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Rate constants rather than biochemical
mechanism determine behaviour

of genetic clocks
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Many biological systems contain both positive and negative feedbacks. These are often
classified as resonators or integrators. Resonators respond preferentially to oscillating signals
of a particular frequency. Integrators, on the other hand, accumulate a response to signals.
Computational neuroscientists often refer to neurons showing integrator properties as type I
neurons and those showing resonator properties as type II neurons. Guantes & Poyatos have
shown that type I or type II behaviour can be seen in genetic clocks. They argue that when
negative feedback occurs through transcription regulation and post-translationally, genetic
clocks act as integrators and resonators, respectively. Here we show that either behaviour can
be seenwith either design and in a wide range of genetic clocks. This highlights the importance
of parameters rather than biochemical mechanism in determining the system behaviour.
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1. INTRODUCTION

Timekeeping mechanisms are a fundamental feature of
many cell types. The need for accurate timekeeping is
found in many different biological settings, from develop-
ment (Hirata et al. 2002) to circadian (daily) clocks
(Young&Kay 2001), to cell-cycle regulation (Kohn 1999)
and acrossmany time scales, from the fast firing of neurons
to the slow seasonal changes that occur in the bodies of
manyorganisms (Dunlapet al. 2003).Thebiological clocks
that regulate these processes use very diverse biochemical
mechanisms.Hereweexplorehowbiochemicalmechanism
affects the behaviour of these systems.

A common motif in many clocks is intertwined with
positive and negative feedbacks loops. Genetic clocks
typically contain feedback loops involving both activa-
tors and repressors. Positive and negative feedbacks
can also occur post-translationally by increasing or
decreasing protein stability. Neuronal clocks employ a
different biochemical mechanism. Sodium channels
open in response to increased voltage levels, in turn
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further increasing the voltage (positive feedback) while
potassium channels causing sodium inactivation
decrease the voltage (negative feedback). These are,
by no means, the only examples of biological systems
with positive and negative feedbacks (e.g. population
interaction (Hirsch & Smale 1974) and the cAMP
system (Goldbeter 1996)).

Summarizing early experimental work on the effect
of current on neuronal oscillations, Hodgkin, in 1948,
proposed a classification of neurons into two types
(Hodgkin 1948). The period of type I neurons is quite
sensitive to the strength of the input current and can
vary over several orders of magnitude. On the other
hand, the behaviour of type II neurons depends less on
the strength of the input signal and more on the signal’s
frequency. This classification also has broad impli-
cations for the behaviour of neurons, such as entrain-
ment properties, phase response curves and robustness
to noise (Rinzel & Ermentrout 1989; Oprisan &
Canavier 2002; Guantes & Poyatos 2006). Rinzel &
Ermentrout (1989) have linked this classification to the
underlying bifurcation structure of the models. They
also show that both types I and II behaviours can be
seen in a specific model depending on the choice of rate
constants. Thus, the rate constants and the bifurcation
structure appear to be more important than the
biochemical mechanism in determining whether
neuronal oscillators show type I or type II behaviour.
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Figure 1. Designs of genetic clocks with both positive and
negative feedbacks. (a) Design I: activator (turquoise)
stimulates transcription of its own gene and the gene for
repressor (red); repressor blocks transcription of the gene for
activator. (Similar to design in Atkinson et al. (2003) and
Guantes & Poyatos (2006)). (b) Design II: similar to design I,
except that repressor promotes the degradation of the
activator protein (Guantes & Poyatos 2006). (c) Design III:
the unstable regulatory protein is degraded to inactive
fragments or forms a stable dimer that represses the
transcription of its own gene. This design is similar to a
circadian clock model for Drosophila melanogaster proposed
by Tyson et al. (1999). (d ) Design IV: activator (turquoise)
stimulates the transcription of one repressor gene (red) whose
product represses transcription of the activator gene as well as
the transcription of the second repressor gene (orange). The
product of the second repressor gene (orange) inhibits the
transcription of the first repressor gene. This design is similar
to that studied by Kuznetsov et al. (2004).
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A wide variety of biochemical mechanisms are used
in various cellular oscillators that contain both positive
and negative feedbacks. For example, negative feed-
back may occur through the repression of transcription
(figure 1a) or by post-translational regulation of the
stability of an activator (figure 1b). Positive feedback
can also occur through the regulation of dimer
formation (figure 1c; see Tyson et al. 1999) or by
having two negative feedback steps in serial (figure 1d;
see Kuznetsov et al. 2004). Recently, Guantes &
Poyatos (2006) suggested that biochemical mechanism
may determine whether a genetic clock behaves as a
resonator or integrator. We are interested in whether
the biochemical mechanism determines the oscillatory
behaviour of the system.
2. EXAMPLES OFGENETIC CLOCKSWITH BOTH
POSITIVE AND NEGATIVE FEEDBACKS

We consider several examples of genetic networks with
both positive and negative feedbacks. Each design
combines positive and negative feedbacks using a
different biochemical mechanism. Guantes & Poyatos
(2006) explore models with two genes, one that codes for
an activator (x) and the other that codes for a repressor
(y). In both designs, the activator binds to both genes to
activate transcription. In design I, the repressor inacti-
vates the transcription of the activator’s gene whereas,
J. R. Soc. Interface (2008)
in design II, the repressor promotes the degradation
of the activator post-translationally (figure 1). They
derived the following model equations for these designs:

dx

dt
ZD x

1Crx 2

1Cx2 Cs1y
2
KxK s2xy

� �
;

dy

dt
ZD3x

1Crx 2

1Cx 2
Ky;

where s1Z0 for design II and s2Z0 for design I.
Tyson et al. (1999) model post-translational positive

feedback inspired by the circadian clock in Drosophila.
In this design (figure 1c), there is a negative feedback
loop where the PER protein inhibits its own transcrip-
tion. PER monomers are unstable but are stabilized
when PER forms homodimers. At low concentrations of
PER, few homodimers are formed and degradation
occurs rapidly. As the concentration of PER increases,
more homodimers form, further stabilizing PER and
creating a positive feedback in the system. The model
equations for this design are

q Z
2

1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C8KeqPt

p ;

dM

dt
Z

vm

1CðPtð1KqÞ=ð2PcritÞÞ2
KkmM ;

dPt

dt
Z vpMK

ðkp1qCkp2ÞPt

Jp CPt

Kkp3Pt;

whereM is the concentration of permRNA and Pt is the
total concentration of PER.

Kuznetsov et al. (2004) studied a genetic system with
three genes that includes positive and negative feed-
backs (figure 1d ). One protein (V) represses the
transcription of the gene for another protein (U) that
in turn represses the gene encoding V. This com-
bination of two repressors produces a positive feedback
loop. The third gene encodes a protein (W) that
activates the transcription of gene U, and U represses
the transcription of geneW, closing a negative feedback
loop. The model equations for this design are

dU

dt
Z

a1

1CV b
C

a3W
h

1CW h
KU ;

dV

dt
Z

a2

1CUg
KV ;

dW

dt
Z 3

a4

1CUg
KW

� �
:

Parameter values for all models are given in figure 2.
Although all the four systems we study contain positive
and negative feedbacks, each of them uses different
biochemical mechanisms. We were interested in the
relationship between the system design and the types of
behaviour (type I or II) that may be displayed by the
system. We therefore examined the behaviour of the
model equations for these systems over a wide range of
parameters, and tested for types I and II behaviours.
3. RESULTS

As a qualitative test of whether each of these genetic
systems can act as a resonator or an integrator, each
model was subjected to pulsatile stimuli and their
responses recorded. If repeated pulses at a particular
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Figure 2. (a(i)–d(i)) Resonator and (a(ii)–d(ii)) integrator behaviours obtained in all four system designs ((a) I, (b) II, (c) III
and (d ) IV). For certain parameter values, each design resulted in resonator behaviours (black line, x(t) in (a(i)) and (b(i)),
P(t) in (c(i)), v(t) in (d(i))) upon stimulation by an input signal at a particular frequency (grey line, S(t)). For other parameter
values, each design resulted in integrator behaviour (black line, x(t) in (a(ii)) and (b(ii)), P(t) in (c(ii)), v(t) in (d(ii))) upon
repeated stimulation by an input signal (grey line, S(t)). Resonator parameter values for design I: 3Z0.05, xZ1.58, rZ50,
s1Z1, s2Z0 and DZ25.5 or 30, depending on the pulse train. Three pulses (changes to D as was done in Guantes & Poyatos
2006) were given at tZ5 with a frequency of 0.4 and three pulses were given at tZ15 with frequency of 0.63. Design II: same as
design I, except that s1Z0 and s2Z1 with DZ20 or 20.5. Three pulses were given at tZ5 of frequency 0.25 and three at tZ15
of frequency 0.35. Design III: vmZ4, kmZ0.4, vpZ0.5, kp2Z0.03, kp3Z0.1, KeqZ60, PcritZ0.5, JpZ0.05 with kp1Z21 or 23.5.
Three pulses (changes in kp1) were given at tZ5 of frequency 1.5 and three at tZ150 with frequency 3.8. Design IV: a2Za4Z3,
a3Z1, bZhZgZ3, 3Z0.1 with a1Z1.68 or 1.72. Three pulses (changes in a1) were given at tZ5 of frequency 4 and three at
tZ200 of frequency 11. Integrator parameter values for design I: same as design I resonator parameter values, except that
DZ9.5 or 10.5. Three pulses of frequency 1.2 given at tZ5 and six at tZ25. Design II: 3Z1, xZ0.06, rZ100, s1Z0, s2Z0.4
and DZ3.34 or 3.6. Three pulses of frequency 1 given at tZ5 and six pulses at tZ25. Design III: same as design III resonator
parameter values with kp1Z28.5 or 30. Three pulses of frequency 0.2 were given at tZ5 and six at tZ15. Design IV: a2Z5.5,
a3Z2, a4Z3, bZhZgZ3, 3Z0.01 with a1Z2.4 or 2.3. Three pulses of frequency 1.5 were given at tZ5 and six at tZ100. In all
cases, at tZ0, the system was at steady state.
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frequency caused a large response, and pulses at shorter
or longer frequencies caused a small response, the model
was considered a resonator. If the response was, instead,
J. R. Soc. Interface (2008)
dependent on the total number of pulses, the model was
classified as an integrator. Amazingly, all four designs
appear to act as integrators or resonators depending on
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Figure 3. A system design exhibits both resonator and integrator behaviours as a parameter is incrementally varied. This figure
studies design II. Other designs can be seen in the electronic supplementary material. (a) For lower values of the varied
parameter, low-amplitude oscillations, i.e. resonator behaviour (Baer et al. 1989), was obtained (black line x(t); grey line, y(t);
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and yZ5.0668, the steady -state values for DZ1.8. (b) One parameter (D) bifurcation diagram illustrating both a HB (resonator)
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the rate constants (figure 2). This indicates that the
rate constants rather than the biochemical mechanism
determine which type of behaviour can be seen.

The underlying bifurcation structure has been shown
to determine whether oscillators act as resonators or
integrators (Rinzel & Ermentrout 1989). Resonator
behaviour is typically observed when the system is close
to a Hopf bifurcation (HB) where a stable steady state
becomes unstable, and integrator behaviour is typically
observed when the system is near a saddle node on an
invariant circle (SNIC) bifurcation where a stable
steady state is lost (Rinzel & Ermentrout 1989). For
all four designs, varying just one system parameter
results in both Hopf and SNIC bifurcations (figure 3). In
fact, if the parameter is incrementally changed, the
system proceeds to low-amplitude oscillations after a
slight delay related to ‘slow passage’ through the HB
(typical of resonators; see Baer et al. 1989) to large
amplitude oscillations with increasing period (typical of
integrators; figure 3). This provides further evidence
that the rate constants determine which type of
behaviour is seen. A similar analysis is presented for
the other designs in the electronic supplementary
material. These simulations also show that the reso-
nator or integrator behaviour can be seen over a large
range of parameter values.

It is interesting to note that some models of
glycolytic oscillations (Goldbeter 1996; Westermark &
Lansner 2003) admit at most one steady state for any
given set of parameter values, ruling out the possibility
of a SNIC bifurcation. In these models, a HB occurs,
which we and others link to resonator behaviour
(Rinzel & Ermentrout 1989). This again stresses the
point that parameter values (and the associated
bifurcation structure) determine whether a genetic
system will produce integrator or resonator behaviour.

To further demonstrate the resonator and integrator
behaviours in these designs, we subjected each design,
with resonator or integrator rate constants, to small
amplitude sinusoidal stimuli (figure 4). The amplitude
of the response of each model was recorded as a function
of the input frequency. For resonator designs I–IV,
J. R. Soc. Interface (2008)
there was a particular frequency that gave the largest
response amplitude. For the integrator designs I–III,
the response amplitude decreases as a function of the
input frequency. We have chosen the rate constants for
the integrator design IV so that a small remnant of the
resonance behaviour can be seen at low input frequen-
cies. This was done to illustrate that in any design there
is a spectrum of behaviours, from resonator to
integrator, depending on how close the rate constants
are to a SNIC or HB.
4. SIMILARITY OF MATHEMATICAL
STRUCTURE IN MODELS FOR GENETIC
AND NEURONAL OSCILLATORS

The Morris–Lecar model of the electrical firing of a
neuron also shows both resonator and integrator
behaviours, depending on the parameters (Rinzel &
Ermentrout 1989). The biochemical mechanisms of this
model are very different from any of the designs we
studied. The Morris–Lecar model tracks the voltage of
the neuron (V ) and howmuch current can pass through
channels in the membrane of the cell (w). The model
equations are the following:

dV

dt
ZKgcamNðV ÞðVKVcaÞK gkwðVKVkÞ

K glðVKVlÞ;
dw

dt
Zf

wNðV ÞKw

tw
;

mNðV ÞZ 0:5ð1CtanhðVKV1Þ=V2Þ;

wNðV ÞZ 0:5ð1CtanhðVKV3Þ=V4Þ:

Although tw, the time constant for the gating variable
w, is often expressed as a function of voltage, it is
sometimes assumed constant and is close enough to be
treated so for our purposes.

While the Morris–Lecar model describes a system
with quite different biochemical mechanisms from the
genetic oscillators of designs I–IV, it turns out that
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Figure 4. (a–d ) Response of designs I–IV to sinusoidal inputs. For each model described in figure 2, we applied a small amplitude
sinusoidal stimulus and recorded the model’s response amplitude (maximum–minimum of x (designs I and II)M (design III ) orU
(design IV) after initial transients; (a(i)–d(i)) resonator and (a(ii)–d(ii)) integrator). The rate constants that showed resonance
in figure 2 displayed a maximum response amplitude at a particular frequency, w. The response amplitude for integrator models
decreased as the frequency increased (with the exception of IV that is discussed in the text). For resonator and integrator
design I, DZ30Csin (wt) or DZ9.5C0.1 sin (wt), respectively. For resonator and integrator design II, DZ20C0.1 sin (wt) or
DZ3.6C0.01 sin(wt), respectively. For resonator and integrator design III, kp1Z20C0.1 sin (wt) or kp1Z30C0.1 sin (wt),
respectively. For resonator and integrator design IV, a1Z1.72C0.01 sin (wt) or a1Z2.4C0.01 sin (wt), respectively. All other
parameters are the same as given in figure legend 2.
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the mathematical structures of the models are related,
indicating similar behaviour. In particular, designs I
and II and the Morris–Lecar genetic oscillator models
can readily be put into the following common form:

dx

dt
Z f ðx; yÞKaxKbxy;

dy

dt
Z gðxÞKy:

For normal physiological ranges of the variables (e.g.
K70!V!20, 0!w!1 in theMorris–Lecar model, or x,
yO0 in the models for designs I and II), it happens that
J. R. Soc. Interface (2008)
vf/vxO0 and vg/vxO0 (i.e. x is an activator providing
positive feedback) and vf/vy%0 (i.e. y is an inhibitor
providing negative feedback). These models are there-
fore mathematically quite similar and depend on the
rate constants of a particular model. This fact is
emphasized by plotting f(x, y) and g(x) (figure S4 in
the electronic supplementary material). Given this
similarity of mathematical structure, it is not surprising
that many of the behaviours of the neuronal model are
also seen in the genetic systems.
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5. DISCUSSION

Many genetic oscillators contain both positive and
negative feedbacks. Circadian clocks in diverse organ-
isms contain positive (e.g. in Drosophila PDP1 acti-
vates CLK that activates PDP1) and negative (e.g. in
Drosophila, PER and TIM repressing their own
transcription) feedback loops (Reppert & Weaver
2000). Cell-cycle regulation also contains positive and
negative feedbacks (Csikasz-Nagy et al. 2006). Many
theoretical studies have considered biological oscil-
lations with both positive and negative feedbacks
(Tyson & Othmer 1978; Tyson & Keener 1988). Here
we show, similar to the previous work in neuronal
oscillators (Rinzel & Ermentrout 1989), that the rate
constants are the key to determining what behaviour is
seen in these networks.

One of the central questions in genetic clocks is how
they can be robust despite the stochasticity of
molecular interactions (Barkai & Leibler 1997). The
overall structure of a genetic network can determine
how robust or reliable the network is (Brandman et al.
2005; Klemm & Bornholdt 2005). The rate constants
play an important role as well by determining the
number of molecular interactions that occur (Gonze
et al. 2004; Forger & Peskin 2005). Guantes & Poyatos
(2006) show that the robustness of these networks with
positive and negative feedbacks strongly correlates
with whether the network acts as a resonator or an
integrator (Guantes & Poyatos 2006). Here we show
that these properties depend not on the specific
biochemical mechanism but on the values of the rate
constants. Thus, in determining whether resonator or
integrator behaviour is obtained, rate constants are also
important in determining how robust a network will be.

The seminal work of Winfree (2001) showed how the
mathematical structure of biological oscillators can be
remarkably similar across a wide range of organisms
and biochemical mechanisms. Our work and that of
Guantes & Poyatos (2006) support this idea; the
classification as integrators or resonators developed
for neuronal oscillations also applies to oscillations in
genetic networks. This implies that the vast literature
on the properties of resonators or integrators in
neuronal oscillations will also probably apply to genetic
clocks. Much future work is needed to test these ideas.

The presence of just negative feedback alone, or even
a combination of positive and negative feedbacks,
certainly does not guarantee that oscillations will be
found. Indeed, oscillations are notoriously difficult to
achieve in genetic networks (Tyson & Othmer 1978;
Atkinson et al. 2003). However, having both positive
and negative feedbacks expands the range of parameters
at which oscillations may be obtained (Rinzel &
Ermentrout 1989). In general, oscillations occur only
when the positive feedback is fast when compared with
the negative feedback (see Tyson et al. 1999). Once
again, the rate constants are vital to determining
behaviour. This has proven to be an essential design
principle in constructing synthetic genetic clocks
(Atkinson et al. 2003).

These results reveal that a wide range of biological
oscillator models can show either resonator or integrator
J. R. Soc. Interface (2008)
behaviour. Since both the behaviours are possible, there
are parameter choices that may exhibit the charac-
teristic of both. Guckenheimer (1983) studied a similar
system and found a very rich bifurcation structure. This
model contained just two parameters, but yielded over
20 regions of behaviour within this space and several
bifurcations not discussed here (e.g. Takens-Bogdanov
or degenerate Hopf ). Themodels we study contain many
more parameters. While a complete bifurcation analysis
of these models would be interesting, it is well beyond
the scope of this work. Future work also could develop
generic models of genetic clocks. Such generic models are
discussed by Fall et al. (2000).

Our work shows, similar to other studies (Tyson
2004), that thenetworkdiagramalonedoesnotdetermine
the behaviour of a biological clock employing positive
and negative feedbacks. Knowledge of the parameters
is required, as a given design can result in very different
behaviours.Althoughwe limitedour study toaparticular
class of oscillators (with positive andnegative feedbacks),
it is probable that other types of oscillators share this
property. Surprisingly, few experimental data are avail-
able which measure rate constants in genetic networks.
Thus, much more experimental work is needed to
understand the system behaviour.

This work was supported by NIH grant GM063642.
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