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Abstract
Genetic association studies are a powerful tool to detect genetic variants that predispose to human
disease. Once an associated variant is identified, investigators are also interested in estimating the
effect of the identified variant on disease risk. Estimates of the genetic effect based on new
association findings tend to be upwardly biased due to a phenomenon known as the “winner's
curse”. Overestimation of genetic effect size in initial studies may cause follow-up studies to be
underpowered and so to fail. In this paper, we quantify the impact of the winner's curse on the
allele frequency difference and odds ratio estimators for one- and two-stage case-control
association studies. We then propose an ascertainment-corrected maximum likelihood method to
reduce the bias of these estimators. We show that overestimation of the genetic effect by the
uncorrected estimator decreases as the power of the association study increases and that the
ascertainment-corrected method reduces absolute bias and mean square error unless power to
detect association is high.
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Introduction
Large-scale genetic association studies are now commonly used to localize genetic variants
that predispose to a wide range of human diseases. In genetic association studies, once the
disease-predisposing variants are identified, it is of interest to estimate the genetic effect of
those variants on disease risk. The simplest method of estimating the effect size of the
variant is to calculate the difference of the observed risk allele frequency between cases and
controls or the corresponding odds ratio. However, these naïve estimators are likely to
overestimate the true genetic effect size as a consequence of the “winner's curse”
[Lohmueller et al., 2003], a phenomenon first described in the auction theory literature
[Bazerman and Samuelson, 1983]. In auctions, participants place bids on an item. Even if
the bids are unbiased, the winning bid is likely to overestimate the true item value since it is
the highest among all the bids. In genetic association studies, an initial positive finding plays
the role of the winning bid, since we generally focus on genetic effect size estimates only for
the variants that yield significant evidence for association, resulting in effect size estimates
that are upwardly biased. We refer to this bias as ‘ascertainment bias’ since it is caused by
ascertaining only those samples that result in significant association evidence. If the sample
size calculation for a subsequent study is based on an overestimated effect size, replication
studies are likely to be underpowered and so more likely to fail. A review of association
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studies [Ioannidis et al., 2001] has described the overestimation in first positive reports,
consistent with the winner's curse.

This problem has drawn attention from several investigators in the context of genetic linkage
and association studies [Göring et al., 2001; Siegmund, 2002; Allison et al., 2003; Sun and
Bull, 2005; Wu et al., 2006; Garner, 2007; Yu et al., 2007; Zöllner and Pritchard, 2007;
Zhong and Prentice, 2008; Ghosh et al., 2008]. Göring et al. [2001] recommended the use of
two independent datasets: one for locus mapping, the other for parameter estimation. An
obvious disadvantage of this strategy is the power loss due to splitting the sample in two.
Sun and Bull [2005] proposed resampling estimators that employ repeated random sample
splitting of the data via cross-validation or the bootstrap. Wu et al. [2006] compared their
bootstrap estimators for locus-specific quantitative trait linkage analysis, and, in the context
of two-stage design, Yu et al. [2007] applied a bootstrap estimator to correct for stage 1 bias
and improve sample size estimates for stage 2. Zöllner and Pritchard [2007] used computer
simulation to evaluate the magnitude of the winner's curse effect in case-control studies and
proposed a maximum likelihood method to correct for it. Their method estimates the
frequencies of all genotypes and corresponding penetrance parameters based on a known
population prevalence of the disease under different inheritance models. Garner [2007]
studied the source of the upward bias in the odds ratio estimate in genome-wide association
studies, but did not propose a method to correct for it. Zhong and Prentice [2008] and Ghosh
et al. [2008] recently proposed conditional-likelihood-based methods for point and interval
estimation of the (logarithm of the) odds ratio in the context of logistic regression analysis of
case-control status using genotype categories as a covariate.

In this paper, we take a direct approach to evaluate and correct for the effect of winner's
curse in the context of case-control genetic association studies. In contrast to previous
simulation-based evaluations, we calculate analytically the impact of the winner's curse on
estimates of the allele frequency difference between cases and controls and the
corresponding odds ratios as a function of sample size, allele frequencies, and statistical
significance level. We then describe a simple ascertainment-corrected maximum likelihood
method to estimate the risk allele frequency difference and odds ratio. Our method is most
similar to that of Zöllner and Pritchard [2007], but in contrast to their method, ours estimates
directly the allele frequency difference or odds ratio, instead of estimating the penetrance
parameters. We compare the performance (bias, standard error, and mean square error
(MSE)) of our ascertainment-corrected maximum likelihood estimators (MLEs) to that of
the naïve, uncorrected estimators. We extend these calculations to two-stage association
studies, in which all markers are genotyped on a set of individuals in Stage 1, and the most
promising markers are followed up by genotyping a second set of individuals in Stage 2.

Consistent with Zöllner and Pritchard [2007], we find that (1) the factors that result in
overestimation of the allele frequency difference can be summarized by study power,
independent of sample size and allele frequency, and that overestimation decreases as power
increases; and (2) compared to the uncorrected estimator of the allele frequency difference,
the ascertainment-corrected estimator results in reduced absolute bias when study power is
low or moderate, and has comparable absolute bias when power is high. Further, we find
that (3) for the logarithm of the odds ratio (ln OR), overestimation can again be summarized
by study power, independent of sample size and allele frequency, and that overestimation
decreases as power increases; (4) compared to the uncorrected estimator, the ascertainment-
corrected MLE of the OR generally results in reduced bias and MSE, and (5) for reasonable
two-stage designs [Skol et al., 2007], results mirror those for the corresponding one-stage
designs. We recommend use of this ascertainment-corrected maximum likelihood method
for estimation of genetic effect size in large-scale genetic association studies.
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Methods
I. One-stage design

Model and assumptions—We assume independent samples of N cases and N controls
genotyped at an autosomal disease locus with alleles D and d. Let p and p+δ (δ ≠ 0) denote
the frequency of the risk allele D in controls and cases, respectively. For a complex disease,
we expect the genetic effect size to be small, so that Hardy-Weinberg equilibrium
predictions provide a good approximation to the genotype frequencies in both controls and
cases. Under this assumption, the counts m0 and m1 of the risk allele D in controls and cases
follow independent binomial distributions on 2N trials with probabilities of success p and p
+δ, respectively.

Let X be the standard Pearson chi-square test statistic for association in a 2×2 table of allele
counts in cases and controls. Under the assumption of Hardy-Weinberg equilibrium, X
follows a chi-square distribution with one degree of freedom under the null hypothesis of no
association (δ = 0). We claim an association significant if X exceeds the critical value xα at
significance level α.

Uncorrected (naïve) maximum likelihood estimators (MLEs)—In practice,
investigators generally estimate the allele frequency difference between cases and controls

by its MLE , or the corresponding odds ratio by . We call
these uncorrected MLEs “naïve” because they ignore the bias associated with focusing on
genetic markers with statistically significant association results.

To model the impact of the winner's curse, we calculate the expected value of the
uncorrected MLE δˆun of the allele frequency difference δ conditional on obtaining
significant evidence for association:

(1)

and from it the bias of the estimator as E(δˆun | X > xα) − δ, and the proportional bias as

. Here, I = {(m0, m1) : X (m0, m1) > xα} is the set of allele count pairs that
result in statistically significant evidence for association and

(2)

Note that the denominator in (1) is the power to detect association if we genotype the
disease SNP.

The standard error of the uncorrected MLEδˆun can be calculated as:
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(3)

where E(δˆun
2 | X > xα) may be calculated by replacing δˆun by δˆun

2 in (1).

We also calculate the absolute bias of δˆun as:

(4)

Analogous formulae allow us to calculate the conditional bias, standard error, and absolute
bias of the uncorrected MLE of the odds ratio OR, and from the expectation, the

proportional bias of the logarithm of the estimator .

Ascertainment-corrected MLEs—The naive estimators ignore the fact that we typically
are interested in estimates of the allele frequency difference δ and the odds ratio OR only if
we have strong evidence for association. To address this, we propose an ascertainment-
corrected maximum likelihood method that conditions on obtaining evidence for association.
To this end, we calculate the conditional likelihood function

(5)

where the indicator function1{X > xα | m0,m1,N} equals 1 or 0 depending on whether or not
X > xα.

We maximize L(p, δ | X > xα) as a function of p and δ to obtain the ascertainment-corrected
MLEs pˆas and δˆas by using the Nelder-Mead [1965] simplex method. We calculate the
empirical standard errors of these estimators based on 1000 simulation replicates, and the
asymptotic-theory standard errors by calculating the observed information matrix (see
Appendix) evaluated at the parameter estimates:

(6)

The covariance matrix for pˆas and δˆas can be approximated by I−1(pˆas, δˆas). We take
advantage of the invariance property of the MLE to calculate the ascertainment-corrected
MLE for the odds ratio, and apply the delta method [Rao, 1965] to obtain its standard error.
We calculate the mean square error (MSE) for the estimators by taking the sum of the
variance and the squared bias of the estimator.
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II. Two-stage design
Model and assumptions—We next consider two-stage association studies, in which N1
cases and N1 controls are genotyped for all markers, and only the most promising markers
are genotyped in the second stage in an additional N2 cases and N2 controls. Let pi and δi be
the risk allele frequencies in controls and the allele frequency difference between cases and
controls in stage i. Given genetic homogeneity between stages 1 and 2, p1 = p2 = p and δ1 =
δ2 = δ. At each stage, we calculate the association test statistic using the data only from that
stage

(7)

where pˆi0 and pˆi1 are the naïve MLEs of the risk allele frequencies in controls and cases

respectively at stage i, . Under null hypothesis of no disease-marker
association (δ = 0), the association test statistic Zi follows a standard normal distribution
with mean 0 and variance 1.

We employ a joint analysis strategy for this two-stage study [Satagopan et al., 2002; Skol et
al., 2006] by calculating

(8)

where πsample = N1/(N1+N2) is the proportion of individuals genotyped in Stage 1. We claim
significant association when both |Z1| and |Z12| exceed the relevant critical values C1 and
C12 in joint analysis. C1 is calculated so that P(|Z>1| C1) =πmarker, where πmarker is the
proportion of markers to be genotyped in Stage 2, and C12 by finding the threshold so that
P(|Z1| > C1,|Z12| > C12) = P(|Z12| > C12 ||Z1| > C1) × P(|Z1| > C1) results in the desired
significance level [Skol et al., 2006].

Uncorrected (naïve) MLEs—The uncorrected MLE of the risk allele frequency

difference for the two-stage design δˆ12 = πsampleδˆ1 + (1−πsample)δˆ2, where ,
i = 1, 2. The bias of the uncorrected MLE δˆ12 can be calculated exactly as for one-stage
design by formula (1) and similarly the proportional bias. However, exact calculation
becomes computationally difficult when N1 or N2 is large, so we simulated n=1000 datasets
satisfying |Z1| > C1 and |Z12| > C12 and approximated the expectation and empirical standard
error of δˆ12 by calculating the mean and the standard error of the uncorrected MLE of the n
simulated datasets:

(9)
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(10)

Ascertainment-corrected MLEs—In analogy to the one-stage design, the two-stage
ascertainment-corrected likelihood

(11)

Here, m = (m10, m11, m20, m21), 1(|Z1| > C1, |Z12| > C12 | m, N1, N2) is an indicator function
taking values of 1 or 0 depending on whether or not |Z1| > C1 and |Z12| > C12, and P(m) is
the product of four binomial probabilities. The denominator of (8) is again the power of the
study, and can be evaluated as described by Skol et al. [2006]. We maximize the likelihood
(8) to get MLEs of p and δ by using the Nelder-Mead simplex approach, obtain empirical
standard errors based on 1000 simulation replicates.

Results
I. One-stage design

Bias of the uncorrected MLE of the allele frequency difference δ and the odds
ratio OR—For a locus showing association (δ≠0), our analytical calculation demonstrates
upward bias in the genetic effect size by the naïve estimator δˆun of the allele frequency
difference δ (Figure 1). This bias is particularly severe when power is low, owing to small
sample size N and/or small allele frequency difference δ (Table 1, Figure 2A). As power
approaches one, the bias disappears. Under the null hypothesis (δ = 0), δˆun is unbiased,
since δ is equally likely to be over- or under-estimated. However, the absolute bias of this
uncorrected estimator is extremely high when δ = 0 or when δ is small (Figure 1). Due to
symmetry, for the rest of the tables or figures, we only provide results for δ > 0 (lnOR > 0).

Given N = 1000 cases and N = 1000 controls, allele frequencies p = .1 and p+δ = .1258 (OR
= 1.295), and testing at significance level of α = 10-6 (resulting in power = .01), the expected
value of the uncorrected estimator of δ is .0524 compared to the true value of .0258, a bias
of .0266 and a proportional bias of 103%; similarly, the expected value of the uncorrected
OR estimator is 1.699 compared to its true value of 1.295. In this case, a follow-up study
designed to have 80% power at significance level α = .05 would include 310 cases and 310
controls, but would have actual power of only 30%.

We found that, for a fixed significance level α, the proportional bias in the uncorrected
estimate of δ is solely a function of power, and is otherwise independent of sample size,
allele frequency, or genetic model [Zöllner and Pritchard, 2007]. Consistent with intuition,
proportional bias decreases as power increases (Figure 2A), since the conditioning event
becomes increasingly likely. At significance level α = 10-6, the uncorrected estimator of δ
gives a proportional bias of ∼60% when power is .05 but is nearly unbiased when power is
95%. Interestingly, given fixed power, the proportional bias of the naïve estimator is
consistently less when α = 10-6 than when α = 10-4.
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We extended our analytical calculation to the uncorrected MLE of the odds ratio (Table 1,
Figure 1), and observed the same general trend: substantial overestimation of the genetic
effect given low to modest power to detect association and no bias given no association or

sufficiently strong association. However, the proportional bias of the OR estimator, ,
cannot be explained by power alone, but depends on sample size, allele frequency, and
genetic model (Figure 2B). Interestingly, the proportional bias of the logarithm of the OR

estimator, log , is a function of power, and follows a very similar pattern as the
uncorrected MLE of allele frequency δ.

Bias of the ascertainment-corrected MLE of δ and OR—When we correct for
ascertainment, the absolute bias of the MLE is substantially reduced (Figure 1, Table 1), and
correction actually results in underestimation unless the genetic effect size is small or power
is very low. For example, given N = 1000 cases and N = 1000 controls, allele frequencies p
= .1 and p+δ = .1258 (power = .01), and testing at significance level α = 10-6, the
proportional bias of the corrected MLE of δ is −7%, compared to +103% before correction.
In this case, a follow-up study designed to have 80% power at significance level α = .05
would include 1350 cases and 1350 controls and have actual power 85%, whereas 1150
cases and 1150 controls actually would be sufficient to achieve 80% power. In the absence
of association (δ=0), the corrected MLE is again nearly unbiased.

Reduction of the absolute bias is most pronounced when overestimation is most severe, and
for fixed significance level α, bias reduction depends solely on study power. The
relationship between power and proportional bias of the ascertainment-corrected MLE of δ
is summarized in Figure 2A. Although the corrected MLE δˆas typically underestimates δ by
10-20% over the power range of .001-.95 given testing at significance level of α = 10-6, the
corrected MLE is considerably less biased than the uncorrected estimator unless power is
high (typically > 60%). Even given high power, the magnitude of the bias of the
ascertainment-corrected MLE δˆas is not much greater than that of the uncorrected MLE
δˆun, and it is of opposite sign. Interestingly, when power greater than .1, the bias in the
corrected MLE δˆas decreases almost linearly as power increases (Figure 2A).

The situation for the odds ratio is similar. With correction, the OR is typically
underestimated by 5-10%, and this bias is in general smaller (although of opposite sign) than
that for the uncorrected estimator for study powers ranging from .001 to .95 (Table 1,
Figures 1 and 2B). Compared to the corrected MLE of δ whose proportional bias can be
approximately summarized by power alone, the proportional bias for the corrected OR
estimator does depends on sample size and allele frequency (Figure 2B), while the
proportional bias of the logarithm of the corrected estimator depends essentially on power
alone and displays a very similar pattern as that of the corrected estimator for δ (Figure 2A).
Again, if we focus on the situations in which power < 60%, correction generally results in
reduced absolute bias, and in many cases, absolute bias reduction is impressive. For
example, given N = 1000 cases and N = 1000 controls, allele frequencies p = .1 and p+δ = .
1258 (OR = 1.295), and testing at significance level α = 10-6 (resulting in power = .01), the
proportional bias of the corrected MLE of OR is −2%, compared to +31% before correction.

Standard errors and mean square errors (MSE) of the estimators—Table 2
summarizes the standard errors (SEs) for the MLEs of δ. We observed that the empirical SEs
agree well with the asymptotic SEs for the corrected MLE, and both are two to six times
greater than the SE of the uncorrected MLE which incorrectly ignores the fact of
ascertainment. We also calculated the SE based on a random sample of the same sample size
without ascertainment. All calculated SEs demonstrate that the genetic effect size estimates
are quite variable in the settings described. The SEs of the corrected MLE are typically 1.5-2
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times as large as those for an unascertained independent sample of the same size. This
implies that while the ascertained sample is not as informative as a new random sample
would be to estimate genetic effect size, the ascertained sample does provide 50-60% of the
information in a new random sample, without the extra cost of collecting a new sample. We
observed a very similar trend for SEs for the MLE of the odds ratio.

The mean squared error (MSE) provides a measure of estimator quality that takes into
account both bias and variance. Figure 1 displays the MSE for the naïve and corrected
MLEs of δ and lnOR. In general, the naïve estimator has larger MSE than the ascertainment-
corrected estimator unless the genetic effect size is sufficiently large to result in high power
to detect association. In that case, biases for the two estimators are similar but the variance
of the corrected estimator is larger than that of the naïve estimator (Table 2).

II. Two-stage design
For both the allele frequency difference δ and the odds ratio OR, the naïve and
ascertainment-corrected MLEs for optimal two-stage designs yield very similar results to
those for the one-stage association designs described above (Figure 3A). This is hardly
surprising, since for optimal two-stage designs, statistical power is very close to that of the
corresponding one-stage design in which all markers are genotyped on all samples, and
power (approximately) determines proportional bias for δ and lnOR. Even for non-optimal
two-stage designs, this continues to be true, except that the proportional bias of both the
uncorrected and corrected estimators tends to increase modestly as πsample, the fraction of
the sample genotyped in Stage 1, increases (Figure 3B).

Discussion
In genetic association studies, the genetic effect size for associated markers tends to be
overestimated as a consequence of winner's curse. This bias is due to the strong positive
correlation between the association test statistic and the estimator of the genetic effect and
the focus of investigators on markers that show statistically significant evidence of
association. In this paper, we studied the bias of the naïve maximum likelihood estimators
for the allele frequency difference and the odds ratio that ignore this ascertainment; these
measures are routinely used to estimate the strength of the effect in genetic association
studies. We demonstrated that the proportional bias in the estimators decreases as power
increases. Interestingly, at fixed significance level, the proportional biases of the allele
frequency difference and the logarithm of odds ratio are functions of power, and otherwise
are essentially independent of allele frequency or sample size (see also [Zöllner and
Pritchard, 2007]).

We proposed a maximum likelihood method to correct for this ascertainment bias. The
ascertainment-corrected MLEs for both the allele frequency difference and the (log) odds
ratio are generally less biased than the uncorrected estimators unless study power is
moderate to high (>60%). Since large-scale genetic association studies of complex traits
typically are underpowered owing to small genetic effect sizes, our method should generally
provide a more accurate estimate of genetic effect size in the context of genome-wide
association studies and large-scale candidate gene studies. In high power situations, bias for
both the naïve and corrected methods are small, so that ascertainment correction again is
reasonable. Proportional bias of the corrected and uncorrected estimators for both the allele
frequency difference and the odds ratio does show modest dependence on significance level
α. For example, when significance level α = 10-4, biases for all estimators are somewhat
increased compared to the case of α = 10-6, and the advantage of ascertainment correction is
increased slightly.
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Zöllner and Pritchard [2007] used simulations to evaluate the impact of the winner's curse
effect in genetic association studies and also proposed a maximum likelihood method to
correct for it. Their method estimates the frequencies of all genotypes and corresponding
penetrance parameters based on a known population prevalence of the disease under
different inheritance models. In contrast, our method is simpler and focuses solely on the
parameters of greatest interest: the allele frequency difference and odds ratio. This
advantage of our method does require the assumption of Hardy-Weinberg Equilibrium for
our case and control samples. Such an assumption is entirely reasonable given the modest
locus effect sizes for complex traits, but would not be reasonable in the context of a
Mendelian major locus.

Our corrected MLEs for the allele frequency difference and odds ratio generally
underestimate the true genetic effects [Zöllner and Pritchard, 2007]. Using computer
simulation, we note that the empirical distribution of our corrected MLEs can reasonably be
described as a two-component mixture, with one component near zero and the other
appearing more nearly normal. Figure 4 illustrates this for the ascertainment-corrected
estimator of the allele frequency difference. As power increases, the distribution becomes
more nearly normal, and the asymptotic unbiasedness of the MLE comes into play.

We investigated the coverage of the asymptotic theory 95% confidence interval for the naïve
and ascertainment-corrected MLEs for the allele frequency difference δ. The coverage of the
ascertainment-corrected interval ranged from 82-100% for the cases we considered,
reflecting the distribution and the bias of the ascertainment-corrected MLE, but still
generally better than the coverage for the naïve estimator, which ranged from 0-92%.

Given the usual downward bias of our ascertainment-corrected estimators, one could
consider an ad hoc bias correction. For the estimators of the allele frequency difference δ
and the log odds ratio lnOR, the downward bias is 5-20% across the situations we
considered (control allele frequency .1-.5, allele frequency difference δ=.018-.159 (OR
1.11-2.30), case and control sample sizes 250 to 2,000, and statistical significance 10-4 to
10-8), so that multiplying the resulting estimate by 1.05 – 1.10 would generally reduce
absolute bias. However, such an approach is counterproductive when power is very low (<.
005). The same criticism holds for taking a (weighted) average of the corrected and
uncorrected estimators. More appealing might be to use an alternative estimation approach,
and we currently are considering an empirical Bayes method [Carlin and Louis, 2000] that
uses information from genome-wide association studies to help define a prior distribution
for the genetic effect size.

Realistically, precise and unbiased estimation of genetic effect size will best be obtained by
collecting a large sample specifically for this purpose, should resources be available to do
so. However, given a sample in which an association is discovered, our ascertainment
corrected approach provides more accurate estimation of allele frequency difference and
odds ratio than the naïve approach, and permits better design of subsequent replication
studies or studies focused on estimating the population effect of the identified variant(s).
Standard errors for the ascertainment-corrected MLEs were substantially larger than those
for the naïve estimator based on an independent random sample of the same size, correctly
reflecting the information loss for estimation based on a sample used for association
detection.

In summary, we have presented analytic calculations that quantify the impact of the winner's
curse in large-scale genetic association studies, and confirm that in realistic situations, it can
result in substantial overestimation of the true genetic effect as measured by the case-control
allele frequency difference or the corresponding odds ratio. We propose a maximum
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likelihood estimator that corrects for the typical focus on statistically significant results, and
demonstrate that this estimator results in reduced absolute bias compared to the naïve
uncorrected estimator when study power is low or moderate (<60%), a range that is typical
for most large-scale genetic association studies, and similar absolute bias when power is
high. Our method does not require specification of a genetic model and is easy to
implement. We extended these calculations to two-stage association studies, and found
similar results to those for one-stage studies. We recommend the use of this ascertainment-
corrected method for estimation of genetic effect size in large-scale genetic association
studies.

Software that carries out this analysis for case-controls data is available at
http://csg.sph.umich.edu/boehnke/winner.
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Appendix
Calculate the observed information matrix I for one-stage study:

where A, B, C, D, E and F are calculated as follows:

where I = {(x0, x1) : X (x0, x1) > xα} and P(x0, x1) is calculated by formula (2) in the paper.

Our calculation for the asymptotic SE for p and δ was based on the observed information
matrix evaluated at pˆas, δˆas.
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Figure 1.
Bias, absolute bias, and mean square error (MSE) for allele frequency difference δ and
logarithm of odds ratio lnOR with sample size N = 1000 and control allele frequency p = .3.
Significance level α = 10-6.
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Figure 2.
Proportional bias versus power for the uncorrected (naïve) (solid lines) and corrected
(dashed lines) estimators of the (A) allele frequency difference δ and (B) odds ratio OR.
Significance level α = 10-6. Results are presented only for δ > 0.
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Figure 3.
Proportional bias versus power for the uncorrected (naïve) (solid lines) and corrected
(dashed lines) estimators of the allele frequency difference δ for (A) optimal and (B) non-
optimal two-stage designs. Significance level α = 10-6. Designs optimal for multiplicative
disease model with disease prevalence .10, stage 2 to stage 1 genotype cost ratio 30. For
non-optimal designs, πmarker = 1%, and samples of N=1000 cases and N=1000 controls.
Results are presented only for δ > 0.
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Figure 4.
Distribution of the ascertainment-corrected MLE of the allele frequency difference δ for
different power levels. Results are presented only for δ > 0.
Based on 1000 simulation replicates of N=1000 cases and N=1000 controls, control allele
frequency p = .5, and testing at significance level α = 10-6.
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