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Abstract

Background: Fluorescent proteins such as the green fluorescent protein (GFP) have widely been
used in transgenic animals as reporter genes. Their use in transgenic Xenopus tadpoles is especially
of interest, because large numbers of living animals can easily be screened. To track more than one
event in the same animal, fluorescent markers that clearly differ in their emission spectrum are
needed.

Results: We established the transgenic Xenopus laevis strain tom3 that expresses ubiquitously red
fluorescence from the tdTomato gene through all larval stages and in the adult animal. This new
tool was applied to track transplanted blastemas obtained after tail amputation. The blastema can
regenerate ectopic tails marked by red fluorescence in the host animal. Surprisingly, we also found
contribution of the host animal to form the regenerate.

Conclusion: We have established a useful new tool to label grafts in Xenopus transplantation

experiments.

Background

The green fluorescent protein (GFP) has successfully been
used as a marker gene in the past years. It was also applied to
transgenic Xenopus either to label grafts (e. g. [1] or cell line-
ages by using specific promoters (e. g. [2-4]). The GFP deriv-
atives cyan fluorescent protein (CFP) and yellow fluorescent
protein (YFP) expanded the color range and were also suc-
cessfully used in transgenic Xenopus [5-7]. Although both
markers can be used independently by applying appropriate
filter sets, there is some overlap of the emission spectra.
Therefore, to track more than one event in the same animal
reliably, fluorescent markers that clearly differ in their emis-
sion spectrum are needed. The red fluorescent protein DsRed
has been isolated from Discosoma sp. to be used as a new
tracer with higher wavelength emission, but the long matu-
ration time and poor solubility of the tetrameric DsRed pro-

tein [8] prevented its widespread use in transgenic animals.
We also observed toxic effects in Xenopus of DsRed under the
control of the ubiquitously active CMV promoter (MR,
unpublished data). Nevertheless, some transgenic animals
were made using DsRed in zebrafish [9] or its faster maturat-
ing derivatives in Drosophila [10], mice [11] and rats [12].
Progress was achieved a few years ago, when variants of
monomeric molecules derived from DsRed were generated
giving rise to different color shades of red [13]. All derivatives
are characterized by a shorter maturation time and an
improved solubility as compared to the wild type DsRed pro-
tein, with tdTomato showing the highest brightness and
photo stability. To generate a new tool to label grafts we
established in the present study a ubiquitous red fluorescent
transgenic Xenopus laevis strain using the CMV promoter
driven tdTomato sequence.
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Transgenic Xenopus laevis strain expressing ubiquitous red fluorescence. Fl animals of the tom3 strain at the neu-
rula (A), larval (B) or froglet stage (C) seen with the red fluorescence filter set. D: Isolated tissue of a control froglet (left) and
a froglet of the tom3 strain (right) seen in normal light. E: Same tissue samples seen in the red fluorescence filter set. F-H: Iso-
lated muscle of a froglet of the blue fluorescent C5 strain [5] (left) and of the red fluorescent tom3 strain (right) seen in normal
light (F), with red fluorescence filter set (G), or blue fluorescence filter set (H). Scale bars equal | mm.

We applied this newly established tool to track cell fate
during Xenopus tail regeneration. After tail amputation of
the tadpole, a mass of proliferative cells is formed under-
neath the wound epidermis within 24 hours. This mass of
cells is commonly called the 'blastema’, and is able to
regenerate to an imperfect copy of the amputated tail
within a few days (reviewed in [14,15]). Although this
regenerated tail has less well organized myotomes, the
tadpoles are able to swim. Recent studies suggest that V-
ATPase dependent proton flux [16] and apoptosis [17] are
essential for blastema formation. However, nothing is

known whether the blastema generates ectopic tails upon
transplantation or whether the interaction with the sur-
rounding amputated tissue is needed. We therefore per-
formed transplantation experiments using the red
fluorescent Xenopus strain and followed the fate of the
graft as well as of the surrounding host tissue.

Results

Establishment of a red fluorescent Xenopus laevis strain
To label cells by red fluorescence we have chosen the red
fluorescent protein tdTomato controlled by the ubiqui-
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Figure 2

Adult animals of the tom3 strain express red fluores-
cence in a variety of tissues. A-D: Cryosections (10 um)
were counterstained with DAPI after methanol fixation (20
min.) to visualize cell nuclei. Overlays were done with Axio-
Vision software using false colours. Note: Due to fixation
endogenous red fluorescence as well as the tissue structure
suffered. Sections were made from limb muscle (A), heart
(B), kidney (C) and liver (D). E-F: Macrosection of a limb
bone seen in normal light (E) or with red fluorescence filter
set (F). Scale bars equal 10 um (A-D) or | mm (E-F).

tously active CMV promoter. Transgenic animals for the
pCSCMV:tdTomato construct were generated. Larvae
showing homogenous red fluorescence were selected and
grown to sexual maturity. The tom3 founder female could
be identified to transmit the active transgene to the next
generation resulting in 50% of the offspring expressing
red fluorescence. Animals of this strain exhibit strong and
homogenous red fluorescent protein expression starting
from neurula stage (Figure. 1A). This expression is main-
tained in the larval (Figure. 1B) and in the froglet stage in
all tissues examined (Figure. 1C-G). The red fluorescence
can clearly be distinguished from the cyan fluorescent
protein (CFP)(Figure. 1F-H). Red fluorescence was also
detected on the cellular level in sections from a variety of
tissues (Figure. 2).

Ectopic tail regeneration due to blastema transplantation
To investigate the regenerative potential of the tail blast-
ema, transplantation experiments were made using the

http://www.biomedcentral.com/1471-213X/9/37

tom3 strain to track cell fate. The tails of stage 50 larvae of
the tom3 strain were amputated. After 24 hours, each
newly formed blastema was transplanted under the skin
of wild type host animals. We observed outgrowth of a
tail-like structure in eight of 25 animals when the blast-
ema was transplanted into the head (Figure. 3A-C) or the
trunk (Figure. 3D-F) of the host animal. The regenerate
consists of red fluorescent cells (Figure. 3C and 3F) indi-
cating their origin from the transplanted blastema. We did
not observe any fluorescent cells elsewhere in the host
animal. In the case when no outgrowth was observed, we
did not detect any red fluorescent cells at all. To further
characterize the regenerated tail-like structure we stained
the outgrowth with specific antibodies directed against
muscle cells, notochord, or spinal cord (Figure. 4). All
three structures are present within the regenerate (Figure.
4B, E, H) and comparable to normal regenerated tails
(Figure. 4C, E, I). However, the muscle is poorly seg-
mented, and we did not observe that the tadpoles can
move their ectopic regenerate.

To investigate whether cells of the host animal also con-
tribute to ectopic tail regeneration, we used the tom3
strain to track these cells in transplantation experiments.
We transplanted 24 hours old blastemas of wild type lar-
vae into host animals of the tom3 strain. This led to out-
growth of a regenerate in 15 of 46 transplanted animals
(Figure. 5A), but fluorescence of this regenerate could not
be easily judged in the background of the strong red fluo-
rescence of the host animal (Figure. 5B). Therefore, we
isolated the regenerate to monitor fluorescence. Surpris-
ingly, we observed in all ectopic regenerates cells of the
host animal labeled by red fluorescence possibly located
in the epidermis (Figure. 5D). We thus conclude that the
ectopic regenerate is partly derived from the host animal.

Discussion

In this study we established the red fluorescent transgenic
Xenopus strain tom3 expressing the CMV promoter driven
tdTomato sequence. This is in contrast to the use of DsRed
as a transgene that is not compatible with normal devel-
opment and thus precludes the establishment of a trans-
genic strain (MR, unpublished data). We could recently
confirm the value of tdTomato as stable transgene to mark
a Xenopus strain containing a functional Cre recombinase
[18]. Adult animals of the tom3 strain show ubiquitous
and homogenous expression of the red fluorescent pro-
tein indicating that the CMV promoter can be used to
drive transgene expression also at later stages of develop-
ment. Therefore, the CMV promoter may be equivalent to
the murine ROSA26 promoter that has been proposed for
widespread and persistent transgene expression in Xeno-
pus laevis [19]. This transgenic strain can thus be used to
label grafts isolated at any time point in development.
Animals of the tom3 strain showing ubiquitous and
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Figure 3
Ectopic tail formation after blastema transplantation. 24 hours old blastemas obtained after tail amputation of stage 50

tadpoles of the tom3 strain were transplanted into wild type hosts of the same stage. After 21 days tadpoles were investigated.
A-C: Tail like outgrowth in the head region: B: close-up C: red fluorescence filter set. D-F: Tail like outgrowth in the trunk:
E: close-up F: red fluorescence filter set. Scale bars equal | mm expect in B 100 um. The arrows mark the tail-like outgrowth.

Figure 4
Tissue identity of blastema derived ectopic tails. 2| days old ectopic tails or control regenerates (C,F,l) were isolated

and immunostained with specific antibodies directed against muscle cells (12/101)(A-C), neuronal cells (Xen-1)(D-F) or noto-
chord (anti-Coll-2)(G-l). Scale bars equal 100 pm in A, D, G or | mm in C, F, I. Note, that the red fluorescence reflects the
Cy3 labelled secondary antibody exclusively, as the red fluorescence of the tdTomato protein is destroyed by the fixation used

for immunostaining.
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Figure 5

Contribution of the host animal to blastema derived
ectopic tails. 24 hours old blastemas obtained after tail
amputation of stage 50 wild type tadpoles were transplanted
into hosts of the tom3 strain. After 2| days tadpoles were
investigated. A-B: Tail like outgrowth in the trunk shown in
the bright field (A) or with red fluorescence filter set (B). C-
D: Isolated ectopic tail (upper structure) together with wild
type tail shown in normal light (C) or with red fluorescence
filter set (D). Scale bars equal | mm. The arrows mark the
tail-like outgrowth.

strong expression of tdTomato developed absolutely nor-
mal suggesting that tdTomato has a high biocompatibility
as proposed for a recently engineered noncytotoxic DsRed
variant, which has the drawback of a reduced brightness
[20]. When we transplanted labelled blastemas obtained
after tail amputation we found that cells marked by red
fluorescence can form an ectopic regenerate, but do not
migrate into the host tadpole. We even observed ectopic
regeneration in the head pointing to a strong degree of self
organization of the blastema. As an orientation of the
blastema used for transplantation was not possible, we
cannot exclude that transplants not properly orientated
failed to outgrow. The regenerate contains the typical tail
structures including muscle, spinal cord and notochord.
This implies that the blastema formed 24 hours after
amputation contains precursor cells to all these tissues
and that their differentiation can proceed autonomously
of the amputated stump. However, we cannot exclude
that the transplanted blastema contained part of the ter-
minal bulb of the spinal cord as well as of the bullet-
shaped notochord cells that partially extend into the
regeneration bud [21]. The fact that melanophores were
present in all regenerates is consistent with a previous
study [22] showing that these cells are derived from neural
crest precursors and further strengthens the concept of cell
recruitment by the blastema. In all cases the ectopic tail
lacks the broad tail fin present in the in situ regenerate
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(data not shown). Possibly the supportive structure of the
stump is needed for the formation of the tail fin. Further-
more, the ectopic tail is less well organized lacking proper
segmentation and typically with a twisted appearance
compared to the normal regenerate. This is reminiscent to
the twisted tail regenerates observed upon spinal cord
ablation in Xenopus [23]. We assume that this deficiency in
proper morphology but also the inability for movement
of the ectopic tail are possibly due to the lack of a connec-
tion to the spinal cord of the host animal.

After tail amputation in Xenopus a wound epidermis is
formed by migrating cells within the first 24 hours. It is
proposed that this wound epidermis signals to the under-
lying cells to form the blastema (reviewed in [14,15]).
Our experiments using labelled host cells expand this
model, because our data reveal that the transplanted blast-
ema also recruits cells of the host to form the regenerate.
The tissue identity of these cells as well as the underlying
mechanism have to be determined in future studies.

Conclusion

In summary, the newly established red fluorescent tom3
strain offers a powerful tool to further investigate the proc-
ess of regeneration in Xenopus. In combination with the
existing green and yellow [1,7] fluorescent strains, three
different cell types can now be labelled in transplantation
experiments.

Methods

Plasmids

The tdTomato sequence was isolated from pRSET-BtdTo-
mato [13] as a BamHI/EcoRI fragment and cloned into
pBluescriptlISK+. From the obtained plasmid the BamHI/
Xhol fragment was isolated and subcloned into pCSGFP2

[3] replacing the GFP2 sequence to generate
pCSCMV:tdTomato.
Transgenesis

The original protocol using restriction enzyme mediated
integration [24] was modified by using frozen sperm
nuclei and omitting the egg extract to get more normal
developinglarvae [5]. Individual founders were marked as
described [25]. The pCSCMV:tdTomato construct was
digested by Sall and the fragment lacking the bacterial
DNA was purified for transgenesis. Fluorescence micros-
copy was done with a Leica MZ/FLIII or a Zeiss Axioplan
stereomicroscope with the appropriate filters as described
[26]. Xenopus stages are as defined [27].

Blastema transplantation

About 1 cm of the tail of stage 50 tadpoles was amputated.
The tadpoles were kept in fresh water for 24 hours. The
newly formed blastema was cut off and introduced under
the skin of the host tadpole by using sharp forceps.
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Immunohistochemistry

The tissue was fixed and stained with the monoclonal
antibodies Xen1 (3B1), 12/101, or anti-Collagen type II
(Clone 11-4CII, MP Biomedicals) essentially as described
[28].
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