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Abstract
Summary—Cyanobacteria, among Earth's oldest organisms, have evolved sophisticated
biosynthetic pathways to produce a rich arsenal of bioactive natural products. In consequence,
cyanobacterial secondary metabolites have been an incredibly fruitful source of lead compounds in
drug discovery efforts. Investigations into the biochemistry responsible for the creation of these
compounds, complemented by genome sequencing efforts, are revealing unique enzymatic
mechanisms not described or rarely described elsewhere in the natural world. Herein, we discuss
recent advances in understanding the biosynthesis of three cyanobacterial classes of natural product:
mixed polyketide synthase/non ribosomal peptide synthetase (PKS/NRPS) metabolites, aromatic
amino acid-derived alkaloids, and ribosomally encoded cyclic peptides. The unique biosynthetic
mechanisms employed by cyanobacteria are inspiring new developments in heterologous gene
expression and biotechnology.

B. Introduction
Unarguably, natural products have played an enormous role in the development of modern
medicines, especially in the areas of cancer and infection [1]. The last 30 years has seen a
focused and purposeful exploration of the marine environment for drug leads from natural
products, and recently it has emerged that marine microbes are an especially rich source of
structurally novel and bioactive compounds [2••,3]. One particularly noteworthy group, the
cyanobacteria, produces a surprisingly diverse array of metabolites that derive largely from
the integration of non-ribosomal peptide synthetases with polyketide synthases [4-6]. These
nitrogen-rich frameworks are often decorated with unusual modifications such as
halogenations, methylations and oxidations. Many have potent cellular toxicity due to
inhibition of tubulin or actin mediated processes, although a growing number have other more
novel sites of action [7,8]. Hence, there is great interest to better understand how these unusual
structures are created, with special focus on mechanistic biochemistry, gene evolution,
transcriptional regulation and biosynthetic logic [9,10]. It is hoped that these studies will
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improve access to the full richness of cyanobacterial natural products as well as an ability to
employ these gene clusters and biosynthetic gene motifs in heterologous expression and
combinatorial biosynthesis.

C. Curacin A biosynthesis
Curacin A, a metabolite isolated from a Curaçao strain of the marine cyanobacterium Lyngbya
majuscula [11], exhibits potent anti-proliferative and cytotoxic activity against colon, renal,
and breast-cancer derived cell lines [12]. Its biosynthetic pathway was identified and partially
characterized by genetic and precursor labeling studies [13] as a mixed polyketide synthase
(PKS)/non-ribosomal peptide synthetase (NRPS) (Figure 1). Based on this initial analysis, it
was predicted that a number of genes encoding unusual catalytic domains and enzymes were
present in this pathway, including a GCN5-related N-acetyltransferase (GNAT)-like domain
in the chain initiation module, a HMG enzyme cassette, an α-KG dependent non-heme
halogenase, and a sulfotransferase (ST) domain in the chain termination module (Figure 1).
These intriguing catalytic elements embedded within the Cur biosynthetic system illustrate the
combinatory flexibility of modular polyketide assembly lines as well as provide valuable
objectives for mechanistic enzymology and protein evolution studies.

The GNAT-like domain (GNATL) in the CurA chain initiation module is an ideal example of
functional diversification and gain-of-function in an enzyme scaffold. Previously, the GNAT
superfamily of enzymes was only reported to catalyze N-acetyl transfer from acetyl-CoA or
ACP to primary amino groups on diverse acceptor substrates [14]. In curacin A as well as a
series of other biosynthetic pathways, GNAT-like domains embedded in chain initiation
modules were predicted to transfer acetyl groups to the terminal thiol of their adjacent ACP
phosphopantetheine arm (ACPLs) [13,15••,16••,17-18]. Unexpectedly, malonyl-CoA was
found to be loaded onto CurA ACPL, but only an acetyl product was detected on the ACP
phosphopantetheine (PPant) arm [19••]. Thus GNATL was demonstrated to catalyze
decarboxylation of malonyl-CoA to form acetyl-CoA followed by S-acetyltransfer to the
adjacent ACPL (Figure 1). Both of these steps represent new functional activities for the GNAT
superfamily.

The insertion of an HMG enzyme cassette in the curacin pathway reveals an interesting
convergence of two distinct biosynthetic systems, type I polyketide synthases and enzymes
involved in isoprenoid assembly. In the curacin A pathway, this cassette catalyzes β-branching
modification during the biosynthetic assembly line process at β-carbonyls of the polyketide
chain elongation intermediate (dehydration and decarboxylation) [20•]. These modifications
are combined with halogenation and cyclopropane ring formation to generate the unusual β-
branched cyclopropyl group in the final product [21]. A most interesting aspect of this cassette
is how it is structured and incorporated into PKS modules. It comprises tandem triple ACPs
(ACPI, ACPII, ACPIII), a discrete ACP (ACPIV), ketosynthase-like decarboxylase (KS), HMG-
CoA synthase (HCS), and a dehydratase (ECH1)/decarboxylase (ECH2) pair related to the
crotonase superfamily of enzymes (Figure 1) [13,20•]. The polyketide intermediate tethered
to the tandem triple ACPs undergoes multiple modifications to convert a β-carbonyl group to
β-branched methyl group. The HCS catalyzes a key Claisen condensation using C-2 of acetate
as a nucleophile, the PhyH halogenase chlorinates at the γ position [21], and then ECH1 and
ECH2 catalyze the consecutive dehydration and decarboxylation of the chlorinated HMG-like
intermediate to form the β-branched product [22•]. Related β-branching modifications have
been observed in several biosynthetic pathways, and provide chemical diversity by variation
in the number and type of HMG cassette enzymes [23,24] or by using alternative starter units
[25] to create additional structural variation in natural products. The recently solved curacin
ECH2 structure suggests that specific amino acid residues in a hypervariable region play a role
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in regiochemical control of ECH2 decarboxylation, which might provide a facile strategy for
metabolic diversification [26].

D. Jamaicamide
Jamaicamide A is a neurotoxic metabolite of a Jamaican collection of Lyngyba majuscula that
possesses several highly intriguing structural features, including an interdigitated polyketide
and NRPS overall construction with acetylenic bromide, pendant vinyl chloride, and terminal
pyrrolidone ring functionalities [27••]. The original isolation work also mapped out the
biosynthetic components and characterized the gene cluster coding for jamaicamide assembly
and tailoring reactions. One key insight from the gene cluster analysis was realization that a
six-carbon carboxylic acid serves as the starter unit for the pathway. An innovative mass
spectrometric method was subsequently used to gain insight into the relative timing of
bromination to form the bromoalkyne functionality [28•]. Recombinant proteins JamA
[hexanoyl acyl carrier protein (ACP) synthetase] and JamC (ACP) were provided with ATP
and a choice of substrates, hexenoic and bromo-hexynoic acids (Figure 2). The results of
incubation were queried by Fourier transform ion cyclotron resonance mass spectrometry (FT
ICR MS) and only a hexenoyl chain was shown to be tethered to JamC via a thioester bond.
The enzyme system was completely unreactive to bromohexynoic acid under any
circumstances, showing conclusively that bromination occurs subsequent to hexanoic,
hexenoic or hexynoic acid activation and covalent tethering.

E. Lyngbyatoxin
Lyngbyatoxin, a prenylated cyclic dipeptide, was originally isolated from a Hawaiian strain of
the marine cyanobacterium Lyngbya majuscula and shown to be responsible for a condition
known as “Swimmer's Itch” due to its potent activation of protein kinase C [29]. Subsequently,
the lyngbyatoxin gene cluster was cloned from this strain, and found to be composed of only
four genes that code for several novel biochemical features [30]. The first gene encodes LtxA,
a didomain NRPS required for assembly of the dipeptide that terminates with a reductase
domain for release of a presumed primary alcohol. LtxB is a cytochrome P450 believed to
oxidize the indole ring and possibly act in the cyclization of the molecule. LtxC is a reverse
prenyltransferase, and LtxD functions as a short chain acyl dehydrogenase involved in
formation of the saturated geranyl chain in lyngbyatoxins B and C. Recently, mechanistic
aspects of the reductive off-loading of the dipeptide were studied using alternative substrates
and the PCP/reductase components of the NRPS (Figure 2) [31]. Using the N-acetylcysteamine
thioester (S-NAC) analog of the proposed natural dipeptide thioester substrate, the four electron
reduction of the thioester to a primary alcohol was conclusively demonstrated. Furthermore,
performing the reaction in H2

18O allowed deduction of an aldehyde intermediate in this
reaction sequence, and use of chiral forms of 2H-labeled NADPH showed only the pro-S
hydrogen was transferred in both reductive steps.

F. Scytonemin
Scytonemin is a dimeric indolic-phenolic alkaloid that acts as a passive sunscreen in the
protection of cyanobacteria against ultraviolet light in marine and freshwater environments
[32,33]. Studies of its unique structure, gene cluster, and enzymatic mechanisms have given
new insights on the biosynthesis of this compound class in cyanobacteria [33-35]. In 2007, a
scytonemin deficient Nostoc punctiforme ATCC 29133 mutant was created using random
transposon mutagenesis [34]. Analysis of this mutant revealed the transposon was embedded
within NpR1273, an open reading frame (ORF) that encodes a putative protein with a signal
peptide. NpR1273 was one of 18 contiguous ORFs, likely all co-transcribed [34], and shown
to be upregulated by UV light based on semi-quantitative reverse transcriptase-PCR analysis
(CM Sorrels et al., unpublished). These ORFs appear to be involved in tryptophan and tyrosine
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biosynthesis and have sequence similarity to corresponding operons in five other
cyanobacterial species (CM Sorrels et al., unpublished). Bioinformatics analyses showed that
NpR1271-NpR1274 had little sequence similarity to other characterized proteins and led to the
prediction that they were involved in scytonemin biosynthesis [34]. Further analysis of the
cluster prompted a recent investigation into the mechanistic biochemistry required for
scytonemin assembly through study of NpR1275 and NpR1276 (Figure 3) [35]. NpR1275,
which resembles a leucine dehydrogenase, was shown to catalyze the oxidative deamination
of tryptophan to form indole-3-pyruvic acid (IPA). IPA and p-hydroxyphenylpyruvic acid then
act as the substrates for an acyloin reaction catalyzed by NpR1276, a homolog to a thiamine
diphosphate (ThDP) dependent acetolactate synthase. The acyloin product arises from a single
β-ketoacid regioisomer, indicative of a highly selective reaction by the ThDP-dependent
NpR1276. The mechanism of this early reaction in scytonemin biosynthesis has rarely been
described in any other natural system [35].

G. Prochloron biosynthesis
In 1976, a new subclass of algae, the Prochlorophyta, was proposed to describe a unique
symbiont living in association with didemnid ascidians from tropical Pacific locations [36].
This symbiont, given the generic name “Prochloron” [37], is now recognized as a
cyanobacterium despite its plant-like use of chlorophylls a and b and lack of phycobilins.
Although Prochloron has evaded culture attempts, this cyanobacterium is now known to be
the biosynthetic source of the patellamides, cyclic peptides first isolated from one of the host
ascidians, Lissoclinum patella [38••]. Unlike other peptides from cyanobacteria, the
patellamides are remarkable because they are generated from a ribosomally encoded gene
cluster rather than from a NRPS mediated process. The pat gene cluster is composed of seven
ORFs (patA-patG) in which the precursor peptide patE directly encodes the amino acids found
in patellamides A and C. While none of the other genes in the pat cluster appear to function as
epimerases, nonenzymatic epimerization of amino acids to D-isomers appears possible (e.g.,
see the lissoclinamides below) [39]. The involvement of this gene cluster in patellamide
biosynthesis was confirmed through successful heterologous expression of patellamide A in
E. coli [3,38,40].

In a PCR based screening for the patE gene from Prochloron spp. obtained from 46 tropical
Pacific ascidian samples [41], over 20 patE variants were detected. The majority of these gene
clusters were virtually identical, except for the patellamide amino acid encoding region. The
variable regions in the clusters were predicted to correspond to three cyclic peptide classes:
the patellamides, ulithiacyclamides, and lissoclinamides. Engineered mutation of the region
encoding the ulithiacyclamides led to heterologous expression of a novel compound,
eptidemnamide. Using quantitative PCR, it was found that each Prochloron strain likely
contains a single pathway, and thus, ascidians can store an entire chemical library by harboring
multiple strains of the cyanobacterium.

Continuing exploration of other cyanobacteria, both free living as well as obligate symbionts,
for biosynthetic gene clusters homologous to the patellamide pathway [42] has revealed that
this ribosomally encoded process is widespread (more than 100 compounds have been
identified or implied from gene analysis), and given rise to a new term to describe these cyclic
peptides as the ‘cyanobactins’ (Figure 4) [43•]. Recent advances with the cyanobactins include
structural diversification through the biosynthetic addition of side chains such as prenyl groups
(patellins, trunkamide), and improved recombinant expression of symbiont natural products
[44•].
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H. Visualizing biosynthesis
Most organisms exist in Nature as complex assemblages. For example, marine cyanobacteria
are commonly found living in association with various invertebrates, such as sponges and
tunicates (e.g. see above), and are richly populated themselves by diverse heterotrophic
bacteria. Thus, it can be quite difficult to rigorously determine the actual biosynthetic source
of a given metabolite. Nevertheless, a variety of gene-based [44•,45••] as well as mass
spectrometric imaging techniques are emerging to provide powerful insights to these long
standing questions. A recent illustration involved MALDI imaging to demonstrate that
mixtures of cyanobacterial filaments could be easily distinguished by their metabolite profile,
and that chlorinated peptides could be localized to regions of tissue from the sponge Dysidea
herbacea populated by the cyanobacterium Oscillatoria spongeliae [2••,46]. Other soft
ionization techniques such as Desorption Electrospray Ionization (DESI) and Direct Analysis
in Real Time (DART) will certainly find innovative application in answering questions
concerning the biosynthesis of natural products from complex assemblages, including those
containing cyanobacteria [47,48].

I. Conclusions
We are at a particularly interesting juncture in our understanding of how the remarkable natural
product structures of marine cyanobacteria are created, mainly as a result of modular NRPS
and PKS pathways with a variety of novel tailoring steps. Functional groups of unprecedented
structure, such as a variety of pendant one carbon units at C-1 positions of polyketides (terpene-
like β branches) and halogen atoms located at traditionally unreactive sites (radical
halogenases) [49,50], are now comprehensible in terms of their biosynthetic origin. While the
functions of these enzyme systems are now better appreciated, the mechanistic features are
only slowly being revealed and much exciting biochemical investigation remains. Moreover,
new pathways of assembly with only partially defined biosynthetic processes are being
described in some cyanobacteria, such as the Prochloron symbionts of ascidians. While these
studies are making rapid progress, realization of the ultimate goal of pathway engineering and
heterologous expression will require significant advances in underlying gene manipulation
technologies as well as understanding of the regulation, storage, and excretion of these
metabolites. Indeed, these ancient prokaryotic algae have much new biochemistry to teach us!
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Figure 1.
The curacin A biosynthetic pathway. The chain initiation module and HMG enzyme cassette
are highlighted in orange and magenta, respectively.
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Figure 2.
A) Mass Spectrometric method for determining the identity of preferred substrate initiating the
jamaicamide A biosynthetic pathway [28•]. B) Reductive off-loading of the NRPS tethered
dipeptide intermediate in lyngbyatoxin biosynthesis shown to be a 4e- reduction involving two
equivalents of NADPH [31].
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Figure 3.
A) Proposed scytonemin gene cluster shown by solid black arrows with transposon insertion
site indicated with a white arrow outlined in black. Patterned arrows represent boundary genes
of the proposed cluster [34]. B) Summary of results from initial studies in the biochemistry of
scytonemin biosynthesis including functions of NpR1275 and NpR1276 [35]. Predicted gene
functions of the scytonemin gene cluster are: NpF1257 - Short-chain dehydrogenase;
NpR1259 - Hypothetical protein; NpR1260 - 3-deoxy-D-arabino-heptolosonate-7-phosphate
(DAHP) synthase; NpR1261 - Anthranilate phosphoribosyltransferase; NpR1262 -
Tryptophan synthase (β subunit); NpR1263 - Putative tyrosinase; NpR1264 - Tryptophan
synthase (α subunit); NpR1265 - Indole-3-glycerol phosphate synthase; NpR1266 -
Anthranilate synthase; NpR1267 - 3-Dehydroquinate synthase; NpR1268 - Dithiol-disulfide
isomerase; NpR1269 - Prephenate dehydrogenase; NpR1270 - Putative glycosyltransferase;
NpR1271 -Hypothetical protein; NpR1272 - Hypothetical protein; NpR1273 - Hypothetical
protein; NpR1274 - Hypothetical protein; NpR1275 - Leucine dehydrogenase; NpR1276 -
Thiamine diphosphate requiring enzyme; NpR1277 - PAS/PAC sensor signal transduction
histidine kinase.
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Figure 4.
Two examples of cyanobactin gene clusters from Prochloron spp. isolated from the ascidian
Lissoclinum patella (represented by arrows) [43•]. Conserved genes between the patellamide
(pat, top) and trunkamide (tru, bottom) clusters are shown in matching colors. Subsamples of
compounds encoded by variations in patE and truE are provided above and below the gene
clusters, respectively. The absolute stereoconfiguration of lissoclinamide 5 is based on recent
synthetic efforts [39].
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