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In this paper, we propose one new confidence interval for the binomial proportion; our
interval is based on the Edgeworth expansion of a logit transformation of the sample
proportion. We provide theoretical justification for the proposed interval and also
compare the finite-sample performance of the proposed interval with the three best
existing intervals—the Wilson interval, the Agresti–Coull interval and the Jeffreys
interval—in terms of their coverage probabilities and expected lengths. We illustrate the
proposed method in two real clinical studies.

Keywords: binomial; diagnostic accuracy; skewness; confidence interval;
Edgeworth expansion
On
the

*A
110
1. Introduction

Constructing a CI for the binomial proportion is one of the most basic problems
in statistics. This problem is complicated due to the lattice nature of the
binomial distribution. The standard interval for the binomial proportion is the
Wald interval. However, many authors have pointed out that the standard Wald
interval has poor performance (e.g. Vollset 1993; Agresti & Coull 1998;
Newcombe 1998; Brown et al. 2001). Particularly, Brown et al. (2001) have
shown that the standard Wald interval can have a much lower coverage
probability than the nominal level even for a very large sample size.

To avoid approximation, Clopper & Pearson (1934) proposed an ‘exact’ CI for
the binomial proportion (see Bickel & Doksum (1977), pp. 180–181, for detail).
However, several authors have shown that the Clopper–Pearson interval has a
too wide interval length (Blyth & Still 1983; Agresti & Coull 1998); to reduce
the conservativeness of the Clopper–Pearson interval, Blyth & Still (1983) and
Duffy & Santner (1987) proposed more complex methods for constructing exact
intervals that perform better than the Clopper–Pearson intervals.
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Other alternative approximate intervals have also been proposed. Wilson
(1927) discussed an interval based on asymptotic normality of the sample
proportion and its true standard error; this interval is equivalent to the one
based on the score statistics. One nice feature of the Wilson interval is that it has
the shortest expected length in large samples among a certain class of intervals
(Kendall & Stuart 1967, pp. 105–117). See Agresti & Coull (1998) for a detailed
discussion about this procedure.

Agresti & Coull (1998) also proposed a simple ‘adjusted Wald’ interval by
adding two successes and two failures to data before using the Wald formula to
derive a 95% CI for the binomial proportion. The Agresti–Coull (AC) interval
has the appeal of a simple presentation and preservation of the original Wald
formula. Miettinen (1985) suggested using the likelihood ratio interval for the
binomial proportion. Although the likelihood ratio interval has been shown to be
uniformly most accurate (UMA) under some regularity conditions for continuous
data (Lehmann 1986, pp. 89–93), the UMA property of the likelihood ratio
interval no longer holds when data are discrete. Rubin & Schenker (1987) and
Brown et al. (2001) proposed an alternative interval using the Bayesian approach
with the non-informative Jeffreys prior, referred to as the Jeffreys interval.

Vollset (1993) evaluated the finite-sample performance of all the CIs discussed
above, except the AC and Jeffreys intervals, in an extensive numerical study, and
they recommended using the Wilson interval. Agresti & Coull (1998) also
conducted a simulation study to compare the finite-sample performance of the
AC interval with the Wilson interval and its continuity correction version, and
they recommended using either the Wilson or the AC interval. Brown et al.
(2001) compared the finite-sample performance of the AC, Wilson and Jeffreys
intervals, along with six other alternative intervals, in terms of mean absolute
coverage error and average expected length; after an extensive numerical
analysis, they recommended the Wilson or the Jeffreys interval for small sample
sizes (n%40) and the AC interval for large sample sizes (nO40). Brown et al.
(2002) used the Edgeworth expansion to explain theoretically why the Wald
interval might perform so poorly. One main reason that the Wald interval
behaves so poorly is that the binomial distribution is skewed, especially when the
binomial proportion is near 0 or 1.

In this paper, we propose a new CI, called the Zhou–Li (ZL) interval, based on
the Edgeworth expansion of a logit transformation of the sample proportion; our
interval corrects for skewness of the binomial distribution. We show that the
coverage probability of the proposed interval converges to the nominal confidence
level at the rate of nK1/2. We also conduct a simulation study to compare the
finite-sample performance of the ZL interval with the three best existing
intervals—the Wilson, AC and Jeffreys intervals. After extensive numerical
analysis, we find that the ZL interval shares the same conservative nature as the
AC interval; that is, its coverage probability is generally greater than the nominal
level. However, the expected interval width of the ZL interval is shorter than
that of the AC interval and is almost a half shorter than that of the AC interval on
average when the sample size is small. We also find that the ZL interval is
comparable with the Wilson and Jeffreys intervals in terms of mean absolute
error and average expected length. However, the ZL interval has better coverage
accuracy than the Wilson and Jeffreys intervals, particularly when the binomial
proportion is near 0 or 1.
Phil. Trans. R. Soc. A (2008)
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This paper is organized as follows. In §2, we propose the ZL interval and study
the rate of convergence of its coverage probability. In §3 we evaluate the finite-
sample performance of the proposed interval in comparison with the three best
existing intervals. In §4 we contrast the proposed intervals with the existing
intervals in two real clinical studies.
2. A new CI

We assume that the random variable X has a binomial (n, p) distribution. Let
p̂ZX=n, the ML estimator of p, and q̂Z1K p̂. Since a logit transformation of p̂,
log ðp̂=q̂Þ, is closer to a normal distribution than p̂, we consider the following
pivotal statistics:

T Z
ffiffiffiffiffiffiffiffi
np̂q̂

p
log

p̂

q̂

� �
Klog

p

q

� �� �
: ð2:1Þ

Since the standard normal approximation for the distribution of T uses only the
first two moments of T, to get a more accurate approximation than the normal
distribution of T, we use the Edgeworth expansion, which allows us to use the
third and fourth moments of T (Feller 1970).

We define

q1ðxÞZ
1K2p

6
ffiffiffiffiffi
pq

p ð1Kx2Þ: ð2:2Þ

In appendix A, we show that the studentized statistic, T, has the same first-order
Edgeworth expansion as the non-studentized sample proportion,

ffiffiffi
n

p
ðp̂KpÞ= ffiffiffiffiffi

pq
p

,
as summarized in the following theorem.

Theorem 2.1.

PðT%xÞZFðxÞCnK1=2q1ðxÞfðxÞCgnðp; xÞfðxÞðnpqÞK1=2COðnK1Þ; ð2:3Þ

where q1(x) stands for the error due to the skewness of the binomial distribution,
and gn(p, x) is a periodic function of period 1 which takes values in [K0.5,0.5] and
represents the rounding error.

For the exact definition of gn(p, x), see Bhattacharya & Rao (1976, p. 238). We
could just use the Edgeworth expansion in theorem 2.1 to correct explicitly
for skewness in the binomial distribution and obtain a new two-sided 100(1Ka)%
CI for p.

However, since Edgeworth expansions do not necessarily converge as infinite
series, a finite Edgeworth expansion is generally not a monotonic function. To
overcome this problem, we apply Hall’s (1992a) idea of using a monotone
transformation of T. This idea uses a monotone transformation to correct for
the skewness term in the Edgeworth expansion of T, and this monotone
transformation is defined by

gðTÞZ nK1=2bĝCT CnK1=2aĝT 2CnK1ð1=3ÞðaĝÞ2T 3;
Phil. Trans. R. Soc. A (2008)
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where aZK1/6; bZ1/6; and ĝZð1K2p̂Þ=
ffiffiffiffiffi
p̂q̂

p
. Using this monotone transfor-

mation, we obtain a two-sided 100(1Ka)% CI for log (p/q),�
log

p̂

q̂

� �
KnK1=2ðp̂q̂ÞK1=2gK1ðz1Ka=2Þ; log

p̂

q̂

� �
KnK1=2ðp̂q̂ÞK1=2gK1ðza=2Þ

�
;

where za is the a quantile of the standard normal distribution, and

gK1ðTÞZn1=2ðaĝÞK1½ð1C3aĝðnK1=2TKnK1bĝÞÞ1=3K1�:
Taking an anti-logit transformation of this interval, we obtain a two-sided
100(1Ka)% CI for p,

LðxÞZ
exp log p̂=q̂ð ÞKnK1=2ðp̂q̂ÞK1=2gK1ðz1Ka=2Þ
� �

1Cexp log p̂=q̂ð ÞKnK1=2ðp̂q̂ÞK1=2gK1ðz1Ka=2Þ
� � ;

2
4

exp log p̂=q̂ð ÞKnK1=2ðp̂q̂ÞK1=2gK1ðza=2Þ
� �

1Cexp log p̂=q̂ð ÞKnK1=2ðp̂q̂ÞK1=2gK1ðza=2Þ
� �

3
5: ð2:4Þ

We refer to this new interval as the ZL interval. Note that a function with the
form exp(x)/(1Cexp(x)) is always between 0 and 1. Hence, the ZL interval has
one advantage of guaranteeing to be between 0 and 1.

In appendix B, we show that the coverage probability of the ZL interval
converges to the nominal confidence level in the asymptotic order of nK1/2.

Theorem 2.2.

Pðp2LÞZ 1KaCOðnK1=2Þ:
Since the statistic T becomes undefined when xZ0 or n, in this case we would

replace x by xC0.5 and n by nC1. We have also tried to add another constant,
and our numerical analysis shows that the 0.5 value gives the best results in
terms of coverage accuracy.
3. Finite-sample performance of the new interval

In this section, we report simulation studies that compare the finite-sample
performance of the ZL interval with the three existing intervals that have been
recommended to use in practice—the Wilson, AC and Jeffreys intervals. For the
definition of these existing intervals, see appendix C. We set the two-sided
nominal coverage level to be 95% (aZ0.05) and took the sample size, n, to be 10,
15, 20, 25, 30, 40, 50 and 100; we selected 10 000 values of p uniformly from
0.000 099 to 0.999 999, increasing by a unit of 0.0001. For each combination of p
and n, we compared the performance of the four intervals using evaluation
criteria that were based on the coverage probability and the expected interval
length (Vollset 1993). The coverage probability of a two-sided 95% CI, L(x), was
computed by

CnðpÞZEðI½p2LðxÞ�jk; pÞZ
Xn
xZ0

binðx; n; pÞI½p2LðxÞ�; ð3:1Þ

where I½p2LðxÞ� is 1 if p2L(x) and 0 otherwise, and binðx; n; pÞ is the binomial
probability when XZx. If we denote the lower and upper endpoints of L(x) by
Phil. Trans. R. Soc. A (2008)
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Figure 1. (a) The mean absolute errors and (b) average expected lengths. Solid line, ZL; dotted line,
AC; dashed line, Jeffreys; long-dashed line, Wilson.
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Figure 2. Proportions of 10 000 p values for which 95% nominal level intervals have actual
coverage probabilities below 0.93. Solid line, ZL; dotted line, AC; dashed line, Jeffreys; long-dashed
line, Wilson.

2409Interval estimation of binomial proportions
lower(x) and upper(x), respectively, we can then compute its expected length by
the following formula:

WnðpÞZ
Xn
xZ0

½upperðxÞKlowerðxÞ�binðx;n; pÞ:
Phil. Trans. R. Soc. A (2008)
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Figure 3. True coverage probabilities of the four two-sided 95% intervals when nZ15. (a) Wilson,
(b) Jeffreys, (c) AC and (d ) ZL.

X. H. Zhou et al.2410
We first compared the performance of the four intervals in terms of three
averaging performance measures of Cn(p) and Wn(p) over the chosen values of p.
The first two measures were the mean absolute error and the average expected
length, which were defined byð1

0
jCnðpÞK0:95j dp and

ð1
0
WnðpÞ dp;

respectively, and the last one is the proportion of the chosen values of p for which
the coverage probability of the nominal 95% interval falls below 0.93, which was
defined by

no: of 10 000 p’s : CnðpÞ!0:93

10 000
:

See Agresti & Coull (1998), Agresti & Caffo (2000) and Brown et al. (2001) for a
discussion on the use of these measures.

Figure 1a displays the mean absolute errors of the four two-sided 95% CIs for
nZ10, 15, 20, 25, 30, 40, 50 and 100. From this plot, we can see that the Wilson
interval has the smallest mean absolute error, but the mean absolute errors of the
four intervals are comparable in the practical sense. Figure 1b displays the
average expected lengths of the four intervals. This plot shows that the average
expected length of the ZL interval is smaller than that of the AC interval. From
Phil. Trans. R. Soc. A (2008)
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Figure 4. Expected widths of the four two-sided 95% intervals when nZ15. (a) Wilson, (b) Jeffreys,
(c) AC and (d ) ZL.

2411Interval estimation of binomial proportions
the plot, we also observe that the average expected length of the ZL interval is
slightly larger than those of the Wilson and Jeffreys intervals, but the difference
is not of practical relevance.

Figure 2 displays the proportions of 10 000 p values chosen uniformly between
0 and 1 for which the four 95% nominal level CIs have actual coverage
probabilities below 0.93. From this plot, we can see that the proportion of actual
coverage probabilities that are below 0.93 was small for both the AC and ZL
intervals, which was less than 5%. However, the Wilson and Jeffreys intervals
had much higher proportions of actual coverage probabilities that are below 0.93,
especially when n was small. For example, when nZ10 the proportion of actual
coverage probability below 0.93 was 13.4% for the Wilson interval and 20.6% for
the Jeffreys interval.

Since averaging performance measures do not provide information on the
effects of particular values of p, the coverage probability and expected interval
length, we also plotted Cn(p) and Wn(p) as functions of p for nZ15, 40 and 100.
Figures 3–8 display the coverage probabilities and expected interval lengths of
two-sided 95% CIs obtained by the four methods when nZ15, 40 and 100.

From these figures, we can see that for most values of p both the Wilson and
Jeffreys intervals have coverage probabilities that are below the nominal
confidence level and could be significantly below the nominal confidence level
when p is near 0 or 1, even for a sample size as large as nZ100. Both the AC and
ZL intervals have coverage probabilities that are either greater than or slightly
Phil. Trans. R. Soc. A (2008)
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Figure 5. True coverage probabilities of the four two-sided 95% intervals when nZ40. (a) Wilson,
(b) Jeffreys, (c) AC and (d ) ZL.
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below the nominal level. When p is away from 0 or 1, the coverage probabilities
of both the AC and ZL intervals are very close to the nominal level; when p is
close to 0 or 1, the coverage probabilities of the AC and ZL intervals are
conservative in the sense that their coverage probabilities are greater than the
nominal level.

When a CI has a conservative coverage probability, the probability that it
covers the true binomial proportion is actually greater than the nominal level.
However, this desirable property is usually achieved at the expense of producing
a too wide CI. We saw this in the AC interval when n was small. For example,
when nZ15 and p was near 0 or 1, the expected interval length of the AC
interval was much wider than those of the Wilson and Jeffreys intervals.
Fortunately, for the ZL interval, its expected interval length was just slightly
wider than those of the Wilson and Jeffreys intervals when n was small, and the
difference was negligible. For large n, the four intervals had similar expected
interval lengths.

In summary, we would make the following recommendation of the method to
be used in practice. In general, without knowing the value of p, we would
recommend the use of the Wilson interval. If we have some information about p,
we would recommend the use of the ZL interval when p is close to 0 or 1 and the
use of the AC interval when p is approximately 0.5.
Phil. Trans. R. Soc. A (2008)
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Figure 6. Expected widths of the four two-sided 95% intervals when nZ40. (a) Wilson, (b) Jeffreys,
(c) AC and (d ) ZL.
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4. Application to two real examples

We illustrate our method in two clinical studies. The first one was from a study
about the effectiveness of hyperdynamic therapy in treating cerebral vasospasm
(Pritz et al. 1996). The success of the therapy was defined as clinical
improvement in terms of neurological deficits. The study reported 16 successes
out of 17 patients. We were interested in deriving a two-sided 95% CI for the
success rate that hyperdynamic therapy will improve neurological deficits
resulting from vasospasm. Using the methods discussed in this paper, we
obtained the following four 95% CIs for the success rate: (i) [0.829, 1.053] for the
Wald interval, (ii) [0.730, 0.990] for the Wilson interval, (iii) [0.711, 1.009] for
the AC interval, and (iv) [0.743, 0.997] for the ZL interval. It is worth noting that
both the Wald and AC intervals give an upper limit that is greater than 1, the
problem of overshoot. For these two intervals, we set their upper endpoints
to 1.0. Because the sample proportion was close to 1, we used the ZL interval to
estimate the success rate. Therefore, the 95% CI for the success rate is
[0.743, 0.997]. From this interval, we conclude that the hyperdynamic therapy is
a successful method to treat ischaemic neurological symptoms due to vasospasm.
Although the Wilson, AC and ZL intervals all led to the same conclusion, it is
worth noting that the ZL interval was completely within the AC interval.

The second study by Helmes & Fekken (1986) assessed relations between types
of psychiatric disorders and the chance of receiving prescribed drugs. Among 14
psychiatric patients with affective disorder, 12 received prescribed drugs. We were
Phil. Trans. R. Soc. A (2008)
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Figure 7. True coverage probabilities of the four two-sided 95% intervals when nZ100. (a) Wilson,
(b) Jeffreys, (c) AC and (d ) ZL.
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interested in constructing 95% CIs for the proportion of psychiatric patients
with an affective disorder who received prescribed drugs. Using the methods
discussed in this paper, we obtained the various 95% CIs for p as follows:
(i) [0.6738, 1.0404] for the Wald interval, (ii) [0.6006, 0.9599] for the Wilson
interval, (iii) [0.5881, 0.9724] for the AC interval, and (iv) [0.6108, 0.9726] for
the ZL interval. Once again the Wald interval gave an upper limit that is
greater than 1. Although the four upper limits were similar, there were some
differences among the four lower limits. For example, the lower limit of the
AC interval was 4% less than that of the ZL interval and 9% less than that of
the Wald interval.
5. Conclusions

In this paper, we proposed a ZL CI for the binomial proportion that is relatively
easy to compute. Our proposed interval is based on an Edgeworth expansion of a
logit transformation of p̂. We have shown that the ZL interval converges to the
nominal level at the rate of nK1/2. Based on an extensive numerical analysis of
the finite-sample performance of the ZL interval and the best existing intervals,
we recommend the use of the Wilson interval if there is no available information
Phil. Trans. R. Soc. A (2008)
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Figure 8. Expected widths of the four two-sided 95% intervals when nZ100. (a) Wilson,
(b) Jeffreys, (c) AC and (d ) ZL.
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about p. If we have some information about p, we would recommend the use of
the ZL interval when p is close to 0 or 1 and the use of the AC interval when p is
approximately 0.5.

The views expressed in this paper are those of the authors and do not necessarily represent the
views of the Department of Veterans Affairs.
Appendix A. Proof of theorem 2.1

Proof. Let TZ
ffiffiffi
n

p
ðlog ðp̂=q̂ÞKlog ðp=qÞÞ

ffiffiffiffiffi
p̂q̂

p
. If we let yZ p̂, we may write

the statistic T as a function of y,

T Z
ffiffiffi
n

p
log

y

1Ky
Klog

p

1Kp

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1KyÞ

p
:

Writing

gðyÞZ log
y

1Ky
Klog

p

1Kp

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1KyÞ

p
;

we obtain TZ
ffiffiffi
n

p
gðyÞ. Note that the first two derivatives of g(y) at yZp are

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1KpÞ

p
and 0, respectively, and that EðyKpÞ3ZpqðqKpÞnK2. Therefore,

expanding g(y) at yZp with a Taylor expansion, we obtain that

gðyÞZ yKpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1KpÞ

p COpðnK2Þ;
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which implies that

T Z
ffiffiffi
n

p p̂Kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1KpÞ

p COpðnK3=2Þ: ðA1Þ

Expression (A1) says that T and
ffiffiffi
n

p
ðp̂KpÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1KpÞ

p
are equivalent in

probability up to O(nK3/2).
Note that Bhattacharya & Rao (1976, p. 238) have already derived an

Edgeworth expansion for
ffiffiffi
n

p
ðp̂KpÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1KpÞ

p
, which has the following form:

P
ffiffiffi
n

p p̂Kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1KpÞ

p %x

 !
ZFðxÞCnK1=2q1ðxÞfðxÞ

Cgnðp; xÞfðxÞðnpqÞK1=2 COðnK1Þ; ðA2Þ

where

q1ðxÞZ
1K2p

6
ffiffiffiffiffi
pq

p ð1Kx2Þ

and gn(p,x) takes values in [K0.5,0.5] and denotes the rounding error. Therefore,
applying the delta method (Hall 1992b, p. 34) to (A1) and (A2), we obtain the
following Edgeworth expansion for T :

PðT%xÞZFðxÞCnK1=2q1ðxÞfðxÞCgnðp; xÞfðxÞðnpqÞK1=2 COðnK1Þ:
This completes the proof of theorem 2.1. &
Appendix B. Proof of theorem 2.2

To prove theorem 2.2, we first prove the following lemma.

Lemma B.1.

PðgðTÞ%zaÞZaCðnpqÞK1=2gnðzaKnK1=2q̂1ðzaÞCOðnK1ÞÞCOðnK1Þ:

Proof of Lemma B.1.

From theorem 2.1, we obtain that

PðT%zaKnK1=2q̂1ðzaÞÞZFðzaKnK1=2q̂1ðzaÞÞCnK1=2q1ðzaKnK1=2q̂1ðzaÞÞ
!fðzaKnK1=2q̂1ðzaÞÞCnK1=2ðpqÞK1=2

!gnðzaKnK1=2q̂1ðzaÞÞfðzaKnK1=2q̂1ðzaÞÞCOðnK1Þ:

Since both f(x) and q1(x) are very smooth functions of x, using Taylor
expansions, we obtain that

PðT%zaKnK1=2q̂1ðzaÞÞZaCðnpqÞK1=2gnðzaKnK1=2q̂1ðzaÞÞCOðnK1Þ:
Since

PðgðTÞ%zaÞZPðT%gK1ðzaÞÞ;
Phil. Trans. R. Soc. A (2008)
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to show the expression in lemma B.1, we first expand

½1C3aĝðnK1=2xKnK1bĝÞ�1=3K1:

Using a Taylor series expansion on the function (1Cy)1/3, we show that

½1C3aĝðnK1=2xKnK1bĝÞ�1=3K1

ZnK1=2ðaĝÞxKnK1ðaĝÞ½bĝKðaĝÞx2�COpðnK3=2Þ:

Therefore, we obtain that

gK1ðxÞZ xKnK1=2q1ðxÞCOðnK1Þ;

which implies the expression in lemma B.1. &

Proof of theorem 2.2. Using the result in lemma B.1, we obtain that

Pðp2LðxÞÞZPðza=2%gðTÞ%z1Ka=2Þ
ZPðT%z1Ka=2KnK1=2q̂1ðz1Ka=2ÞÞKPðT%za=2KnK1=2q̂1ðza=2ÞÞ
Z 1KaCðnpqÞK1=2½gnðz1Ka=2KnK1=2q̂1ðz1Ka=2ÞÞ

K gnðza=2KnK1=2q̂1ðza=2ÞÞ�COðnK1Þ:

Since gn(x) is a periodic function of period 1, gn(x) is bounded. Hence, we obtain
Pðp2LðxÞÞZ1KaCOðnK1=2Þ. This completes the proof. &
Appendix C. Existing CIs

The Wald interval can be derived by inverting the Z-score test with the
estimated standard error, and its 100(1Ka)% two-sided CI has the following
simple form:

p̂Gz1Ka=2n
K1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1K p̂Þ

p
:

The 100(1Ka)% two-sided Wilson interval for p has the following form:

p̂Cðz 21Ka=2=2nÞGz1Ka=2n
K1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1K p̂ÞCðz 21Ka=2=4nÞ

q
1Cðz 21Ka=2=nÞ

:

The two-sided 100(1Ka)% Jeffreys interval has the lower and upper endpoints
as LJ(X ) and UJ(X ), respectively. Here, LJðXÞZBða=2;XC1=2;nKXC1=2Þ
if Xs0 and 0 otherwise, and UJðXÞZBð1Ka=2;XC1=2;nKXC1=2Þ if
Xsn and 1 otherwise, respectively, where B(a; m1, m2) denotes the a quantile
of a Beta(m1, m2) distribution.
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