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Abstract
Tumour invasion is driven by proliferation and importantly migration into the surrounding tissue.
Cancer cell motility is also critical in the formation of metastases and is therefore a fundamental issue
in cancer research. In this paper we investigate the emergence of cancer cell motility in an evolving
tumour population using an individual-based modelling approach. In this model of tumour growth
each cell is equipped with a microenvironment response network that determines the behaviour or
phenotype of the cell based on the local environment. The response network is modelled using a
feed-forward neural network, which is subject to mutations when the cells divide. With this model
we have investigated the impact of the micro-environment on the emergence of a motile invasive
phenotype. The results show that when a motile phenotype emerges the dynamics of the model are
radically changed and we observe faster growing tumours exhibiting diffuse morphologies. Further
we observe that the emergence of a motile subclone can occur in a wide range of micro-environmental
growth conditions. Iterated simulations showed that in identical growth conditions the evolutionary
dynamics either converge to a proliferating or migratory phenotype, which suggests that the
introduction of cell motility into the model changes the shape of fitness landscape on which the cancer
cell population evolves and that it now contains several local maxima. This could have important
implications for cancer treatments which focus on the gene level, as our results show that several
distinct genotypes and critically distinct phenotypes can emerge and become dominant in the same
micro-environment.
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1 Introduction
Cancer cell motility is a crucial aspect of tumour invasion as it facilitates invasion of the healthy
tissue in a more efficient way than only cell proliferation can. Cells with motile capabilities
can access new nutrient sources and infiltrate the surrounding tissue and this process is
instrumental in the formation of metastases, as the cancer cells need to actively move to and
from the blood vessels which transport them to new sites in the body. The transition from
cancer cells which are predominately proliferative to cells which are motile could therefore be
a crucial step in the progression of the disease, and a greater understanding of this process
could lead to improved treatment of the disease.

It is an established fact that evolution plays an important role in the development of a tumour
(Nowell, 1976; Merlo et al., 2006; Smalley et al., 2005), and the emergence of motile cancer
cells therefore has to be viewed from an evolutionary perspective. This view implies that cell
motility will only evolve if it confers a selective advantage in the micro-environment in which
the tumour grows. It is generally believed that cancer cells cannot move and proliferate
simultaneously, a mechanism known as the “go-or-grow” hypothesis (Giese et al., 2003), and
this suggests that that the cancer cells are faced with a trade-off: in a harsh low nutrient micro-
environment they might be more likely to survive if they migrate, but on the other hand they
will be less likely to proliferate and consequently spread their genetic material. Migratory
behaviour therefore has a dual effect on the fitness of a cell, it increases the probability that
the cell will survive, but at the same time reduces the likelihood that the cell will divide. This
suggests that the question of when and how a motile subclone emerges (under the assumption
that the initating subclone is non-motile) is far from trivial and is influenced by the complex
interactions between the cancer cell population and the micro-environment of the tumour.
However, there are many cell types (e.g. fibroblasts, lymphocytes) that have a predominantly
motile phenotype and therefore this question is not applicable to them.

In this paper we present a mathematical model aimed at investigating the emergence of cancer
cell motility in tumour invasion. The model is based on previous models of solid tumour growth
(Gerlee and Anderson, 2007a, 2008, 2009), but is extended here in order to take cell movement
into account. In particular we have focused on haptotaxis, cell movement driven up gradients
in the extra-cellular matrix density (ECM), which is known to be the dominant mode of
movement in tumour invasion (Hood and Cheresh, 2002). In the model the cancer cells are
treated as individual entities while extra-cellular factors such as oxygen and the ECM
concentration are modelled as continuous quantities, making the model hybrid in nature. In
order to capture the fact that tumours are heterogeneous and consist of a large number of
subclones competing for space and nutrients, the behaviour of each cell in the model is
determined from a response network which is subject to mutations when the cells divide. This
means that the behaviour of the cells can change from one generation to the next, and implies
that the model has the capability to capture the evolutionary dynamics of tumour growth.

1.1 Biological background
The model presented here will focus on the pre-vascular stages of tumour growth, and we will
therefore discuss the structure of the tumour at this stage in detail. Although cancer cells have,
due to mutations, escaped normal growth control (Hanahan and Weinberg, 2000), most
avascular tumours exhibit a layered structure, which is due to the diffusion limited supply of
nutrients (Sutherland, 1988). As the tumour grows, gradients of nutrients (e.g. oxygen, glucose)
and waste products (e.g. lactate, hydrogen ions) develop, and when the tumour reaches a critical
size, diffusion is insufficient to supply the inner parts of the tumour with nutrients. This leads
to cell death or necrosis in the core of the tumour. Outside the necrotic core a rim of quiescent
cells is found and further out a thin rim of proliferating cells. The mitotic activity therefore
only takes place in a small fraction of the tumour, while the majority of the tumour consists of
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cells that are either quiescent or dead. It has been established that the limiting nutrient for
avascular tumours is oxygen, and that the width of the proliferating rim is determined by the
region where the oxygen concentration is in the viable range. Inside the proliferating rim the
glucose concentration might still be high, but the usual aerobic metabolism of human cells
requires oxygen to produce energy. There is one way for the cancer cells to circumvent this
limitation, and that is to utilise the anaerobic metabolic pathway which only uses glucose and
does not require any oxygen. In fact this seems to be a ubiquitous feature of solid tumour growth
and will be included in the model (Gatenby and Gillies, 2004).

Another important aspect of tumour invasion is the capability of the cancer cells to degrade
the surrounding extra-cellular matrix (ECM) (Liotta et al.,1983; Stetler-Stevenson et al.,
1993) and to migrate along gradients of ECM, a phenomenon known as haptotaxis (Lawrence
and Steeg, 1996).The ECM is a complex mixture of macro-molecules, containing collagens,
fibronectin etc., which functions as a scaffold for the cells to grow on. Degradation of the ECM
is accomplished by production of matrix-degrading-enzymes (MDEs) by the cancer cells. A
large number of different MDEs have been identified, of which matrix metalloproteinases
(MMPs) constitute a large family (Ennis and Matrisian, 1993). Most of these are soluble, but
it has been shown that a considerable part of matrix degradation is accounted for by membrane
anchored MMPs (MT-MMPs) and the plasminogen activator system (Hotary et al., 2000).

The ECM is known to play both a structural and signaling role influencing cell behavior that
includes migration, proliferation and survival (Hynes, 1992; Anderson et al., 2006). The
mechanical/biological properties of the ECM are multiple and are dynamically modified by
cell interactions, via degradation, alignment and production. The movement of cancer cells in
the ECM is known to occur in two distinct modes: “path-generation” and “path-finding” (Friedl
and Wolf, 2003). In the “path-generating mode” the cell degrades the ECM in the direction of
movement and creates a path through the matrix, it then attaches to the matrix at the leading
edge using integrins expressed at the cell surface and pulls itself forward. The other mode of
movement occurs without degradation of the ECM and the cell instead pushes itself through
existing gaps in the matrix and is therefore modulated by the ECM pore size (Zaman et al.,
2005, 2006).

Cancer cell migration is tightly linked to metastases, an important step in tumour progression
(Sahai, 2007). Metastases are formed from cells that break away from the main tumour mass,
and form secondary tumours at new sites in the body. In order for a tumour to metastasise, one
or several cancer cells need to go through a series of crucial steps: first the cells needs to migrate
away from the primary tumour, and then enter the blood stream through a process known as
intravasation. The cell then needs to survive long enough in the blood stream to get the
opportunity to exit the vessel via extravasation. The final step in this chain of events is that the
cell has to be able to migrate into and proliferate in the new tissue to form a tumour. If the
metastases are formed in vital organs such as the liver or intestine this might be fatal. The
acquisition of motile capabilities is the first step in this sequence of events and understanding
how and why it occurs could lead to improved prevention and treatment of metastases.

1.2 Previous work
Mathematical modelling of tumour growth and invasion has a long history dating back to the
work of Burton (1966), who was the first to propose that tumour growth is limited by the
diffusion and consumption of nutrients. Subsequent work using a different modelling approach
took into account the mechanical properties of the tissue and in particular considered the
pressure inside the tumour (Greenspan, 1975). This model introduces a velocity field for the
tumour cells which depends on the pressure in the tumour and assumes that the cells flow
though the ECM according to Darcy’s law, i.e. just like flow through a porous medium. This
model has been further developed by introducing the effect of apoptosis (Byrne and Chaplain,
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1996) or different cell types (Breward et al., 2002) and different cell responses (Chaplain et
al., 2006). A more recent example of this modelling approach is the model by Cristini et al.
(2003) in which they investigate the impact of the microenvironment and show that it plays a
significant role in shaping the resulting tumour morphology. For a long time reaction-diffusion
models were the dominant modelling approach (see for example Casciari et al. (1992b); Byrne
and Chaplain (1997); Anderson et al. (2000); Marchant et al. (2001); Swanson et al. (2003)),
but recently individual-based models of tumour growth have gained more attention (Anderson
et al., 2007). A wide range of approaches have been used for single-cell modelling such as off-
lattice models (Drasdo and Forgacs, 2000; Palsson and Othmer, 2000), cellular Potts models
(Stott et al., 1999; Hogeweg, 2000), cellular automata (Deutsch and Dormann, 2005) and hybrid
continuous-discrete models (Anderson et al., 1997; Anderson and Chaplain, 1998; Schofield
et al., 2005; Anderson, 2005).

Mathematical modelling of the evolutionary dynamics of tumour growth has generally been
constrained to models where the fitness of the mutant cells is predefined, and have mostly
focused on the modelling of mutational pathways (Iwasa et al., 2006; Nowak et al., 2006;
Komarova, 2006). These models have provided useful insight into the evolutionary dynamics
of early tumour growth, for example investigating the role of chromosomal instability
(Komarova et al., 2003) and the impact of tissue architecture in colon cancer (Michor et al.,
2004).

Game theory has also proven to be a suitable tool for investigating evolutionary systems
(Nowak and May, 1992), and the evolutionary dynamics of carcinogenesis has been
investigated by Gatenby and Vincent (2003), using continuous techniques from game theory
and population dynamics. With this approach they identify conditions necessary for invasive
growth and suggest that the ordinary cytotoxic treatment of the tumour is often unsuccessful
due to the adaptation of the cancer cells to new growth conditions. The evolution of glycolysis
and invasion has also been investigated in a game theoretic framework (Basanta et al.,
2008b). They show that glycolytic cells are more likely to emerge prior to invasion, which
could explain the ubiquitous presence of invasive growth in malignant tumours. The emergence
of cancer cell motility was also investigated in a similar model (Basanta et al., 2008a). With
this model it was shown that motile phenotypes are more likely to evolve in low oxygen
concentrations, and further they suggest that this could have implications for cancer therapy.
Game-theory has also been applied to other aspects of tumour growth, such as evolution of
cytotoxin production (Tomlinson and Bodmer, 1997) and evolution of cellular interactions
(Tomlinson, 1997; Bach et al., 2003).

To this date only a few models have investigated the evolutionary dynamics of tumour growth
in a spatial and individual-based setting. One example is the hybrid model introduced in
Anderson (2005), which was used for investigating the role of the ECM on tumour growth and
evolution. This model is essentially a CA-model, with the difference that it derives the
migratory behaviour of the cancer cells from a discretisation of a PDE and that it couples the
cell dynamics to continuous fields of oxygen, ECM and matrix degrading enzymes (MDEs).
The cells also posses different phenotypes, which are passed on, under mutations, during cell
division. Results from this model show that the micro-environment can have a significant
impact on both the morphology and phenotypic composition of the tumour, specifically that
tumours grown in harsh growth conditions tend to exhibit branched morphologies and contain
more aggressive phenotypes. These phenotypes were also particularly motile with decreased
cell-cell adhesion and increased haptotaxis.

A similar approach was used in Smallbone et al. (2007), in order to investigate the evolutionary
origin of the glycolytic phenotype, but here the phenotypes correspond to boolean (true/false)
properties of the cells such as the property of being hyperplastic. Mutations during cell division
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alter the phenotype of the cells, and in agreement with the Anderson model it exhibits evolution
towards more aggressive phenotypes. This builds on previous work by Gatenby and colleagues
that has examined both theoretically and experimentally acid-mediated tumour invasion
(Gatenby and Gawlinski, 1996; Gatenby and Gillies, 2004; Gatenby et al., 2006). The
emergence of mutant subclones has also been investigated in a 3-dimensional cellular
automaton using a Voronoi tesselation approach (Kansal et al., 2000). They show that the
survival probability of a subclone depends on the growth advantage over other subclones, but
they also show that it is non-zero although no growth advantage exists. The evolution of cell
motility was investigated in a game theoretic, individual-based setting by Mansury et al.
(2006). Assuming that the tumour consists of proliferative and motile genotypes the authors
show that the growth dynamics depends on pay-offs for different cell interactions, and further
that there exists an optimal pay-off for which the tumour growth rate is maximised.

The model presented in this paper is an extension of two previous models of tumour growth
which have been used to investigate the impact of the microenvironment on tumour growth
and evolution. The results from the first model revealed that tumours grown in low oxygen
concentrations exhibited branched morphologies, but more importantly it also showed that the
oxygen concentration has an impact on the evolutionary dynamics (Gerlee and Anderson,
2007a). The low oxygen concentration environment gave rise to tumours with a higher genetic
diversity and also containing cells that had evolved further away from the ancestral cell. A
subsequent extension of the model which included the effect of the ECM and anaerobic
metabolism was used to examine the emergence of the glycolytic phenotype (Gerlee and
Anderson, 2008). The results from that study were consistent with the previous observations
and further showed that a glycolytic phenotype was most likely to occur in low oxygen
concentrations and a dense ECM.

In this paper we focus on the evolution of cell motility and will initially present the modified
model, with details on each of the processes and components considered and how they interact.
In section 3 we discuss the simulation process and in section 4 we present a suite of results
from the model. Finally in section 5 we have an extended discussion about the implications of
the model results and conclude in section 6.

2 The Model
We consider a generic tissue which is represented by a two-dimensional grid on which the
cancer cells reside. Each point on the grid holds the local concentration of ECM, nutrients and
can be either occupied by a cancer cell or be empty. This is of course a highly simplified picture
of real tumour-host interactions. The surrounding tissue contains a variety of host cells like
fibroblasts, macrophages and blood vessels, all of which have been shown to be important
factors in tumourigenesis (Rubin, 2003), but in order to focus on the impact of nutrient
concentration and the ECM we have chosen to disregard these aspects of tumour growth. In
the current model the vascularity is also modelled in a simplified manner, by incorporating it
into the boundary conditions. The model consists of discrete individual tumour cells,
continuous chemical fields (oxygen, glucose, hydrogen ions) and ECM density, which interact
with one another on the grid via the cellular automaton. We now discuss each of these variables
and processes in more detail in the following sections.

2.1 Cell Dynamics
2.1.1 Phenotype—Each cancer cell in the simulation is equipped with a decision mechanism,
which determines the behaviour of the cell based on the micro-environment in which it resides.
The decision mechanism is modelled using an artificial feed-forward neural network (Haykin,
1999). This neural network approach only serves as an abstract model of cellular behaviour,
but still shares some features of the real signaling and regulatory network of the cell. The input
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layer of the network can be thought of as receptors on the cell surface that interact with extra-
cellular molecules. The weight matrix between the input and hidden layer represent the
signaling strength of these receptors. The hidden layer functions as regulatory genes that control
the behaviour of the cell through the weights of the connection matrix between the hidden and
output layer. Finally the output layer can be thought of as the phenotype, as it determines the
behaviour of the cell (see fig. 1). With this analogy in mind we can think of changing a
connection between the input and hidden layer as changing the expression level of a certain
type of receptor and changing a connection between the hidden and output layer as altering the
expression level of a regulatory gene.

In our model the input to the network is the number of neighbours of the cell (n), local oxygen
concentration (c), glucose concentration (g), H+ concentration (h) and ECM gradient (∇m).
This implies that the input to the network ξ will have five components

. The phenotype of the cell is then determined by
the output of the network. The output nodes represent the response for proliferation, quiescence,
movement, apoptosis and metabolic pathway. As the first four form a group of mutually
exclusive behaviours (a cell can not perform these responses simultaneously) the behaviour
with the strongest response is chosen from these four, we call this the life-cycle response. If
the proliferation node has the strongest response the cell divides and produces a daughter cell
and if the quiescence node has the strongest response the cell remains dormant. On the other
hand if movement has the strongest response the cell goes into a migratory mode, while if the
apoptosis node is strongest then the cell dies via apoptosis. The initial network is designed so
that the behaviour of the ancestral cell resembles that of an non-invasive cancer cell (for further
details on the decision mechanism and the neural network implementation please consider
Gerlee and Anderson (2007a)). A graphical representation of the response network can be seen
in fig. 1.

2.1.2 Metabolism—The network modulates the metabolism of the cell in three separate
ways: Firstly the strength of the life-cycle response determines the overall energy consumption
of the cell, secondly the nutrient consumption is lowered if the cell is quiescent, and finally the
network determines the metabolic pathway of the cell. Real cells may rely on a combination
of aerobic and anaerobic metabolism (Gatenby and Gillies, 2004), but for simplicity we will
let the cells utilise either aerobic or anaerobic metabolism. If the response of the metabolic
node is negative the cell uses glycolysis and if the response is positive the normal aerobic
pathway is utilised. This choice is modelled by letting the cells utilising the anaerobic pathway
consume 18 times more glucose and produce acid whilst not consuming any oxygen.

2.1.3 Mutations—When the cells divide the network parameters are copied to the daughter
cell under mutations. The number of mutations that occur in the daughter cell network
parameters is chosen from a Poisson distribution with parameter p. These mutations are then
distributed equally over the network weights and nodes (see fig. 1 and Gerlee and Anderson
(2007a) for further details). The incorrect copying is modelled by adding a normal distributed
number s ∈ N(0, σ) to the daughter cell parameter, which means that x → x + s, for those
parameters x that are chosen for mutation. The mutations alter the connection strength between
the nodes, which in turn changes how the cells responds to the micro-environment. If for
example a mutation occurs in a connection which links the ECM gradient with the movement
node this may create a subclone with a more motile behaviour.

2.2 Chemical Fields
The metabolism of cancer cells includes a large number of different chemicals that are all
needed for maintenance and cell division, but oxygen and glucose concentrations are two key
metabolites known to limit the growth of the tumour (Sutherland, 1988). We therefore only
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choose to focus on these two fields in the model as well as a field for the hydrogen ion
concentration, as glycolytic cells produce an excess of acid. For the chemical fields we apply
Dirichlet boundary conditions with constant functions, meant to imitate a situation where the
tissue is surrounded by blood vessels, with constant nutrient and hydrogen ion concentrations,
that supply the tumour with nutrients and remove hydrogen ions from the tissue. The decay
rates of the metabolites are known to be considerably smaller than the respective cellular
consumption rates and for simplicity we therefore disregard these in the equations. This allows
us to develop a minimal model of the chemical fields, similar to those in the models of Patel
et al. (2001) and Ferreira et al. (2002). The time evolution of the oxygen (1), glucose (2) and
hydrogen ion (3) fields are therefore governed by the following set of partial differential
equations,

(1)

(2)

(3)

where Di are the diffusion constants and the  are the individual cell consumption or
production functions of the chemical i = c, g, h for the cell at position  at time t. Note that

the hydrogen ion production  is only non-zero if the cell relies on glycolytic metabolism.
The solution of the chemical field equations are calculated on a grid of the same step size as
the cells using an Alternating Direction Implicit (ADI) scheme for both numerical accuracy
and efficiency (Press et al., 1996). This choice of space step implies that the consumption and

production terms in (1)-(3) are determined by each individual cell. The  are thus
defined in the following way,

(4)

where ri are the base consumption/production rates and  is the modulated energy
consumption of the individual cell occupying the automaton element at . This modulation of
the consumption is introduced in order to take into account the difference in energy
consumption between different subclones, and is modelled as

(5)

where k determines the strength of the modulation, R is the response of the network and Tr is
the target response, corresponding to the response of a normal cell. The use of max(•, 0.25)
ensures that the cell has a metabolism which is at least a quarter of the base-line consumption
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rate (Anderson, 2005). The use of this function implies that a cell with a stronger network
response will have a higher nutrient consumption.

2.3 The Extracellular Matrix
The interactions between cancer cells and the surrounding ECM are known to play an important
role in carcinogenesis. The ECM is a complex mixture of macro-molecules such as collagens
and fibronectin. This fibrous concoction of ECM molecules can be very heterogeneous with
cross-linking between the fibres which modulates both the degradability of the ECM as well
as the pore sizes contained within it (Zaman et al., 2006). This complexity has been modelled
when cell-ECM interactions are considered as the sole focus of the model (Zaman et al.,
2006, 2005), or when the ECM degradation (via invadopodia) has been considered in more
detail (Enderling et al., 2008). However, due to the complexity of our current model and our
motivation for understanding the emergence of a migratory phenotype we will represent the
ECM as a single concentration. The ECM will therefore act as a constraint on proliferation and
facilitate migration via a minimal modelling approach.

It has been shown that a considerable part of matrix degradation is accounted for by membrane
anchored MMPs (MT-MMPs) (Hotary et al., 2000) as well as the plasminogen activator system
(Chaplain and Lolas, 2005, 2006). This implies that a majority of the ECM degradation has a
very short range and can therefore be approximated by contact degradation (Enderling et al.,
2008). We include this effect in the model by letting the ECM be degraded with a rate ec at all
grid points adjacent to cancer cells. The ECM also serves as a physical growth restraint of the
tumour as cells can not move into regions of the tissue which are too dense, unless they have
degraded it sufficiently. This effect is incorporated by introducing a threshold et above which
no cells can occupy a grid point. Another mechanism that is included in the model is acid-
induced ECM degradation. The exact dynamics of this process is poorly understood, but has
been shown to involve stromal cells, e.g. fibroblasts (Rozhin et al., 1994). For simplicity we
will assume that the matrix degradation is proportional to the excess acid concentration and
model it by letting the ECM be degraded at a rate eh proportional to the excess acid
concentration and matrix concentration. In summary the ECM obeys

(6)

where  is an indicator function that returns the number of cancer cells adjacent to site
 and h0 is the normal acid concentration in the tissue. In order to avoid lattice anisotropy

(favouring a certain direction of growth) the cancer cells alternate between degrading matrix
in the immediate neighbouring and diagonal neighbouring sites every time step, which is

implemented by letting  alternate between orthogonal and diagonal neighbourhoods.

2.4 Cell Movement
Haptotaxis is the directed movement of cells in response to gradients in the ECM. This implies
that the cells need to be able to sense the local gradient of ECM and respond to it. It is believed
that cancer cells cannot move and proliferate simultaneously (Giese et al., 2003), and therefore
the haptotaxis output node will be part of the life-cycle response just like proliferation,
quiescence and apoptosis. In other words if the haptotaxis node gets the strongest response the
cell will go into a migratory mode and will not be able to proliferate.

The ECM gradient sensed by the cell is chosen to be the larger of the two gradients in the x-
and y-direction, which means that for a cell at position (i, j) we calculate the central difference
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(7)

and

(8)

where mi,j is the ECM concentration at position (i, j). We then pick the larger of the two and
use it as input to the network. If the haptotaxis node gets the strongest response then the cell
will move one grid point in the direction of the largest gradient towards higher ECM
concentration. If the grid point is already occupied movement fails and the cell remains
stationary. Due to the different time scales operating upon migration, proliferation and
chemical diffusion (although this is addressed via the implementation of an ADI numerical
scheme) we must ensure the cells migrate on the right timescale. Therefore, in order to modulate
the speed of movement, each time the response of the network is haptotaxis, a random number
r between 0 and 1 is generated, then if R(ξ, G) · pm > r the cell is allowed to move, if not the
cell remains stationary. Here R(ξ, G) represents the output from the network which ranges from
0 to 1, i.e. the value of the movement node (with respect to input ξ and genotype G) and pm is
the movement probability. This formulation implies that a cell with a stronger haptotactic
response will on average move more often (i.e. faster), and also makes the movement node
subject to possible evolutionary change (as mutations to the network can change the strength
of the response). Haptotaxis is known to occur through two distinct modes: “path-
finding” (where the cell moves between the fibres through the pores of the ECM) and “path-
generating” (where the cell creates a path through the matrix by degrading the fibers) (Friedl
and Wolf, 2003). Little is known about what determines the mode of movement, and we have
therefore decided to focus solely on the “path-finding” mode. This means that the movement
of the cells is not subject to the restraint that the ECM poses with respect to cell proliferation,
i.e. a cell can move to a neighbouring site although the ECM concentration is higher than the
threshold et. The movement through the tissue matrix consumes energy, but on the other hand
motile cells do not spend energy on synthesis of DNA and other cell material. We have therefore
assumed that the motile cells have a energy consumption lower than that of proliferating cells,
and consequently they consume less nutrients.

2.5 Cellular Automaton
The slice of tissue under consideration is represented by a N × N grid. The spacing of the grid
is defined by a grid constant Δx, which determines the size of the cells. The grid points are
identified by a coordinate  where i, j = 0, 1, ...., N - 1. The chemical concentrations
interact with the cells according to cellular production or consumption rates and are given
appropriate initial and boundary conditions. Each time step the chemical concentrations are
solved using the ADI-scheme and all tumour cells are updated in a random order. Every time
step each cell is updated according to the flowchart in fig. 2 and as follows:

i. The input vector ξ is sampled from the local environment (i.e the grid point where the
cell resides).

ii. A response R = R(ξ, G) is calculated from the network.

iii. The cell consumes nutrients according to the action taken and the metabolic pathway
chosen. If there is not sufficient nutrients present the cell dies from necrosis.

iv. The life-cycle action determined by the network is carried out:
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• If proliferation (P) is chosen, check if the cell has reached proliferation age
and if there is space for a daughter cell. If both are true the cell divides and
the daughter cell is placed in a neighbouring grid point, if not the cell does
nothing until the next update

• If quiescence (Q) is chosen the cell becomes quiescent.
• If movement (M) is chosen the cell moves one grid point (in the von

Neumann neighbourhood) in the direction of the steepest ECM gradient. If
the grid point is occupied the movement fails and the cell remains quiescent
until next update.

• If apoptosis (A) is chosen the cell dies.

If a cell dies from either apoptosis or necrosis it is no longer updated. If the cell dies by apoptosis
the grid point where it resided is considered empty, but if the cell dies from necrosis (starvation)
the cell still occupies the grid point. The reason for this is that the two death processes occur
in different ways. When apoptosis occurs the cell membrane collapses and the cell shrinks,
while when necrosis occurs the cell keeps it shape and thus still occupies physical space
(Alberts et al., 1994). In order to account for the activity of the immune system, which removes
necrotic debris (Kerr et al., 1994), necrotic cells are removed after a given time tN .

2.6 Parameters
The initial network, which is used as a “seed” in every simulation, is chosen so that the
behaviour of the cell resembles that of an initial cancer cell phenotype which has lost normal
growth inhibition. The response of the network therefore has to capture the essential behaviour
of real cancer cells. The important features that we want to capture are:

•
Cells should perform apoptosis if the oxygen concentration  falls below a
certain threshold cap.

•
Cells should die if the glucose concentration  falls below a certain threshold
gap.

• Cells should not divide if there is no space for the daughter cell (contact inhibition)

i.e if 
•

Cells should perform apoptosis if the acidity  is a above a certain threshold
hap.

• Cells should move in response to the ECM gradient if it is above a value mh, which
also depends on the number of neighbours of the cell

•
Cells should switch to anaerobic metabolism if the oxygen concentration  falls
below cm

The value of cap is difficult to estimate as it depends on the cell type under consideration, but
measurements performed in several types of tumours reveal that the oxygen concentration in
the necrotic centre of the tumour is 0.5-30% of the concentration in the surrounding tissue
(Brown and Wilson, 2004). We therefore estimate cap to be 15 % of the initial oxygen
concentration. For high values this parameter is known to have an effect on the morphology
of the tumour (Gerlee and Anderson, 2007b; Anderson et al., 2008), but for the relatively small
values we consider this effect is negligible. The threshold for glucose induced necrosis is set
to 50% of the normal glucose concentration, below which hypoglycemia occurs (Ganong,
1999). The acidity threshold hap is set to match the critical pH = 7.1 below which normal cells
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go into apoptosis (Casciari et al., 1992a). As there is a physical limit to the acidity a cell can

survive we also introduce another threshold  which is the acid concentration at which a cell
will go into apoptosis regardless of the network response, this is set to match pH=6.5.

We are interested in studying the emergence of motility and therefore we parametrise the initial
network so that it has a weak haptotactic response i.e. the haptotaxis node will only be selected
if the ECM gradient is sufficiently large (see section 2.4). Cell movement is also affected by
cell-cell adhesion, as a cell which is surrounded by many other cells is less likely to move due
to the higher number of adhesive bonds. We take this into account by making the response for
haptotaxis a decreasing function of the number of neighbours. This is of course a crude way
of modelling cell adhesion, for more detailed models please consider Armstrong et al.
(2006) and Gerisch and Chaplain (2008).

The metabolic threshold is set to cm = 0, as we are also interested in the emergence of cells that
utilise the anaerobic pathway.

A network which matches the above criteria was constructed by hand and the behaviour of the
initial cell with respect to number of neighbours, oxygen concentration and ECM gradient is
shown in fig. 3. The ancestral cell is unlikely to move because it requires very steep gradients
in the ECM for the haptotaxis node to be selected. A cell at the tumour boundary, which
continuously degrades the surrounding ECM creates a gradient, but if this cell has the initial
response network it will proliferate before the gradient becomes steep enough to move via
haptotaxis. The initial cell therefore has the potential to move, but is more likely to proliferate,
however, subsequent mutations to the ancestral network can naturally change this.

In order to simplify the analysis and simulations of the model we nondimensionalise the model
in the standard way. Time is rescaled by the typical time of the cell-cycle, τ = 16 h (Calabresi
and Schein, 1993), and the length by the typical length scale of an early stage tumour and its
microenvironment, L = 1 cm. The chemical concentrations are rescaled using background
concentrations (see Table 2) and consumption rates are rescaled using a tumour cell density
n0 = Δx-2 = 0.0025-2 = 1.6 × 105 cells cm-2 (since the cells reside on a 2-dimensional grid). All
cell specific parameters are summarised in Table 1 and we refer to Gerlee and Anderson
(2007a) for a more detailed discussion on the parametrisation and non-dimensionalisation of
the model.

The degradation rates and threshold density of the ECM have not been measured
experimentally and we will therefore use non-dimensional estimates for these parameters. In
our simulations we will let et be in the range [0.65, 0.9], which corresponds to 35-10% of the
ECM requiring degradation before it can be occupied by a cell. Instead of using this threshold
as a measure of the density we introduce an effective matrix density E = 1 - et, which will serve
as a measure of the growth constraint imposed by the matrix. For a high matrix threshold we
will have a low effective matrix density and vice versa. The matrix degradation rate of the cells
is set to ec = 0.1, which implies that a cell needs 1-4 cell cycles (corresponding to E = 0.1 -
0.35) to degrade the ECM in a neighbouring grid point to a level below et. The combined effect
of acid on the matrix is poorly characterised and we therefore set it to eh = 10-3, considerably
smaller than the degradation by the cells, in order to make the growth advantage of acid-
producing cells smaller.

The speed at which haptotaxis occurs has not been experimentally determined and depends on
many factors such as ECM composition, ECM density andcell type. We estimate the movement
probability pm, which controls the speed, to be pm = 0.5. If we assume a maximal response of
R = 1, this implies that a cell will on average move 1/2 grid point per time step. The time step
in the simulation is set to Δt = 10-1 cell cycles and the space step to Δx = 25μm, which means
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that the average speed will be approximately 2 × 10-7 cm/s, in agreement with the measurements
of Zaman et al. (2006) which range from 3 - 12μm/hr = 5.4 × 10-8 - 3.2 × 10-7cm/s. The nutrient
consumption rate of moving cells is assumed to lie in between that of proliferating and quiescent
cells and is set to be 2-fold lower than the base consumption rate.

The grid size was set to N = 200, corresponding to a domain of size 0.5 cm2 and which means
that we can simulate a tumour of radius 100 cells, which if we assume radial symmetry in a 3-
dimensional setting would correspond to a tumour consisting of approximately 1003 or 1
million cells. The time step in the simulation was set to Δt = 10-1 and the space step to Δx =
0.0025.

3 Simulations
In the following suite of simulations we investigate both the impact of cancer cell motility on
tumour growth and the micro-environmental conditions in which a motile phenotype is most
likely to evolve. We focused on the impact of the oxygen concentration and the ECM density
(by varying c0 and E) and examined the dynamics of the model for a range of values of these
two factors. The growth dynamics were analysed by measuring the time evolution of the total
number of cells and the invasive distance of the tumour, and we also examined the spatial
distribution of cancer cells.

The evolutionary dynamics were analysed by measuring the evolution of phenotypes in the
population and we also compared the motility of cancer cell populations that had evolved in
different oxygen concentrations and ECM densities. To gain further insight into phenotype
evolution and the long-term influence of the micro-environment we also performed “reseed”-
simulations. In these simulations the most abundant genotype, at the end of the simulation, was
used as an ancestor in a new simulation, and this process was then repeated as many times as
desired. This technique is similar to selective cell culture experiments where cells are passaged
through several assays to select for cells with certain phenotypes (Dairkee et al., 1995).

Each simulation was started with a homogeneous concentration of oxygen, glucose and

hydrogen ions at background values , and with the boundary

conditions . Variations in the matrix density were accounted for by
setting the initial condition for ECM to , where s ∈ [-0.2, 0.2] is a random variable
with a uniform distribution, and each simulation was started with a population of 4 cancer cells
at the centre of the grid.

Instead of comparing tumours of the same age we decided to compare tumour of the same size,
and the duration of each simulation was therefore determined by the time it took the tumour
to reach an invasive distance of 0.45N,where the invasive distance is defined as the distance
from the center of the tumour to the most distant cancer cell. This is because the evolutionary
component of the model makes it difficult to estimate the time it takes a tumour to reach a
given size. If for example a mutation, which triggers haptotaxis, occurs early in the simulation
the tumour will reach a much larger size compared to a tumour where haptotaxis never emerges
in the same amount of time.

4 Results
4.1 Growth Dynamics

Figure 4 and 5 show two examples of tumour growth where haptotaxis has emerged, both
lasting 90 time steps (approximately 60 days). The first figure shows a tumour growing in an
intermediate oxygen concentration (c0 = 0.5) and a low density matrix (E = 0.1). In this
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simulation a motile subclone emerged on the left hand side of the tumour as revealed by the
fragmented tumour boundary consisting of motile (cyan coloured) cells at t = 60 and 90. The
part of the tumour dominated by motile cells expands at a higher rate compared to the non-
motile (right) side, and this leads to an asymmetric morphology where the tumour has grown
more towards the left part of the domain.

Although some parts of the tumour are exposed directly to the matrix they still exhibit necrosis
and this is due to the competition for oxygen and the screening effect which cells closer to the
oxygen source exert. At the later stages of the simulation the tumour exhibits a layered structure,
with a necrotic core and a viable rim, and is approximately 7-8 mm in diameter. This is larger
than avascular tumours normally are found to be (2-3 mm), and the reason for this is our choice
of cell size (25 μm), which possibly is a slight over-estimate of the normal tumour cell size.

The second example shows a tumour growing in a harsher micro-environment where the
oxygen concentration is low (c0 = 0.1) and the matrix density is high (E = 0.3). In agreement
with other models the low oxygen environment gives rise to a branched morphology (Gerlee
and Anderson, 2007a; Anderson et al., 2006; Anderson, 2005; Ferreira et al., 2002), but there
is an obvious difference between upper and lower parts of the tumour. The lower part exhibits
a pattern with compact branches, while the top part on the other hand exhibits a diffuse fingering
pattern induced by the haptotactic motility which evolved in this part of the tumour. As with
the solid fingers the living cells only reside at the tips of the fingers, although in this case we
observe a mix of proliferating, quiescent and motile cells. Both of these types of morphologies
have been observed in other models of tumour growth (Macklin and Lowengrub, 2007;
Frieboes et al., 2006; Cristini et al., 2005), where the morphological changes are driven by
micro-environmental parameters such as the nutrient diffusion rate, matrix stiffness and cell-
cell adhesion (via surface tension). In particular, more invasive morphologies are observed
under harsh micro-environmental conditions which is in agreement with the authors previous
work and others (Rejniak, 2005; Anderson et al., 2008).

The time evolution of the invasive distance and the number of cells for the two simulations is
shown in fig. 6. We see, as expected, that the number of cancer cells grows at a higher rate in
a high oxygen concentration, but we can also observe that the difference in the invasive distance
is considerably smaller. This is partly due to the fractal morphology (Gerlee and Anderson,
2007b), but is also exacerbated by the non-compact structure of the branches in the motile part
of the tumour. These have a lower average density and this means that the tumour consists of
a relatively small number of cells while still invading a considerable distance into the healthy
tissue. The figure also shows that an increase in ECM density leads to a decrease in invasive
distance, which is somewhat unexpected since the cells can migrate regardless of the ECM
density, therefore it is probably due to inhibition of proliferation rather than migration. Zaman
and co-workers found a more complex relationship between ECM density and migration which
was maximal at intermediate concentrations (Zaman et al., 2006), however, we would require
a more sophisticated model of cell migration to capture these dynamics which is beyond the
scope of this paper.

These two examples were particularly chosen to illustrate the impact of cell motility. However,
in some simulations haptotaxis does not emerge at all, and the tumour grows only through cell
proliferation as in the previous version of the model, and we refer to Gerlee and Anderson
(2008) for an in-depth discussion of that growth process.

4.2 Evolutionary Dynamics
The evolution of phenotypes in the population was characterised by measuring the average
response vector as a function of time. The response vector measures the fraction of the input
space that each of the life-cycle responses (proliferation, quiescence, apoptosis and movement)
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occupy. Formally we define four sets xi = {ξ ∈ I; R(ξ) = i}, where R(ξ) is the network response
to input vector ξ, i = P, Q, M, A and I is the set of all possible inputs to the network. The sizes
of these sets are now given by,

(9)

where δij is the Kronecker delta (δij = 1 if i = j, 0 otherwise) and B is the volume of the entire
5-dimensional input space. From this the average response vector defined as S = (|xP|, |xQ|, |
xM|, |xA|) can be calculated. In order to focus on the impact of the oxygen concentration and
ECM density in determining cell behaviour we reduced the input space to 3-dimensions by
fixing the glucose and hydrogen ion concentrations to their background values.

The initial cell has response vector S = (0.46, 0.15, 0.21, 0.18) (compare with fig. 3), while a
cell which, for example, has evolved to a state where it proliferates in all possible environmental
conditions would have a response vector S = (1, 0, 0, 0). Every time step of the simulation the
response vector was calculated for every active cell and averaged over the entire population.
This measure is shown in fig. 7a and b for the two simulations discussed in the previous section.
In both cases we can observe an increase in the movement potential of the cells. The initial
movement potential is only 18 %, but at the end of the simulations it has increased to
approximately 50% in both simulations, and this increase in movement has mainly occurred
at the expense of quiescence and apoptosis.

In fig. 7c and d as a comparison, we also show the evolution of the average response vector in
two simulations where haptotaxis did not emerge. In this case the population instead evolves
to a state where the dominant behaviour is proliferation. These simulations occurred in exactly
the same micro-environments as (a) and (b) respectively, the only difference coming from the
random nature of mutations.

The above simulations are however only four isolated examples of the possible dynamics of
the system, and to get a more complete understanding of the emergence of haptotaxis we
examined the dynamics of the system for 5 × 5 = 25 different points in the (c0, E)-parameter
space. The most straight-forward measure of motility in the population would simply be to
calculate the fraction of cells that are in a motile state at the end of the simulation, but this
turned out not to be very informative. Such an approach worked well when we considered the
emergence of the glycolytic phenotype, and the reason for this is that the cells are glycolytic
independent of the life-cycle response. Movement on the other hand only occurs when the cells
reside on the tumour boundary, and more so only in certain environmental conditions (crucially
they also need to proliferate to spread their genetic material). This implies that the fraction of
the population which actually moves is usually small (< 10%) and therefore this is not a useful
measure for determining the extent of haptotaxis. Instead we measured the average movement
potential (i.e. the fourth component of S) of the cancer cell population at the end of each
simulation. This measure ranges from 0 to 1, where 0 corresponds to a population where no
cells have the capability to move and 1 corresponds to the (highly unlikely) situation where all
the cells in the population only have the capability to move (and not to proliferate). The result
of this parameter exploration can be seen in fig. 8, where the results have been averaged over
50 different simulations in each point in parameter space. The surface plot shows that the
highest movement potential occurs in intermediate oxygen concentration (c0 = 0.5) and a soft
tissue matrix (E = 0.1), where it takes the value M = 0.21. The lowest value of M =0.1 on the
other hand occurs in low oxygen concentration (c0 = 0.1) and dense matrix (E = 0.35). The
general trend seems to be that M decreases with increasing matrix density, and that it is highest
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at intermediate oxygen concentrations. But it should be noted that the surface plot is quite
rugged, which suggests that the results are not fully conclusive.

In order to examine the sensitivity of these results to our choice of the movement parameter
(pm, see section 2.4) we did the exact same analysis for a range of values, pm = 0.25, 0.5, 0.75,
1, where pm = 0.5 was the default value used in the above simulations. Intriguingly, the
evolutionary dynamics remained unchanged (in relation to fig. 8), with no major increases or
decreases in movement potential being observed (data not shown). However, there was a
significant change in the growth rate of the tumour with an obvious increase in growth for
larger values of pm (as the cells on average move more often). It is worth noting that the
evolutionary dynamics will change if we reduce the value of pm considerably, since then the
movement and proliferation timescales are the same (if not slower for the movement). This
results in suppression of the migratory phenotype as there is no evolutionary advantage to
movement, since cells can invade faster purely via proliferation.

We were also interested in measuring how the introduction of cell motility affects the
emergence of the glycolytic phenotype. This was quantified by calculating the probability
pgl that the population was dominated by anaerobic cells, i.e. we calculated the fraction of
simulations for each point in parameter space where 90 % or more of the cells were glycolytic.
The probability was estimated from 50 simulations at each point in the (c0,E)-parameter space
and the result can be seen in fig. 9. The general shape of the pgl surface plot is similar to what
we observed with our previous model (Gerlee and Anderson, 2008). The highest probability
of finding a tumour dominated by glycolytic cells occurs at a low oxygen concentration and
within dense tissue matrix, but compared to the previous result the probability is now smaller
(pgl ≈ 0.6 vs. 0.8).

The results obtained so far suggest that the dynamics of the model are variable and that the
population can adapt to the micro-environment by either evolving a proliferative or migratory
phenotype. Another way of looking at it is to say that the addition of haptotaxis to the model
has reshaped the fitness landscape the cancer cell population evolves on, and that multiple local
fitness maxima now exist. This hypothesis was tested by performing reseed-simulations which
consist of multiple sub-simulations. In these sub-simulations the most abundant genotype (the
largest proportion of cells in the population with the same network wiring) at the end of the
simulation (when the invasive distance had reached 0.45N) was saved and subsequently used
as the genotype of four initiating cells in the next sub-simulation, this process was repeated
n times (see fig. 10). Note that the micro-environment was also reset for every sub-simulation
i.e. the cells always experience the same initial micro-environment conditions.

The results of two such reseed simulations can be seen in fig. 11, where n = 10 and the micro-
environmental parameters were set to (c0, E) = (0.1, 0.35). The left panel shows the average
phylogenetic depth as a function of time, which is the number of mutational steps from the
ancestral genotype to each cell in the population. This measure shows how far the population
has evolved away from the initial cell and also gives a measure of the rate of evolutionary
change. From this plot it is clear that most evolutionary change occurs at the early stages in
both simulations. After that the phylogenetic depth seems to stagnate, and the sawtooth pattern
seen for t > 500 in the solid line is due to the fact that the dominant genotype, which is used
to seed the sub-simulations for t > 500 has a phylogenetic depth of 8. In each sub-simulations
new genotypes emerge which have a phylogenetic depth larger than 8, but these never come
to dominate the population and therefore the phylogenetic depth returns to 8 at the start of every
sub-simulation. A similar behaviour is seen in the other simulation (dashed line) suggesting
that the evolutionary dynamics in both cases have converged on a successful subclone, but
interestingly the right panel, which shows the evolution of the average response for
proliferation and movement, reveals that the dominant phenotypes in the two simulations are
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very different. In the simulation corresponding to the solid line the dominant phenotype only
has the capability to proliferate, while in the other simulation the dominant phenotype is highly
motile with approximately 80% of the input space corresponding to haptotaxis. The duration
of the reseed-simulation is determined by the total time it takes the tumour to reach an invasive
distance of 0.45N in each of the n sub-simulations. If the growth rate of the tumour is high then
it will obviously take a shorter time to do this, and this effect can also be seen in the two plots.
The duration of the simulation corresponding to the dashed line is shorter, and again this shows
that a motile phenotype invades the tissue at a higher rate.

5 Discussion
From the results presented here we have seen that the emergence of a migratory phenotype is
somewhat rare but when it does occur it has the capability to alter the dynamics of the model
significantly. In simulations where haptotaxis emerges we observe different tumour
morphologies and the tumours also grow at a higher rate due to motile cells invading the
surrounding ECM. Tumour growth driven by haptotaxis exhibits both compact and branched
morphologies depending on the tissue oxygen concentration, and as in other models normal
oxygen concentrations give rise to compact growth while branched growth occurs in low
oxygen concentrations. But notable is that motile cells give rise to diffuse morphologies with
lower average cancer cell density. Occurring together with branched growth this diffuse
morphology allows for a large invasive distance while the number of cells (and therefore also
the number of cell divisions) remains low.

For a motile subclone to spread in the population it has to evolve a mechanism that allows the
cells to switch between haptotaxis and proliferation, as a cell which only moves never has the
chance to spread its genetic material. This presents an interesting trade-off as cells which are
highly motile can access more nutrients and are therefore more likely to survive, but on the
other hand are less likely to divide and give rise to daughter cells. Three examples of the life-
cycle response from evolved genotypes can be seen in fig. 12. In (a) and (b) we observe the
most common mechanism, which is to use the ECM gradient as a switch between movement
and proliferation. When the cell senses a sufficiently large gradient in the ECM it moves along
it, but when no gradient is present it goes into a proliferative state. This gives rise to a switching
behaviour of the cells at the boundary and also implies that the tumour grows at a higher rate
than before as the cells can move much faster than they proliferate. The response shown in (c)
is a slightly different solution to the problem. Here the behaviour of the cell again is a function
of the ECM gradient, but there is also a dependency on the oxygen concentration. When the
oxygen concentration is low the ECM gradient required to switch to haptotaxis is smaller, and
we can therefore say that this subclone exhibits hypoxia-driven motility.

Apart from the ECM gradient the switch between proliferation and hapto-taxis in the initial
phenotype also depended on the number of neighbours, a simplified way to include the effects
of cell adhesion. For a larger number of neighbours the cell requires a steeper ECM gradient
to go into haptotaxis (fig. 3). This effect is diminished in the phenotypes shown in fig. 12, and
in particular in fig. 12b where the switch between haptotaxis and proliferation is independent
of the number of neighbours, which suggests that selection favours cells with low cell adhesion.

The selection for haptotaxis was investigated by measuring how the average response for
movement depends on the micro-environment. Unfortunately the results from that parameter
exploration were inconclusive, although there is an indication that a haptotactic phenotype is
most likely to emerge in intermediate oxygen concentrations in a soft tissue matrix. One
possible explanation for this is that in high oxygen concentrations the micro-environment is
relatively mild and consequently the general selection pressure on the population is low. On
the other hand in low oxygen concentrations the selection pressure for cells with a large
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proliferation potential is possibly so strong that it overshadows the selection for motility. The
dependency on the ECM seems somewhat harder to explain as the ECM in fact does not impede
cell movement. One possible explanation is that non-motile cells grow at a higher density and
therefore cooperatively degrade the matrix at a higher rate compared to moving cells which
tend to grow at a lower density. This is surprising because in our model although the dense
ECM does not pose a direct restraint to the moving cells, a motile subclone is less likely to
emerge in a dense tissue matrix. Of course these results could be investigated experimentally,
via techniques such as the sandwich assay (Hlatky and Alpen, 1985; Dairkee et al., 1995) where
the cells are grown between two cover slips covered in a given substrate which allows for both
continuous imaging of the cells and a variable nutrient supply. With this assay it would be
possible to grow cancer cells under a range of micro-environmental conditions and
continuously measure both phenotypic and genotypic properties of the cells, making a
comparison with the model results possible.

When the cell dynamics are restricted to proliferation (quiescence and apoptosis) the most
efficient strategy for a subclone is to proliferate whenever there is space to do so (Gerlee and
Anderson, 2007a, 2008). Now that the cells also have the capability to move the optimal
strategy is no longer obvious. Although the fitness of a cell in this model is not only a function
of its genotype, but also of the environment, it can still be instructive to imagine a fitness
landscape on which the population evolves. Formally the dimensionality of this landscape is
equal to the number of parameters in the network, but we shall rather use it for qualitative
reasoning about the evolutionary dynamics. When cells are immobile the most effective way
for a cell to spread its genetic material is to proliferate at all times. This means that the fittest
cells are those with a response vector S = (1, 0, 0, 0), and we can therefore think of this
phenotype as occupying a peak in the fitness landscape. In fact all populations evolve towards
this proliferative state, although the micro-environment affects the rate at which this occurs.
When we allow the cells to move we alter the structure of the fitness landscape. This is obvious
from the evolution of the average response vector (fig. 7), where the population no longer
evolves towards an exclusively proliferative state, but rather to a combination between
proliferation and haptotaxis, e.g. S = (0.5, 0, 0, 0.5). The implication is that the one peaked
fitness landscape driven purely by proliferation has now turned into a multifaceted landscape
with multiple local maxima combining both proliferation and migration.

Evidence for this hypothesis can be seen in the results of the reseed-simulations. The two
simulations are started with the same ancestral genotype and the populations evolved in
identical micro-environments and still the outcomes are very different. In one of the simulations
the population becomes completely proliferative, while the other highly motile. The
evolutionary trajectories of the simulations have clearly diverged and the populations occupy
two separate peaks in the fitness landscape. The stagnation in the phylogenetic depth also
highlights this fact and shows that the two evolutionary processes have converged on different
phenotypes. The trajectory taken by the system depends on which mutations occur in the
population, and because the mutations are random, different peaks maybe traversed in different
simulations of the system. This is a well-known property of evolutionary systems, and
highlights the importance of contingency (i.e. the dependency on previous events) in evolution
(Taylor and Hallam, 1998).

These results also highlight the fact that most of the mutations occur very early in the
simulations (as observed in the phylogenetic depth, fig. 11a) implying that all of the key
mutations occur early in the tumour development. In an experiment similar to these reseed
simulations it was observed that primary breast cancer cells acquired genetic changes
(aneuploidy, p53 mutations) and phenotypic changes (CK19-expression) associated with late
stage cancer (Dairkee et al., 1995). This occurred after only 10 rounds of reseeding,
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corresponding to approximately 70 days of evolution, which appears to be consistent with our
simulation results.

The evolution of cell motility in cancer has so far only been treated in a few modelling studies.
It was for example investigated in a game-theoretic framework by Mansury et al. (2006). They
consider a tumour consisting of two genotypes: one highly proliferative and the other highly
migratory, where the success of each genotype depends on pay-offs it receives when the cells
interact. They show that the tumour can be driven by both proliferative and migratory expansion
and that this depends on the pay-off for the interaction between proliferating cells, where the
highest rate of tumour invasion occurs for intermediate pay-offs for proliferating cells. The
model presented here also exhibits two different modes of tumour growth, and complementary
to our analysis their investigation shows that the nature of cell-cell interactions also can
influence the evolution of cell motility.

The emergence of a motile subclone was also investigated in a game-theoretic framework by
Basanta et al. (2008a,b). They conclude that the appearance of a motile phenotype is more
likely in a nutrient starved micro-environment and specifically after the emergence of a
glycolytic phenotype. There is some similarity with our results, in that we only see the
emergence of both glycolytic and migratory phenotypes after the onset of necrosis (i.e. nutrient
starvation). However, the precise order of the emergence in our model is unclear (data not
shown) and requires further investigation.

The impact of the micro-environment on tumour evolution and in particular haptotaxis was
examined in Anderson et al. (2006). They show, using a hybrid individual-based model, that
tumours which grow in harsh micro-environments are more likely to contain aggressive
phenotypes. In the context of that model a harsh micro-environment is defined by a
heterogeneous tissue matrix and also by low oxygen concentration. A key feature of the
aggressive phenotypes which evolved in these conditions was an increase of haptotaxis and a
decrease in cell adhesion, which is similar to what we observed in this model. Again this
implicates that the selection pressure created by a harsh micro-environment is a driving force
in the evolution of cell motility.

Experimental studies have shown that hypoxia is an important factor in the selection for cell
motility (Sullivan and Graham, 2007). For example it is known that hypoxia triggers ECM
degradation through upregulation of urokinase-type plasminogen activator receptor (uPAR)
expression and that it enhances cell motility via hypoxia-induced hepatocyte growth factor
(HGF)-MET receptor signaling. Hypoxia also triggers the up regulation of glycolosis via HIF1-
α (Gatenby and Gillies, 2004). These mechanisms are present in normal cells, but extended
periods of hypoxia selects for subclones in which these pathways, because of specific
mutations, are enhanced. The loss of cell-cell adhesion is also a common feature of cancer cells
and is thought to be the first crucial step for metastases to form (Cavallaro and Christofori,
2004).

In agreement with these studies our results highlight the importance of tumour cell/micro-
environment interactions in driving hypoxia, and subsequent evolutionary dynamics which
lead to the emergence of glycolytic and migratory phenotypes. These phenotypes tend to have
a lower dependence on the number of neighbouring cells (cf. cell-cell adhesion) and an
increased sensitivity to ECM gradients. These steps culminate in the formation of an aggressive
tumour capable of invading the surrounding tissue.

6 Conclusions and Outlook
In this paper we have presented an individual-based model of tumour growth aimed at
investigating the evolution of cancer cell movement. We focused on haptotaxis, directed
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movement along ECM gradients in the tissue, and implemented this mechanism in a model
which has previously been used for investigating the evolutionary dynamics of tumour growth
(Gerlee and Anderson, 2007a, 2008).

Probably the most important conclusion of this paper is that the introduction of cell motility
changes the fitness landscape on which the population evolves. Without movement the fitness
landscape is single peaked, where exclusively proliferating cells are the most fit, but when cells
are allowed to move this makes the fitness landscape more complicated. This was highlighted
with reseed-experiments which clearly showed that the population can evolve to different peaks
in the fitness landscape under identical conditions. This potentially could have important
implications for gene therapy which targets cancer cells on the genotype level and implicitly
assumes that there is a specific genetic signature linked to the tumour. Our results on the other
hand show that not even a specific phenotype can be associated with a given micro-environment
and even less so a particular genotype.

This paper has shown the important role that evolutionary dynamics play in both the
development and progression of a growing tumour and how they are modulated by the micro-
environemnt. In the future we would like to pursue this relationship further as well as refine
certain aspects of the model. In particular a more accurate description of both cell-cell adhesion
and cell-ECMadhesion, as well as a more complete model of the ECM incorporating pore size
distributions and fibre realignment should be considered. This will allow us to better
characterise the mechanical interactions between cells (e.g. cell pushing) and between cells
and the ECM (e.g. pore constrained migration), and ultimately produce a more physiologically
realistic model of the tumour.
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Fig. 1.
The layout of the response network which determines the phenotype or behaviour of the cancer
cells. The micro-environmental variables are fed into the input layer of the network which then
processes the information and produces a response at the output layer. The response depends
on the network matrices w and W, which are subject to mutations when the cells divide.
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Fig. 2.
The life-cycle of the cancer cells represented as a flowchart.
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Fig. 3.
The life-cycle response of the initial cell as a function of the number of neighbours, oxygen
concentration and ECM gradient. The glucose and hydrogen ion concentrations are kept at to
their background values.
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Fig. 4.
Spatial distribution of the cells at t = 30, 60 and 90 (approx. 20, 40 and 60 days) for c0 = 0.5
and E = 0.1 on a grid of size 200×200. Proliferating cells are shown as red, quiescent cells as
green, necrotic cells as yellow, moving cells as cyan, dead cells as blue and empty grid points
are white. In this simulation a haptotactic subclone emerges on the left side of the tumour
leading to an asymmetric morphology. A supplementary movie of this simulation can be found
at: http://www.nbi.dk/~gerlee/Fig4.mov.
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Fig. 5.
Spatial distribution of the cells at t = 40, 80 and 120 (approx. 27, 53 and 80 days) for c0 = 0.1
and E = 0.3 on a grid of size 200×200. Proliferating cells are shown as red, quiescent cells as
green, necrotic cells as yellow, moving cells as cyan, dead cells as blue and empty grid points
are white. Haptotaxis in low oxygen concentration gives rise to a branched tumour morphology
although the branches are not as well defined compared to the lower part of the tumour which
is dominated by immobile cells. A supplementary movie of this simulation can be found at:
http://www.nbi.dk/~gerlee/Fig5.mov
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Fig. 6.
The time evolution of the (a) invasive distance and (b) number of cells for the simulations
shown in fig. 4 and 5.
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Fig. 7.
The time evolution of the average response vector for (a) the simulation shown in fig. 4 and
(b) fig. 5. Panel (c) and (d) show the result of two simulations that occurred in identical micro-
environmental conditions as (a) and (b) respectively, but instead evolved towards a
proliferating population.
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Fig. 8.
The average movement potential S4 as a function of the oxygen concentration c0 and the matrix
density E.
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Fig. 9.
The probability pgl that the glycolytic phenotype dominates the population. Note that the
general shape of the surface is similar to the results obtained in Gerlee and Anderson (2008)
where the cells were immobile, but that pgl in this case is smaller.
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Fig. 10.
Schematic of the reseed-simulations. The dominant sublcone (circled) at the end of the first
simulation is used as the initial cell in the next step of the simulation. This process is then
repeated n times, and the resulting phenotype is usually highly evolved and aggressive.
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Fig. 11.
The time evolution of the (a) the phylogenetic depth and (b) the proliferation and movement
potentials for two different reseed-experiments in the same micro-environment (c0, E) = (0.1,
0.35). In both cases the dominant subclone was reseeded 10 times, but the smaller number of
total time steps in one of the simulations (dashed lines) implies that the growth rate in that case
was higher.
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Fig. 12.
The life-cycle response of three evolved genotypes as a function of the number of neighbours,
oxygen concentration and ECM gradient. (a) and (b) utilise the ECM as a switch between
proliferation (red) and haptotaxis (cyan), while in (c) the oxygen concentration also influences
the choice.
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Table 1
A summary of the cell specific parameters in the model

Parameter Meaning Value Reference

rc base oxygen
consumption rate

2.3 × 10-16

mol cells-1 s-1
(Freyer and Sutherland, 1986)

rg
a aerobic glucose

consumption rate
3.8 × 10-17

mol cells-1 s-1
Calculated from
(Freyer and Sutherland, 1986)

rc
an anaerobic glucose

consumption rate
6.9 × 10-16

mol cells-1 s-1
Calculated from
(Freyer and Sutherland, 1986)

rh hydrogen ion
production rate

1.5 × 10-18

mol cells-1 s-1
(Patel et al., 2001)

cap hypoxia induced
apoptosis threshold

2.5 × 10-9

mol cm-2
(Brown and Wilson, 2004)

gap hypoglycemia threshold 6.5 × 10-9 mol cm-2 (Ganong, 1999)

hap acid induced
apoptosis

pH = 7.1 (Casciari et al., 1992a)

h
~
ap

maximal acid
concentration

pH = 6.5 (Casciari et al., 1992a)

Ap proliferation age 16 h (Calabresi and Schein, 1993)

p mutation probability 0.01 (Anderson, 2005)

q quiescent metabolism factor 5 (Freyer et al., 1984)

Tr target response 0.675 Model specific

k modulation strength 6 Model specific

σ mutation strength 0.25 Model specific
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Table 2
A summary of the micro-environment specific parameters in the model in dimensional units

Parameter Meaning Value Reference

Dc oxygen diffusion constant 1.8 × 10-5 cm2 s-1 (Grote et al., 1977)

Dg glucose diffusion constant 9.1 × 10-5 cm2 s-1 (Crone and Levitt, 1984)

Dc hydrogen ion diffusion constant 1.1 × 10-5 cm2 s-1 (Crone and Levitt, 1984)

c0 oxygen background conc. 1.7 × 10-8 mol cm-2 (Anderson, 2005)

g0 glucose background conc. 1.3 × 10-8 mol cm-2 (Walenta et al., 2001)

h0 hydrogen ion background conc. 1.0 × 10-13 mol cm-2 (pH = 7.4) (Patel et al., 2001)

n0 cancer cell density 1.6 × 105 cells cm-2 (Casciari et al., 1992a)

tN necrotic cell removal rate 5 cell cycles Estimated
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