effect was statistically
significant. Family-wise error rates were computed as the percentage of coefficients previously
defined as “no treatment effect” that were statistically significant (i.e., Type I error). Statistical
power across conditions was summarized using medians and interquartile ranges, because the
values were not normally-distributed. Effect size, Cohen’s d (Cohen, 1992), for dependent
groups was computed from the observed t value, corrected for correlations across pairs of
measures:

where r is the correlation between the two dependent measures (Dunlap et al., 1996). Effect
size estimates were averaged across experiments to provide a standard measure of treatment
effects.

Results
Comparisons of statistical power and family-wise error rates revealed significant differences
among three (MPT/Bonferroni/uncorrected) methods used for estimating statistical
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significance for Fourier coefficients. The method differences varied by statistic, effect size,
and sample size, as described below.

Statistical Power—The MPT method had greater statistical power than the Bonferroni-
correction for both the t and WSR statistics (see Table 2). Across sample sizes and treatment
effect levels, power was higher for the MPT compared to Bonferroni method for both the t
statistic (16%; 69% vs. 53%) and WSR statistic (23%; 69% vs. 46%). The increase in power
for the MPT relative to the Bonferroni method was the same or higher for the WSR than the
t statistic for every combination of sample size and effect size.

The power advantage of MPT differed by effect size and sample size (see Figure 2). For very
large effects (d ≥ 2), there was a ceiling effect where all methods had high power. For effect
sizes less than two, the MPT power advantage increased as effect sizes became larger. The
increase in statistical power for the MPT was greatest for the small sample size (N = 10),
averaging across all effect sizes. For the t statistic, the power advantage for the MPT compared
to the Bonferroni correction for the small, medium, and large samples were 11% (30% vs.
19%), 7% (87% vs. 80%), and 0% (99% vs. 99%), respectively, across all effect sizes (see
Table 2). These differences were more notable for the WSR statistic, reaching 30% (30% vs.
0%), 11% (87% vs. 76%), and 1% (99% vs. 98%), respectively. As expected, statistical power
for the uncorrected method was higher than the MPT method (30%; 99% vs. 69%). However,
this increase came at the expense of substantially higher family-wise error.

Family-wise Error—Family-wise error rates followed the hypothesized directions for the
three methods. Effect size had little impact on family-wise error rates across all methods;
therefore, results are presented by sample size only (see Table 3). For the uncorrected tests,
high (>.85) family-wise error rates indicated that most of the statistically significant findings
were erroneous. The Bonferroni-corrected tests were overly conservative; that is, family-wise
error rates were smaller than the specified a (0.05). For the MPT method, family-wise error
rates were at, or close to, the specified α of .05 across all sample sizes and effect sizes. The
consequence of increasing sample size was very small, and only observed for the WSR statistic
(both Bonferroni-corrected and uncorrected).

To summarize our simulation results, the MPT method had greater statistical power than the
Bonferroni-correction, while appropriately controlling family-wise error.

Practical Application
An application of MPT to real data demonstrates the utility of our findings. We compared the
performance of the three aforementioned methods using data from the Salomon et al. (2005)
study that motivated this work. The researchers hypothesized that antidepressant treatment
would change neurotransmitter rhythms.

Materials and Methods
Subjects and Methods—Thirteen subjects (nine female) diagnosed with a major depressive
episode were studied both before and after antidepressant medication treatment. Subjects were
25 to 60 yrs of age (mean 37.7). Studies were conducted with one subject at a time, throughout
the annual cycle, and women were scheduled to coincide with their follicular phase. The 24 h
cerebrospinal fluid (CSF) sampling sessions began on Thursdays at 08:00 h following a 12 h
supine span and with placement of a lumbar catheter at 07:00 h.

The room was equipped as a standard medical hospital room. Subjects were confined to a bed
that was kept flat throughout the study with only one pillow, with frequent repositioning and
freedom of movement allowed. Subjects could listen to music through headphones, watch
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television, or read (except for materials with highly emotional or frightening content), and
daytime naps were discouraged. Visitors were allowed during the day for up to 1 h. The room
was illuminated with sun and standard fluorescent lighting and darkened with opaque window
treatments. Lights were turned off from 22:30 h to 06:00 h with minimal lighting allowed for
catheter maintenance or sample handling. Tympanic temperature was measured every 2 h while
the subject was awake and also at 02:00 h.

Monoamine-balanced, caffeine-free diets were controlled for 72 h prior to study. Nutrition was
limited to selections from standard hospital menus at 06:30 h (breakfast) and 09:30 h (lunch)
with no supper to minimize ultradian nutrient fluctuations. Continuous hydration was
maintained with D5W intravenously at 125 ml/h, and water was allowed ad libitum. No
medications were administered during CSF collections except for continuing the antidepressant
medication during the second study session. There were no adverse effects during collections,
but half of the catheterizations resulted in moderate to severe post-puncture headaches, all of
which resolved.

Serotonin and dopamine metabolite levels were determined by HPLC in 1 ml samples collected
every 10 min by a peristaltic pump and fraction collector chilled to 4°C. Samples were moved
to −80°C at 30 min intervals.

Additional information about the study methods can be found in the original research article
(Salomon et al., 2005). The research design and conduct of that study adhered to the principles
of the Helsinki Declaration and requirements of the journal (Portaluppi et al., 2008), and were
approved by the Vanderbilt University Institutional Review Board.

Data Analysis—Fourier coefficients for time and frequency (spectrograms) were created
using a sliding window of 52 points (8.67 h), with power spectral densities (PSD) calculated
after linear detrending, hamming-windowing of each segment, and zero padding. Trapezoidal
area-under-the curve (AUC) methods created 10 evenly spaced PSD bandwidths. Fourier
coefficients for time and frequency were computed, producing 930 data points per subject (93
windows × 10 frequency bandwidths) for each treatment time (pre/post). Difference scores
were computed to represent change in rhythms related to antidepressant treatment.

MPT methods were used to test for significant treatment effects on the periodic fluctuations
of metabolite levels. Rhythms of individual metabolites showed relatively little change with
treatment. The rhythms of the serotonin/dopamine metabolite ratio, which represents the
relative independence of these two neurotransmitter systems, showed treatment changes of
potential interest. For the MPT test, we permuted treatment time (pre/post) 5,000 times using
the methods described earlier. Bonferroni-corrected (α = .05/930) and uncorrected (α = .05) t-
tests were also performed. The analysis required 30 min of computational time on a Windows
XP machine equipped with a 3 GHz processor and 3.25GB RAM.

Results
The t values representing antidepressant treatment effect for each frequency bandwidth by time
window are presented in Figure 3. Using MPT methods, 92 (10%) of the individual tests were
significant. In contrast, the Bonferroni-corrected (α = .05/930) procedure yielded no significant
findings. Using uncorrected t-tests, 590 (63%) of the individual tests were significant, but many
of these were likely false positives because the family-wise error rate was not controlled. The
largest cluster of contiguous significant voxels was in the middle two frequency bandwidths
(53–72 min and 72–102 min) from approximately 19:00–22:30 h (time windows 38 to 61).
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Discussion
Multivariate permutation tests (MPT) provide a powerful significance test of within-subjects
differences in studies of biological rhythms that use Fourier analyses. As hypothesized, MPT
provided greater statistical power than Bonferroni-correction methods, demonstrated using
both simulated and real data. Also, family-wise error rates were appropriately controlled at
0.05, whereas error rates for the Bonferroni-corrected tests were overly conservative. Although
statistical power was high for the uncorrected method, this power was realized at the expense
of unacceptably high family-wise error.

The statistical power advantage for MPT was largest for the smaller sample size, but it also
was seen with medium and large sample sizes. For medium to large sample sizes and very large
effect sizes (d > 2), all of the methods had high (> 95%) statistical power. However, very large
effect sizes are unusual in bio-behavioral research, while small sample sizes are common.
Based on extrapolations from Table 2, the power provided by MPT could be matched by adding
5–15 subjects in a Bonferroni-corrected analysis. However, additional subjects add substantial
cost and effort to studies with intensive time-series data collections.

The power advantage of MPT reported here for Fourier-transformed time series data is
consistent with other simulation studies of MPT methods. For example, Yoder and colleagues
(2004) found MPT gave greater statistical power than Bonferroni-correction for correlations
of electroencephalography and behavioral data. Also, Blair and colleagues (1994) reported
enhanced statistical power for MPT compared to Hotelling’s T2 for multivariate data, and
compared to Bonferroni type methods for multiple endpoint assessment data (Blair et al.,
1996). The present study extends those findings by demonstrating the utility of MPT methods
for testing treatment effects in Fourier-transformed time series data.

We followed the simulation study with an application of MPT to real data from our motivating
study. Using the MPT method, there were multiple clusters of significant findings. In contrast,
the Bonferroni method was overly conservative and produced no significant findings. Using
uncorrected t-tests, more than half of the t values were significant, with many of the findings
likely false positives. The main cluster of MPT significant findings validated recognized
biological processes. In depression, the ratio of serotonin to dopamine was close to 1,
suggesting dependence between function of the two neurotransmitters. With antidepressant
treatment, the ratio was smaller, suggesting that an effect of the antidepressant treatment was
to facilitate independent function between the two neurotransmitter systems. The
antidepressant treatment effects were observed mainly in the evening hours between 19:00–
22:00 h for an approximately 90 min frequency. The evening period is often affected in
depression. Depressed patients often report difficulty falling and staying asleep, with
antidepressants improving sleep onset and maintenance (Thase et al., 1998). In addition, the
period length is common in neurobiology; for example, sleep cycles are about 90 min
(Kleitman, 1982). Thus, the MPT findings from the practical example identified treatment
effects in time and frequency modes consistent with the neurobiology of depression.

Our study had several noteworthy limitations. We modeled biological rhythms using a
relatively simple model. The sinusoid, which gives narrowly-defined Fourier coefficients,
allowed for the precise specification of treatment effects required for the accurate estimation
of statistical power and family-wise error. While biological processes may deviate from a strict
sinusoidal form, the true basis of the simulation was the Fourier coefficient; therefore, these
findings should generalize to other Fourier-transformed time-series data. Additionally, we
selected a mid-range frequency (i.e., sin(0.8*i)) to model treatment effects, where the degree
of dependency among neighboring Fourier coefficients was likely to be intermediate. Thus,
multivariate permutation tests may have less of a benefit over Bonferroni methods at very low
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frequencies and more of a benefit at higher frequencies. Further studies are needed to
demonstrate the benefit of multivariate permutation tests at other frequencies. Finally, we
selected frequencies that were easily distinguished by the Fourier transform. Fourier methods
have limited ability to detect or separate signals when frequencies are very similar; however,
the detection of separate signals can be increased with greater sampling density.

An additional limitation of the simulation study was the computation of Fourier coefficients
for a single time series, instead of using sliding windows to create a spectrogram. For simulation
purposes, computing Fourier coefficients in only the frequency domain provided clear
measures of effect sizes and was computationally feasible using routinely available resources.
Findings from the simulation are successfully applied to spectrograms, as demonstrated in the
practical example. In fact, we expect the power advantage for MPT to be greater for
spectrograms because increased correlations of the outcome variables also increase the MPT
power advantage. Additionally, as the number of variables grows, the family-wise error rate
for Bonferroni-correction becomes even more conservative, while the MPT is not adversely
affected. Future studies should explicitly test the application of MPT to spectrograms.

Finally, in this study, we chose to compare the MPT to the Bonferroni correction, a widely
used and familiar method for controlling Type I error rates for multiple statistical tests.
However, it is important to note that the Bonferroni correction is known to be conservative in
evaluating statistical significance across multiple tests. Modifications of the Bonferroni
method, such as those introduced by Holm (1979) and Hochberg (1988), use sequential (i.e.,
step-down or step-up) methods to increase statistical power. To our knowledge, MPT has yet
to be compared directly to these procedures to determine if the statistical power advantage for
MPT is greater than that provided by modified Bonferroni procedures.

In summary, multivariate permutation tests provide a statistically powerful method for testing
detailed treatment effects in biological rhythms using within-subjects, Fourier-transformed,
time series data. The multivariate permutation test method showed increased statistical power
compared to Bonferroni-correction methods, and also showed strong family-wise error control
that is lacking in uncorrected tests. Importantly, this method is applicable to any statistical
comparison of two related time series, and is especially relevant for testing differences in other
types of bioperiodicities, such as in heart rate (Lipsitz et al., 1990) and human growth hormone
release (Dunger et al., 1991).
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Appendix

MPT Significance Testing Program

#--------------------------------------------------------------------
# Multivariate Permutation Paired T-tests of
# Fourier-Transformed Data Coefficients (for R 2.5.1)
#
# Written By: Jennifer Urbano Blackford, PhD
#         Ronald Salomon, MD
#         Niels Waller, PhD
#
# User instructions:
#   User changes may be made in the first section of the program
#   entitled “User Specifications”. The program expects 2
#   separate raw data files, one for pre and one for post.
#   Data should be comma delimited with subjects as rows and time
#   in the columns. For 10,000 permutations on 20 subjects and
#   144 time points processing time is approximately 5 min
#   on a Dell Precision (XP version 2002, 3 GHz,
#   3.25 GB RAM, R version 2.5.1)
#
#   1. Raw Data Files:
#      Put raw pre- and post-treatment data into 2 separate comma
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#      delimited files names “predata.csv” and “postdata.csv”.
#      Either put the files in the C:/directory or change the drive
#      below in “User Specifications”.
#   2. Output File:
#      Default output file is C:/output.txt.
#   3. Specify the number of permutations (Number.of.loops) below.
#      Default is 10,000.
#--------------------------------------------------------------------

#----------------User Specifications-----------------------
#specify pre-treatment data
   data.pre<-as.matrix(read.csv (“c:/predata.csv”))

#specify post-treatment data
   data.post<-as.matrix(read.csv(“c:/postdata.csv”))

#specify output filename
   file.name<-”c://Output.txt”
   sink(file.name)

#specify number of permutations, should be 5000–10000
   Number.of.loops<-10000
#----------------------------------------------------------
#load necessary libraries
   library(Hmisc)
   library(MASS)

#-------------------Create Variables----------------------
#create data object
   data<-list(data.pre=data.pre,data.post=data.post)

#create variables
   subjects<-nrow(data.pre)
   time<-ncol(data.pre)
#----------------------------------------------------------

#----------------------------Functions---------------------
   #hanning window
       hanning<-function(n){
         t(.5*(1−cos(2*pi*t(1:n)/(n+1))))}

#calculate Fourier coefficients for pre and post data
   Fourier<-function(subjects,time,data.pre,data.post){
     f.pre<-matrix(0,subjects,time/2)
     f.post<-matrix(0,subjects,time/2)
   for (i in 1: subjects){
     a1<-fft(han*data.pre[i,])[1:(time/2)]
     a2<-fft(han*data.post[i,])[1:(time/2)]
     f.pre[i,]<-Re(a1*Conj(a1))
     f.post[i,]<-Re(a2*Conj(a2))
     }
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   Fourier<-list(f.pre=f.pre,f.post=f.post)
   return(Fourier)
   }
#----------------------------------------------------------------------

#-----------------------------Analysis---------------------------------
#variables
   nvar<-time/2
   han<-hanning(time)
   nah<-1/han
   output<-0
   continue<-1

#Fourier Transform data
      f.data<-Fourier(subjects=subjects,time=time,
            data.pre=data$data.pre,data.post=data$data.post)
#create difference score for paired t-test
   f.diff<-f.data$f.post-f.data$f.pre

#name columns
   colnames(f.diff)<-colnames(f.diff,do.NULL=FALSE,prefix=“Var”)
   colnames <-dimnames(f.diff)[[2]]

#Multivariate Permutation Test

  #create matrices to store values of t(1), t significance(2)
    # t.test<-rep(0,nvar)

    obs.t<-matrix(0,2,nvar)

        t.test<-apply(f.diff,2,t.test)
    for(i in 1:nvar){
        obs.t[1,i]<-as.matrix(t.test[[i]]$statistic)
        obs.t[2,i]<-as.matrix(t.test[[i]]$p.value)
        }

  writeLines (“Observed t and p values”)
  print(t(round(obs.t,2)))
  writeLines(““)
  writeLines (“Significant Variables from MPT for difference t-test”)
  writeLines(““)

#create simulated distribution of diff values
   t.sim.all<-matrix(0,Number.of.loops,nvar)

   for(loop in 1:Number.of.loops){
      sign<-rep(1,subjects)
      sign[runif(subjects,0,1) <=.5]<-−1
      newdata<-f.diff*sign

  #save the t values for each variable and each loop into a matrix called 
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t.simulated.all
      new.t.test<-apply(newdata,2,t.test)
      for(i in 1:nvar){
         t.sim.all[loop,i]<-as.matrix(new.t.test[[i]]$statistic)
         }
  } #end of this do loop

#create matrices of maximum ts and use in each permutation
#loop for each variable to test significance--step down procedure
  while (continue==1){
#select largest absolute value of simulated ts from each loop--save column 
position
   max.col<-matrix(0,Number.of.loops)
   max.sim.t<-matrix(0,Number.of.loops)
   for (loop in 1:Number.of.loops){

                #select the largest absolute t
                max.col[loop]<-(order(abs(t.sim.all[loop,]))[nvar])

                #save the largest value--maintain original sign
                max.sim.t[loop]<-t.sim.all[loop,max.col[loop,]] }

#save t value and traditional p value information for the largest t value
      max.col<-(order(abs(obs.t[1,]))[nvar])
      largest.obs.t<-obs.t[1,max.col]
      smallest.obs.p<-obs.t[2,max.col]
      variable<-colnames[max.col]

#compare largest t to the distribution to determine significance by
#creating an array of 0s and 1s representing whether the simulated m is larger 
than the observed t
      p.dist<-rep(0,Number.of.loops)
      p.dist[(abs(max.sim.t))>=(abs(largest.obs.t))]<-1

#get p value as number of permutations above/below obs t divided by number of 
permutations
   p.value<-0
   if (sum(p.dist) > 0) (p.value<-(sum(p.dist)/Number.of.loops))

   print (“Variable, t value, p value, MPT p value”)
      print (variable)
   print (largest.obs.t)
   print (smallest.obs.p)
   print (p.value)
   print (“--------------------------------”)

#if the p value was significant then delete the column and continue
#otherwise stop the process
   if (p.value > .05)(continue<-0) else {

#delete the largest column and continue
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   #delete the column associated with the maximum observed t
      t.sim.all<-as.matrix(t.sim.all[,-max.col])
      obs.t<-as.matrix(obs.t[,-max.col])
      colnames<-as.matrix(colnames[-max.col])

   #reset number of variables
      nvar<-nvar−1
      if (nvar==0) (continue<-0)}

} #end of program
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Figure 1.
Decomposition of a complex signal. A complex signal (a) is decomposed into three individual
signals (b) with frequencies (cycles per time unit) of 0.25, 0.5, and 1, respectively. Fourier
coefficients (c) show the three distinct frequencies which contribute to the complex signal. The
smaller coefficients flanking the main peaks are common artifacts referred to as “lobes.”
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Figure 2.
Statistical power curves by sample size. Statistical power curves for MPT, Bonferroni-
corrected t, and Bonferroni-corrected WSR statistics by effect size (d). Shown are sample sizes
of 10, 20, and 30.
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Figure 3.
T values for the effect of antidepressant treatment by frequency bandwidth and time window.
T values are shown by frequency bandwidth and time window (clock time at window midpoint
shown). T values in light grey are significant without correction for multiple tests. T values in
dark grey are significant using multivariate permutation test methods. None of the t values was
significant using Bonferroni correction. The area bordered in black is the largest contiguous
section of significant values, with a frequency between 53–102 min and time between 19:00
(7 pm) and 22:20 h (10:30 pm).
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Table 1
Multivariate permutation test methods

Specify the research question.

Are there pre–post differences on any of the 72 Fourier coefficients?

State the null hypothesis.

There are no pre–post differences for any of the 72 Fourier coefficients.

Chose a test statistic.

A paired t-test was used to compare the within-subjects (pre–post) measures.

Compute the test statistic for each of the observed data points.

Difference scores were computed for each of the 72 data points for each subject. T-tests were computed for each of the 72 variables, comparing the
average difference score with a difference score of 0. These were the “observed” test statistics.

Rearrange the observations by randomly shuffling the experimental factor (treatment).

Each subject had a row of data comprised of the difference score for each of the 72 variables. The null hypothesis of no treatment effect was created by
randomly assigning a positive (+) or (−) sign for each subject. Each permutation was implemented by randomly applying a positive (+) or negative (−)
sign to all 72 Fourier coefficient difference scores (post–pre) for each subject, effectively removing any true treatment effect. By randomly applying
the signs across subjects, any true treatment effects were nullified, while maintaining the distribution of absolute values. Application of the sign (+/−)
across all of the data points for a single subject preserved the natural correlations among variables.

Compute the test-statistic for each of the dependent variables for the newly arranged data.

Once the signs of the difference scores have been changed, new t values were computed for each of the 72 variables.

Select a multivariate statistic to summarize across the outcome variables and save the value of that statistic.

The largest absolute t value across all outcome variables was identified, and this single value was saved.

Continue to rearrange the observations and compute the multivariate test statistic many times.

The rearrangement process was conducted 1,000 times. The largest absolute t value was saved each time and formed the distribution of the test statistics
under the null hypothesis.

Sort the observed t values from all of the outcome variables and perform significance tests.

The t values for all 72 Fourier coefficients were sorted in descending order. A p value was computed as the probability of observing a test (t) statistic
as extreme as or more extreme than the observed test (t) statistic.

Use a step-down process to test remaining variables.

A step-down process was then used to iteratively test the significance of each of the outcome variables until the first non-significant result was obtained.
If the p value was ≤ .05, all Fourier coefficients for that frequency were removed from both the distribution and original data set. Repeating the permutation
process created a new distribution. This significance testing process continued until the p value was > .05 for a given Fourier coefficient. All remaining
t values were considered not significant. This permutation method provided significance results (i.e., significant/non-significant) for each of the 72
Fourier frequencies in each experiment.
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