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Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance
the understanding of robust performance in complex biological networks. We highlight phase
entrainment as a key performance measure used to investigate dynamics of a single
deterministic circadian oscillator for the purpose of generating insight into the behaviour of a
population of (synchronized) oscillators. More specifically, the analysis of phase charac-
teristics may facilitate the identification of appropriate coupling mechanisms for the
ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control
objective to correct mismatch between the biological clock and its environment. Thus,
we introduce methods of investigating synchrony and entrainment in both stochastic
and deterministic frameworks, and as a property of a single oscillator or population of
coupled oscillators.
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1. INTRODUCTION

Undergirding a biological system are networks of
interacting components. To elucidate the mechanisms
employed by these networks, biological experi-
mentation and intuition are by themselves insufficient
(Kitano 2002). In the field of systems biology,
investigators characterize dynamics via mathematical
models and apply systems theory with the goal of
guiding further experimentation to better understand
the biological network that gives rise to robust
performance (Fall et al. 2005). An ideal example of
biological complexity is the circadian clock, which
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coordinates daily physiological behaviours of most
organisms. The robust timekeeping of the circadian
clock may be correlated to its internal structure (a
synchronized network of coupled oscillators) and its
ability to be entrained by the environment (most
notably Sun cycles).

To better understand, characterize and control the
mechanisms that give rise to robust circadian per-
formance, we study its phase dynamics. Given that the
circadian clock architecture is hierarchical and depend-
ing upon where in the hierarchy we analyse phase, we
apply different methods and strategies of investigation.
Several mathematical models have been developed
which aim to characterize the network underlying
circadian rhythmicity in a variety of organisms including
mammals, flies, plants and algae (Leloup & Goldbeter
1998, 2003; Tyson et al. 1999; Ueda et al. 2001; Forger &
Peskin 2003; Smolen et al. 2004). Of these models, we
consider those specific to Mus musculus (house mouse)
and Drosophila melanogaster (fruit fly).

Left in constant conditions, the clock will free-
run with a period of only approximately 24 hours
such that its internal time, or phase, drifts away from
that of its environment. Thus, vital to a circadian clock
is its ability to entrain to external time through
environmental factors (Daan & Pittendrigh 1976;
J. R. Soc. Interface (2008) 5, S17–S28
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Boulos et al. 2002; Dunlap et al. 2004). To study the
timekeeping of circadian clocks, we employ systems
theory to analyse two complementary cases: one
involving the network of coupled oscillators and the
other involving a single coherent oscillator. To study
synchronization and entrainment of circadian oscil-
lators at different levels of the hierarchy, we use
ordinary differential equations (ODEs), stochastic
differential equations (SDEs) and a discrete stochastic
model in both the network and single-cell setting. In §2,
we outline the biological questions we are investigating
and describe the techniques best suited to answer
each. In §3, we simulate a population of mammalian
(Mus) neurons using a discrete stochastic model. The
challenges associated with achieving synchronization
are addressed via the study of a single oscillator. In §4,
we simulate an SDE model of the mammalian network
and analyse the period of the synchronized neurons by
studying the phase response behaviour of a single
deterministic cell. Section 5 describes a strategy that
makes use of the light-induced circadian phase response
to correct phase mismatch that arises when there is a
difference between internal and external time.
1per3 is not taken into account because biological evidence shows that
its disruption does not have a strong effect on clock performance
(Forger & Peskin 2003).
2The study of phase synchrony via the coupling of a population of
circadian oscillators is better understood in mammals than in flies. In
fact, it remains an open question as to whether or not fly clock cells are
indeed coupled (Hardin 2005).
2. BACKGROUND

For most species, including M. musculus and
D. melanogaster, the behaviour of a single clock cell is
controlled by a gene regulatory network. Some genes,
such as the period and clock genes, are shared by
multiple species whereas others are particular to the
organism. The gene/protein components form a
complex transcriptional regulatory structure made up
of both positive and negative feedback loops that
describe the competitive activation and inhibition of
circadian mRNA transcription. Many of the math-
ematical models of the circadian clock in the literature
consist of ODEs that exhibit limit cycle behaviour. This
is the class of models addressed in this work, with
extensions to discrete stochastic behaviour as well.

Three genes key to the D. melanogaster clock are
period (per), timeless (tim) and Drosophila clock (dClk).
Here, we study the mathematical model of the clock as
developed by Ueda et al. (2001). In Ueda et al. (2001),
there is a negative feedback loop in which per and tim
mRNAcycle in phase translate toPER andTIMproteins
and form PER:TIM heterodimers that downregulate per
and tim mRNA transcription. An additional negative
feedback loop involves dClk mRNA, which cycles anti-
phase to per and tim mRNA. After translation, dCLK
protein forms a heterodimer with the protein Cycle
(CYC). dCLK:CYC then downregulates dClk mRNA
transcription. The loops are interlocked via additional
regulation—dCLK:CYC upregulates per and timmRNA
transcription and PER:TIM upregulates dClk mRNA
transcription (see fig. 1 in Ueda et al. (2001)).

The network structure in aM. musculus cell involves
three forms of period (per1, per2 and per3), two forms
of cryptochrome (cry1 and cry2), Brain and muscle
Arnt-like protein-1 (Bmal1), clock (clk), and rev-erb a.
The per and cry genes and proteins form a negative
feedback loop similar to the PER:TIM negative feed-
back loop in Drosophila—a form of PER becomes a
J. R. Soc. Interface (2008)
heterodimer with a form of CRY, which then enters the
nucleus and indirectly downregulates transcription of
PER and CRY. This indirect regulation is modulated
by the BMAL1 and CLK proteins. Additionally, REV-
ERB a indirectly upregulates PER and CRY. In this
work, we study two detailed models of the mammalian
clock. One is the 16-state version of Leloup & Goldbeter
(2003), while the other is the 71-state model by Forger &
Peskin (2003). Both models take into account the
regulatory networks outlined above, using different
assumptions about the kinetics necessary to capture
certain subprocesses. Leloup & Goldbeter lump the
various forms of per and cry into a single form of per and
cry, respectively. Forger & Peskin model per1, per2,
cry1 and cry2, but not per3.1 Light is the dominant
external input used to coordinate the cellular clock with
the environment. The presence of regular sunlight
entrains the clock to acquire 24-hour periodicity in
addition to an appropriate phase relationship with
respect to the light/dark cycle. The action of light on
the clock causes it to shift its phase to align the clock’s
internal (subjective) time with the external (environ-
mental) time. The precise mechanism through which
light acts on circadian clock cells is not yet known, but
evidence suggests that it acts by rapid induction of per
expression (Reppert & Weaver 2002). Thus, in both
mammalian models, light is modelled as an increase in
the rate of per transcription.

In both the M. musculus and D. melanogaster
systems, there is stochastic behaviour at the single-
cell level. Through the coupling of these cells, the
population of stochastic oscillators becomes coherent.
We aim to investigate how the communication of
single cells confers robustness in the mammalian
network,2 and how the stable, coherent master clock
is entrained by an external signal. Thus, the math-
ematical model used to investigate coupling and
entrainment relies on the nature of the investigation,
the method, and the computational constraints associ-
ated with the investigation.

In §3, we seek to determine whether the coupling
mechanism is capable of reproducing data at many
different levels. We aim to capture the temporal
variability of the data through the use of a discrete
stochastic model, a quality that was not assessed in a
previous study (To et al. 2007). Thus, we make use of
the most detailed, realistic version of the system that is
currently available. In this manner, we analyse the type
of noise that results from complex biophysical
behaviour, as opposed to idealized noise added to a
simple model. In §4, we introduce stochasticity via
multiplicative white noise and simulate the model as a
system of stochastic differential equations (SDEs). By
moving from a discrete stochastic to a continuous
stochastic framework, the noise we consider is idealized



Table 1. A summary of relevant studies concerning the synchronization and entrainment of fly and mammalian circadian clocks
as they relate to the content of this paper.

section 3 section 4 section 5

objective to determine whether the VIP coupling
mechanism reproduces mammalian
SCN data

to determine how the coupling
mechanism may identify circadian
periodicity

to investigate light as a control
target to optimize the
re-entrainment of biological
oscillators

problem tuning prediction control
tools bifurcation analysis. The study of

deterministic/stochastic models of
single cells

pIPRC analysis. The study of
deterministic single-cell models

the application of model
predictive control (MPC)

model type discrete stochastic models of coupled
oscillators

SDE models of coupled oscillators ODE models of the clock as a
single oscillator

references Leloup & Goldbeter (2003) and
To et al. (2007)

Ueda et al. (2002) Forger & Peskin (2003)
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(rather than variability arising ‘naturally’) and we do
not capture all effects due to low molecule counts.
However, the results reflect biological data (Ueda et al.
2002). The SDE simulation is less computationally
complex than a discrete stochastic simulation, which is
important because we simulate many different coupling
models. To better understand the results of the SDE
simulations, we make use of the noiseless, ODE version
of the model. The combination of these methods allows
for the assessment of more complicated systems.
Finally, in §5, we investigate the interaction between
an external cue (most notably, light) and the coherent
oscillator. Assuming the coherent oscillator defines a
synchronized population of single circadian cells and
knowing that the optimal control algorithm is compu-
tationally expensive, phase resetting properties of the
clock are examined via a set of ODEs that characterize
the dynamics of a single cell. Table 1 provides a
summary of the objectives, tools and resources used to
investigate the synchrony and entrainment problems
outlined for each section.
3Gillespie (2000) offers an explanation of the conditions under which
Langevin and deterministic chemical kinetics approximations are
valid. This is usually the case when populations of all the reactant
species are sufficiently large. This may not be true in the biological
system being modelled, and is not the case in the predictions of the
Leloup&Goldbeter deterministic model (some species concentrations
approach zero during low points in the oscillatory cycle); therefore a
deterministic approximation using ODEs may not be completely
adequate for our purposes.
3. MODELLING COUPLED STOCHASTIC
MAMMALIAN NEURONS

In mammals, the circadian master clock resides in the
suprachiasmatic nucleus (SCN), located in the hypo-
thalamus (Reppert & Weaver 2002). It is a network of
multiple autonomous noisy oscillators, which commu-
nicate via neuropeptides to synchronize and form a
coherent oscillator (Herzog et al. 2004; Liu et al. 2007).
This coherent oscillator then coordinates the timing of
daily behaviours, such as the sleep/wake cycle.
Biological experiments, however, demonstrate that
uncoupled neurons in the SCN are either damped or
sloppy oscillators (Aton et al. 2005). Thus, coupling in
the SCN causes a collection of stochastic, unreliable
oscillators to form a robust oscillator that can be
reliably reset. To unravel the design principles behind
this remarkable behaviour, mathematical models must
incorporate the stochastic properties of the single cell,
while coupling the population of cells through bio-
physical components. A putative coupling agent is the
vasoactive intestinal (neuro)peptide (VIP; Herzog
et al. 2004), whose intercellular concentration levels
J. R. Soc. Interface (2008)
peak during the subjective day. Preliminary results
demonstrate that controlled VIP pulses cause phase
shifts similar to those resulting from light pulses,
suggesting that the VIP signal and target are similar
to those of light and may be modelled correspondingly.
The target of VIP signalling is therefore assumed to be
per transcription (Piggins et al. 1995).

Experimental data demonstrate that isolated
(uncoupled) neurons exhibit both a broad distribution
of periods and temporal (cycle-to-cycle) variability
(Herzog et al. 2004). Hao et al. (2006) and To et al.
(2007) postulated mechanisms through which VIP
signals are received by a cell via signal cascades
culminating in the modulation of the parameter
associated with per transcription. Using an ODE
model, To et al. incorporate this coupling mechanism
into a population of non-identical cells, each of which
is based on the gene regulatory network model of
Leloup & Goldbeter (2003). They simulate scenarios
with no coupling (the cells drift out of phase) and with
coupling (the cells form a coherent oscillator), demon-
strating that their mechanism is capable of creating the
spontaneous synchronization seen in experimental
data. Likewise, their simulations show a broad distri-
bution of periods across cells. However, because they
use a deterministic model, they do not reproduce cycle-
to-cycle variation. We develop a discrete stochastic
model based on that in To et al. (2007) incorporating

intrinsic noise, and consequently temporal variability.3

We simulate this model in a two-dimensional grid of 25
SCN neurons using a software package (STOCHKIT,
http://www.cs.ucsb.edu/wcse/StochKit) based on the
stochastic simulation algorithm (SSA; Gillespie 1976,
1977). Successful synchronization of 25 coupled cells
validates the mechanism in the presence of noise.

http://www.cs.ucsb.edu/~cse/StochKit
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Figure 1. Per mRNA population as a function of basal
transcription rate nsP 0 in uncoupled cells. The solid line
represents a simulation where nsP0Z1, the dashed line nsP0Z
1.5 and the dotted line nsP0Z2. For nsP0 below 1.2, per mRNA
concentrations exhibit damped oscillations for the 10 day
period simulated.
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Figure 2. (a) The time series of per mRNA concentration is
shown for a single SSA simulation of a 5!5 grid of cells.
(b) For 10 SSA simulations of the grid, we show themean degree
of phase coherence with error bars indicating the standard
deviation; the solid line represents simulations where nsP0Z1,
the dashed line nsP0Z1.5 and the dotted line nsP0Z2.
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3.1. Simulating a single cell

The introduction of noise alters the behaviour of the
single cells such that additional tuning is required to
achieve synchrony. In particular, because VIP signal-
ling ultimately manifests as modulation of the rate of
per transcription, special attention must be paid to the
levels of per mRNA and its rate of transcription, nsP(t).
The basal rate nsP0 characterizes the behaviour of an
isolated cell: per mRNA oscillations are damped when
nsP0!1.2 and sustained when nsP0R1.2 (figure 1).
Fig. 6 in Leloup & Goldbeter (2004) shows the period
versus nsP0, which peaks at nsP0Z1.5 with a period of
23.8 hours. The depletion or accumulation of per
mRNA that occurs when nsP0 is below 1.2 indicates
that the balance is upset between the transcription rate
and the combination of the transport (from nucleus to
cytoplasm) and degradation. For the coupled popu-
lation to exhibit synchrony, we have observed that the
median value of nsP(t) must stay within the range that
produces oscillations in an individual cell. Thus to
achieve synchrony, the basal transcription rate nsP0 has
been set to 1.5 for the coupling topology and volume
used in this work. At this basal transcription rate, all
isolated cells are oscillators.
3.2. Simulating a population

Simulation of a 5!5 grid of cells shows that the VIP
coupling mechanism is capable of achieving synchrony
(figure 2) between stochastic cells exhibiting temporal
variability in period and amplitude. To measure the
phase coherence of the cells in a simulation, we use the
radius r(t) of the complex order parameter (Strogatz
2000), computed according to

rðiÞZ 1

N

XN
jZ1

eiðqjKJÞ;

where N is the number of cells; qj is the phase of the jth
oscillator; and J(t) is the average phase. If the
oscillators are in phase, r(t)z1. Here the mean r(t)
across 10 simulations begins at 0.2–0.3 with uniform
random initial phase and increases to 0.8 in 14 cycles
when coupled. These data demonstrate the effective
J. R. Soc. Interface (2008)
response of intercellular signalling that gives rise to
phase synchrony.

As in Gonze et al. (2004), proximity to the bifurca-
tion point nsP0Z1.06 (Leloup & Goldbeter 2004) in the
deterministic ODE model predicts oscillatory
behaviour in the stochastic simulation based on the
same cell model. Unlike the results in Gonze et al.
(2005), synchronization of the 5!5 grid of cells does
not occur when the coupling parameter is below the
bifurcation point where individual cells are damped
oscillators. This is due to both the nature of the
individual cell model and the properties of the coupling
signal, which are dependent on the grid connectivity,
size and coupling strength. The range of nsP0, which
permits synchronization using mean-field coupling,
appears to be bounded on the low end by the
bifurcation point. Further investigation will be needed
to deduce how the upper bound depends on the
coupling network; but for this choice of connectivity
and coupling strength nsP0 has a fairly narrow range
that will allow synchronization. Presumably this is due
to the independent nsP0 signals overpowering the
common coupling signals (Jensen 2002). In Bernard
et al. (2007) this self-feedback is modelled as an
autocrine signal that is scaled with the same coupling
strength as signals from other cells. As the coupling
strength is increased, the autocrine signal is also
increased. This is analogous to increasing nsP0 in this
model to produce rhythmic cells. Maywood et al.
(2006) observed that in an intact SCN the loss of VIP
coupling had the effect of suppressing rhythmicity in
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many cells and loss of synchrony in the cells that
retained rhythmicity. Whether the difference in
behaviours can be attributed to heterogeneity in the
cells themselves or how they are coupled within the SCN
remains an open question (Yamaguchi & Shimizu 1984).
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Figure 3. The pIPRC (black dotted line) and signal trace
(grey solid line) for coupling mechanisms that cause the
coupled SDE system to synchronize with (a) long periods
(slow oscillations; observed tZ25.2119) and (b) short periods
(fast oscillations; observed tZ22.6764). All curves are
relative to the target parameter’s nominal value.
4. ANALYSINGCOUPLEDD.MELANOGASTER
NEURONS

As demonstrated in §3, single-cell simulation can be
used to tune the simulation of a population, bringing
about the desired synchrony. In this section, we present
single-cell analysis as a complement to simulation and
demonstrate that it yields a better understanding of the
behaviour of a coupled population. We analyse the
phase behaviour of an SDE model of 100 coupled
neurons of theD. melanogaster circadian pacemaker. In
an investigation of potential coupling mechanisms,
Ueda et al. (2002) developed a framework with 960
potential coupling mechanisms, each of which includes
a component (source) that generates a ‘synchronizing
factor’ sent to neighbouring cells in a hexagonal lattice.
This synchronizing factor then acts as a signal by
modulating a given target parameter within each cell.

The authors show that a subset of the potential
coupling mechanisms produces spontaneous (phase)
synchronization among the cells. We expand upon their
analyses by simulating the population for each of the
960 coupling mechanisms, 84 of which produce (phase)
synchrony. However, not all synchronized systems
display the same behaviour. Notably, the period of
oscillation is different for each coupling mechanism and
ranges between 20 and 37 hours. Because we are
interested in rhythms that are circadian, we study the
82 coupling mechanisms that produce periods within
20–28 hours. The data describe what will happen, but
leave unanswered questions such as why some source/
target pairs are speeding up the oscillations and some
are slowing them down, and how an adjustment of the
relative timing between the signal and the cell’s phase
would change the timing.
4.1. Theoretical background

There is a rich literature concerning the mathematical
analysis of coupled oscillators (Kuramoto 1984;
Hoppensteadt & Izhikevich 1997; Winfree 2001;
Brown et al. 2004). The most heavily studied systems,
such as the Kuramoto model, assume that interactions
among oscillators are sinusoidal (Kuramoto 1984;
Strogatz 2000) or that they perturb state velocities
directly (Brown et al. 2004). In circadian clock models,
a signal sent to an oscillator ultimately manifests as the
manipulation of a single parameter. Thus, to study the
effects of signalling on the phase behaviour, we must
examine the effects of parametric manipulation on
phase behaviour. We use the parametric impulse phase
response curve (pIPRC; Taylor et al. 2008), which
predicts the oscillator’s velocity change in response to
parametric perturbation. To use the pIPRC, we study a
single neuron, modelled as a set of ODEs with a stable
attracting limit cycle _xðtÞZf ðxðtÞ;pÞ. The solution
along the limit cycle is periodic with period t, and we
J. R. Soc. Interface (2008)
describe its progress along the cycle by its phase f.
When the clock is unperturbed, the phase progresses at
the same rate as time, df(x(t, p))/dth1. When the
clock is perturbed (via a change in the jth parameter),
the velocity response is predicted by the pIPRC

pIPRCjðfÞZ
d

dpj

df

dt
ðtÞ:

Computation is relatively straightforward, requiring
only the solution of the adjoint linear variational
equation and the differentiation of f with respect to pj
(Taylor et al. 2008). This requires the system Jacobian
(which can be estimated numerically or generated
exactly via automatic differentiation) and the state
trajectories over time. Interpretation is also straight-
forward. Consider a signal Dpj(t, f) which is a function
of either time or phase. This signal will change the
oscillator’s velocity according to Df/DtzpIPRCj

(f)Dpj(t, f). For example, figure 3a shows the pIPRC
for the parameter associated with the maximal rate of
degradation for clock component tim mRNA. From
hours 0 to 3, there is a so-called dead zone—a region in
which a signal will cause no change in the phase
velocity. It is followed by a delay zone and then by an
advance zone. Another interpretation of the pIPRC is
that, for a pulse of duration Dt, a phase shift is caused
according to DfzpIPRCjðfÞDpjðt;fÞDt. Using this
interpretation, the pIPRC predicts phase response
curves (PRCs), which have been used by experimen-
talists in the circadian community for over 40 years
(Johnson 1999). The PRC characterizes the clock’s
time-dependent sensitivity to a given stimulus (in this
work, a pulse of light or a neuropeptide) by mapping the
stimulating signal’s arrival time to the resultant phase
shift (Daan & Pittendrigh 1976). The pIPRC can be
said not only to predict the PRC but also to
characterize the timing behaviour of an oscillator alone.
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Figure 4. Observed versus predicted periods. For each
coupling mechanism that produces synchrony there is a plus
or a circle. (a) The x -axis position indicates the period
predicted using a single cell signalling itself. (b) The x -axis
position indicates the period predicted using the pIPRC. For
both subplots the y-axis position indicates the period
observed once collection of noisy cells becomes (and remains)
synchronized. Perfect predictions fall on the dotted line.
The solid lines represent the best fit by linear regression
analysis, with (a) R2Z0.91 (plus) for the single-cell data and
(b) R2Z0.65 (open circle) for the pIPRC-predicted data.
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4.2. Methodology

Each candidate coupling mechanism is described in
Ueda et al. (2002) by the ODEs4 that govern the ith
cell. Each cell contains the components outlined in §2,
e.g. PER, TIM, and dCLK mRNA and proteins. A
candidate coupling mechanism involves a source Y i

(1 of the 10 components of the cell model) and a target
reaction (associated with 1 of the 24 rate parameters pij
of the cell model) in addition to rules about their
interactions. Y i up- or downregulates the synchroniz-
ing factor X i. The concentration of Xi is dependent
upon its dynamics in both cell i and its neighbouring
cells according to eqn. B.1 of Ueda et al. (2002), i.e.

dXi

dt
ZSX

ðY i=AXÞaX
1CðY i=AXÞaX

KDX

Xi

LX CXi

KD0X
i CDc

X
m

ðXmKXiÞ; ð4:1Þ

where the cells indexed bym are the neighbours of cell i
and SX, AX, aX, DX, LX, D0 and Dc are constant
parameters (see appendix B in Ueda et al. 2002). The
values of aX, SX and AX are set depending upon the
regulation ofXk byYk (see table B1 in Ueda et al. 2002).
The levels of Xi in turn up- or downregulate a target
parameter pj in the ith cell according to

p̂ij Z

pij
M CeKkðXiKXhÞ

1CeKkðXiKXhÞ

0
@

1
A; Xk upregulates pkj ;

pij
1CeKkðXiKXhÞ

M CeKkðXiKXhÞ

0
@

1
A; Xk downregulates pkj ;

8>>>>>><
>>>>>>:

ð4:2Þ

where M, k and Xh are constant parameters. The
modulated parameter p̂ij is then used in place of pij . The
signal is

DpijðtÞZ p̂ijðtÞKpij : ð4:3Þ

To understand the period of the synchronized cells of
the Drosophila clock for a given coupling mechanism,
we study the relationship between the signal (Dpj) and
the pIPRC for the target. To acquire the signal, we
capitalize on the stable synchrony and make the
additional assumption that it is reasonable to ignore
any effects due to stochasticity—in a noiseless synchro-
nized system, each neuron contains the same concen-
tration of X at the same time. This enables us to use a
deterministic single-cell simulation. Equation (4.1) is
altered to incorporate the assumption that XiZXg for
all cells g, leading to

dXi

dt
ZSX

ðY i=AXÞaX
1CðY i=AXÞaX

KDX

Xi

LX CXi
KD0X

i:

ð4:4Þ

In the simulation, equations (4.2) and (4.3) provide
the signal Dpij at each time step, but we prevent the cell
from ‘signalling itself’ by disregarding p̂ij and using pij .
4This model is simulated as an SDE with multiplicative noise added
to each of the rate parameters, but is expressed as a collection of
ODEs.

J. R. Soc. Interface (2008)
The signal Dpij and pIPRCj are computed with the same
single-cell ODEs, share the same period and can be
plotted together for the ease of comparison. Two
example signals along with their associated pIPRCs
are shown in figure 3.

Before we begin our analysis, we evaluate the
predictive power of the single-cell deterministic model
and of the pIPRC for each potential coupling
mechanism. First, we predict the period of the
synchronized SDE population by simulating a single-
cell ODE model, allowing it to signal itself. As above,
we replace equation (4.1) with equation (4.4). Unlike
above, we use p̂ij . After several cycles, it converges to a
new limit cycle with a new period—a prediction of the
period of the synchronized system. In figure 4a we plot
our prediction for the new period against the observed
period of the SDE model of the full population.
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The square of the Pearson correlation coefficient, R2, is
0.91 and the data are located within an hour of the
observed values.

Next, we use the pIPRC directly to make similar
predictions. Under the assumptions that the oscillators
are identical and that the coupling is sufficiently weak
(and thus f does not deviate significantly from time),
we use the method of averaging to predict the change in
period. This is analogous to methodology used in the
coupled oscillator literature (Kuramoto 1984),5 but is a
novel application of the pIPRC. By replacing time with
f as the independent variable, we predict the change in
period by assessing the effect of the signal on the
oscillator over a single cycle. Integrating over the cycle

DtzK

ðt
0
pIPRCjðfÞDpjðfÞ df;

we find that the predictions are qualitatively accurate.
Figure 4b shows the predicted period change of the
synchronized system versus the observed period change
of the synchronized system. The R2 value between the
observed and predicted periods is 0.65. The data are
more scattered than those from the full cell simulation,
though the majority are within 1 hour of perfect
prediction. We conclude that although neither of
these methods is a perfect predictor, their qualitative
correctness supports our approach.
4.3. Phase response behaviour

Figure 3a shows the signal and pIPRC for a coupling
mechanism that causes the system to slow down. In this
mechanism, nuclear PER:TIM upregulates the syn-
chronizing factor, which upregulates the maximal rate
of degradation for clock component tim mRNA.
Figure 3b shows the signal and pIPRC related to a
coupling mechanism in which cytoplasmic dCLK
upregulates the synchronizing factor, which upregu-
lates the maximal rate of dClkmRNA degradation. The
pIPRCs by themselves provide insight into the oscil-
lator. First we observe that the pIPRCs associated with
dClk mRNA degradation and tim mRNA degradation
peak in anti-phase with each other. This is an intuitive
result, as the traces of dClk mRNA and tim mRNA
peak in anti-phase with each other (see Ueda et al. 2002;
figure 1). Less intuitive is the absence of an appreciable
delay zone in the dClkmRNA degradation pIPRC. This
is in direct contrast with the tim mRNA degradation
pIPRC, which shows a large delay region. We might
expect dClk and timmRNA degradation to have similar
but anti-phase effects, because the dynamics concerning
dClk and tim mRNA have a similar construction (both
are regulated by the same proteins, but with opposite
effects). However, intuition alone fails to capture the
full effects of the complex intracellular dynamics.

The relationship between the signal and pIPRC
allows us to understand how the period of the SDE
5Kuramoto and others use the method of averaging to compute the
so-called interaction function between oscillators. The interaction
function for the synchronized system provides the period change.
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population is determined. In figure 3a, the signal arrives
at the tail end of the advance zone and is active during
the dead zone and the first half of the delay zone,
leading to a cycle that is slower than nominal. Other
synchronization-causing coupling mechanisms that
upregulate tim mRNA degradation use different com-
ponents to regulate the synchronizing factor. This
results in different phase relationships between the
signal and pIPRC, and ultimately in periods that are
both fast and slow (see electronic supplementary
material, figure 1). In figure 3b, the pIPRC shows
nearly negligible delay regions. It follows that, regard-
less of the phase relationship between the signal and
target, the oscillator will respond by speeding up. In
fact, there exist two additional coupling mechanisms
that upregulate dClk mRNA degradation, and they
produce populations with short periods as well (see
electronic supplementary material, figure 2).

In both of these mechanisms (and in all mechanisms
that produce synchrony), the relationship between the
signal and target meets the criteria for stable entrain-
ment (data not shown). If the signal arrives early
(because the phase of the system is a little behind), the
system is sped up more (or slowed down less) than usual
and vice versa. The study of the pIPRC and signal is
consistent with the observed behaviour—the mutual
entrainment is stable and the system remains synchro-
nized. However, meeting the conditions for mutual
entrainment is merely a necessary factor; there exist
pairs that meet the requirements for stable entrainment
but do not yield a transition to synchrony (data not
shown). This is due to the relatively large perturbations
caused by the signal in conjunction with the stochas-
ticity in the simulations.
5. PHASE ENTRAINMENT

Just as signalling among cells serves to synchronize the
phase of the network, signals from the environment
serve to entrain, or reset, the phase of emergent
coherent oscillators. More specifically, environmental
factors such as light induce phase shifts that calibrate
an organism’s internal phase to external time.

Exploring phase resetting through controlled light
pulses is not a recent interest. In the early 1970s,
Daan & Pittendrigh investigated light-induced phase
shifts in free-running organisms through the develop-
ment of PRCs. Watanabe et al. (2001) build upon
Daan & Pittendrigh’s investigation of light-induced
phase shifts in free-running organisms by proving that
entrainment in mammals involves both advance and
delay components of the PRC. Boulos et al. (2002)
extend the application of PRCs by establishing bright
light treatment as a means to accelerate circadian
re-synchronization rates. Similarly, Forger & Peskin
(2005) invoke calculus of variations and an analysis of
phase space to find the optimum stimuli that start, stop
and reset the phase of a simplified biological oscillator.
In a previous study, we optimized the re-synchrony of
a detailed mammalian circadian oscillator to the
environment through the systematic application of
light. We showed that a closed-loop model predictive
control (MPC) algorithm is an effective (and realistic)



S24 Circadian synchrony and entrainment N. Bagheri et al.
means of resetting the organisms’ phase (Bagheri et al.
2007). Through MPC, we were able to eliminate an
induced phase difference between an organism (whose
biological clock is modelled as a single deterministic
oscillator) and the natural 24 hour light/dark environ-
ment. In other words, we synchronized the timing of the
internal circadian clock with that of the Sun cycle. Here,
we investigate phase resetting dynamics as a function of
theMPC tuning parameters (described in §5.2) as well as
the attributes of the driving force (light).
5.1. A general nonlinear mammalian model

The circadian dynamics of a single deterministic
M. musculus limit cycle oscillator (Forger & Peskin
2003) serves as the example system. The model is
generalized as a set of nonlinear ODEs with time t,
n-length state vector x(t), environmental light input
L(t), controlled light input u(t) and system dynamics
f(x(t), L(t), u(t))

_xðtÞZ f ðxðtÞ;LðtÞ; uðtÞÞ;
xðt0ÞZ xð0Þ:

In this paper, the nominal model (a version of the
model that has converged to the natural light/dark
environment where u(t)Z0 and L(t) oscillates as a
square wave between values 3.39!10K2 and 0) is used
to define the reference r(t). A circadian time of 0 reflects
dawn while a circadian time of 12 reflects dusk,
assuming regular 24 hour day/night cycles.
6m and p reflect the number of discrete time points that make up the
move and prediction horizons, respectively: mZM/ts and pZP/ts.
5.2. Optimizing the manipulated control profile

MPC (Morari & Lee 1999) describes a strategy that
relies on a (most often linear) mathematical represen-
tation of the system (in this case, circadian rhythms) to
predict the output, or response, of the system with
respect to a given control input. With phase entrain-
ment as the objective, we define the output as a
measure of phase synchrony with respect to the control
variable, light. By simulating the future behaviour of
the system, we are able to optimize the control input
based on the cost, or quantified fitness, of the predicted
response. Hence, MPC is used to increase the resyn-
chronization rate of circadian oscillators through the
systematic addition of light. The algorithm samples
the system output (protein concentrations) every
tsZ2 hours, updating the mathematical model and
simulating a discrete time system with index kZ tjts .
The manipulated light profile u(k) optimizes the
performance objective on a time interval extending
from the current time to the current time plus a
prediction horizon (the time interval over which the
simulation of the predictive mathematical model is
run) PZ54 hours, where kZ tCPjts . This horizon
allows the algorithm to take control action at the
current time in response to a forecasted error. The move
horizon M limits the number of controlled light pulses
within the prediction horizon such that u(k) spans a
time interval tjts ; ðtCMÞjts

� �
; by definition, the move

horizon must be less than or equal to the prediction
horizon. Beyond M hours of simulation, the control
J. R. Soc. Interface (2008)
input defaults to u(k)Z0. Future behaviours for a
variety of control inputs are computed according to the
model of the plant.

Given uminZK3.39!10K2, umaxZ3.39!10K2 and
L(k)Cu(k)R0, the cost function penalizes the
normalized predicted error between the reference and
controlled trajectories e(k) and its corresponding
control sequence u(k). To avoid penalizing transient
effects, the state error is weighted uniformly over the
move horizon (reflected in the firstm diagonal values of
the p!p matrix Q) and with increasing weight of slope
2 over the prediction horizon (reflected in the pKm to p
diagonal values of Q).6 The cost of applying a light
input is weighted uniformly with a magnitude of 1 as
reflected in the diagonal values of the m!m matrix R.

The performance of an M-length control input is
measured by

J Zmin
uð$Þ

½ðeQÞTðeQÞCð�uRÞTð�uRÞ�:

Only the first move of the lowest cost control sequence
u� is implemented. Therefore, the sequence of actually
implemented control moves may differ significantly
from the sequence of control moves calculated at a
particular time step. This discrepancy disappears as the
prediction and move horizons near infinity. Feedback is
incorporated by using the next measurement to update
the optimization problem. Once the controlled state
trajectories converge to within 15% of the reference
state trajectories, the system is considered to have
recovered its phase in TrZmink ½jeðkÞjN%0:15� hours.
For further details concerning the development and
implementation of MPC as applied to circadian net-
works, the reader is referred to Bagheri et al. (2007).
5.3. Tuning the MPC parameters

The best fit control sequence is determined by
enumerating the solutions over a grid in the solution
space (light magnitude as a function of time). The
algorithm approaches a globally optimal solution as the
total possible quantization steps of the control input
increase. We test the efficacy of the algorithm with
respect to a quantization of 2, 4, 8 and 16 steps. Results
suggest that the shorter recovery time may not
outweigh the increase in computation time
(figure 5a). Therefore, we investigate solutions for 2
and 8 possible control values.

Similarly, we evaluate the algorithm with respect to
a control input of duration of 1, 2 and 3 hours (reflecting
a move horizon of 3, 6 and 9 hours, respectively).
Although shorter light pulses offer a more dynamic
manipulated variable profile, it shortens the move
horizon and may reduce the usefulness of MPC
(figure 5b). Conversely, a longer pulse may reduce the
possible control profiles since extended exposure to
light leads to arrhythmic behaviour (Ohta et al. 2005).
We set the duration of control to 2 hours.
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Figure 6. Theopen-loop (natural) phase recoverydynamics asa
functionof the initial condition (IC) and initial phasedifference.
The shading of recovery times (shown on the vertical axis) is
consistent along the IC and among figure 7a and figure 7b.
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Figure 7. (a) Two-step and (b) eight-step closed-loop controls.
The shading of closed-loop MPC recovery times (shown on
the vertical axis) as a function of the IC and IP is consistent
along the IC. The vertical axes, however, are not the same;
refer to table 2 for a direct comparison of phase resetting
dynamics among the presented algorithms. An ICZ12 hours
is one of the few data sets whose recovery time decreases with
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Figure 5. (a(i),b(i)) State dynamics as they converge to the
reference trajectory, the bold solid lines. (a(ii),b(ii)) The light
profiles used to reset the phase differences; these sequences also
converge to nominal light/dark cycles, the bold solid lines.
Control action begins at (a) 12 hours and (b) 18 hours, resetting
the phase differences (IP) of (a) 8 and (b) 6 hours. (a) The
recovery time associated with a control input that allows
2 (dotted lines), 4 (dot-dashed lines), 8 (dashed lines) and
16 (solid lines) possible values is 36.8, 35.6, 34.7 and
34.6 hours, respectively. (b) The recovery time associated with
a 1 (dotted lines), 2 (dot-dashed lines) and 3 (dashed lines)
hour control input is 36.7, 34.7 and 35.2 hours, respectively.

Circadian synchrony and entrainment N. Bagheri et al. S25
5.4. Phase recovery dynamics

The nonlinear properties of biological oscillators often
cause different phase resetting times with respect to
the initial condition (IC, the circadian time at which
the control begins) and initial phase difference (IP, the
amount of circadian time that needs to be recovered).
We generate phase recovery dynamics for the open-loop
algorithm7 where environmental light/dark cycles
entrain the system (figure 6), and the closed-loop
MPC algorithm where the manipulated control vari-
able (light) has 2 and 8 possible values (figure 7). Since
greater control flexibility.

7The open-loop algorithm is one in which there is no feedback; the
light input does not depend on the current phase of the system.
Instead nominal/environmental 24 hour light cycles are used without
a priori state information.

J. R. Soc. Interface (2008)
nonlinearity also challenges the uniqueness of optimal
light sequences, we choose the control profile that
minimizes the magnitude of total admitted light, hence
penalizing the weighted sum of u($) (refer to §5.2).



Table 2. Maximum recovery times (in hours) with respect to ICs and initial phase differences (also in hours). (The italic text
reflects the maximum recovery time over the entire set.)

open loop two-step algorithm eight-step algorithm

IC recovery IP recovery IP recovery IP

0 32.50 K6 31.80 K9 31.40 K9
3 31.40 K9 28.00 K6 28.10 K9
6 47.50 K9 26.00 K9 28.60 K9
9 46.90 G12 23.80 G12 23.20 G12
12 64.70 G12 28.40 G12 21.10 G12
15 61.70 G12 24.70 K3 21.50 K3
18 40.80 6 36.80 K6 34.70 K6
21 35.50 K6 34.00 K9 34.30 K6
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Recovery times are described as a function of both
the IC and initial phase difference to better visualize the
nonlinear dynamic behaviour of phase resetting.
The open-loop environmental control strategy (figure 6)
requires (at most) 64.7 hours to synchronize aG12 hour
initial phase difference beginning at an IC of 12 hours
(table 2; Bagheri et al. 2007). The closed-loop two-step
algorithm (figure 6) improves upon the maximum
recovery time as it requires only 36.8 hours to recover
a 6 hour initial phase difference (at ICZ18 hours).
Surprisingly, the eight-step algorithm (figure 6) does not
significantly improve phase resetting as it requires
34.7 hours to recover the same conditions. For this
reason, a two-step algorithm (which requires approx.
0.17 hours of computation time per simulation) is more
efficient for real-world applications—such as light
therapy—than the eight-step algorithm (which requires
approx. 3.5 hours of computation time per simulation).

Although the closed-loop algorithm significantly
increases re-synchronization rates, using two possible
control values is often just as effective as using eight
possible control values; the flexibility of control has
little effect on the MPC algorithm. Such results support
the hypothesis that, in general, natural light/dark
cycles are not optimized to reset large phase differences
(Bagheri et al. 2007). Instead, organisms may have
evolved to efficiently reset small phase differences since
rapid transit across multiple time zones is a recent
innovation. Although the medical community has
explored the benefits of light therapy, there are very
few algorithmic approaches to optimal light pulsing and
none that employs the MPC algorithm presented here.
The admission of morning light, for instance, has
already been considered as an antidepressant by
realigning the internal clock with the environment
(Lewy et al. 2006). Studies suggest that the human
circadian clock mechanism functions similarly to those
of other organisms (Boivin et al. 1996). This similarity
may be attributed to shape/amplitude characteristics
of their respective PRCs. This parallel motivates the
experimental application of controlled light pulses for
phase resetting in mammals, despite the lack of
quantitatively predictive mammalian models. Further-
more, melatonin has proven to be a key circadian phase
resetting agent for totally blind people who cannot
synchronize to environmental day/night cycles (or do
so at an abnormal time; Lewy et al. 2006). Therefore,
J. R. Soc. Interface (2008)
melatonin may be used individually (in cases to treat
the totally blind), or in combination with light to
provide more effective phase resetting. Although the
applications are plenty, we acknowledge that the means
through which we quantify phase in this study (namely,
by collecting data at the molecular level) may not be
readily feasible. However, behavioural and/or physio-
logical parameters that are controlled by and correlated
with the circadian clock’s dynamics (such as activity or
body temperature) are easily accessible. Assuming we
link such physiological markers with circadian phase,
one can implement this phase re-entrainment algorithm
in practice.

Further studies may include the investigation of
phase resetting dynamics as a function of environ-
mental day length. This application would address
circadian-related disorders common among people who
live near either pole. As the day length decreases,
people are exposed to less light and may be at a higher
risk of de-synchronizing their internal clocks with that
of their environment (Lamberg 1994; Moore 1997).
6. CONCLUSION

We employ systems theoretic tools to investigate the
circadian phase properties of single deterministic
models, and populations of stochastic models. Our
investigations have illustrated that computational
techniques applied to single-cell data are fundamental
for tuning and predicting the behaviour of oscillatory
phenomena at the population level, since the results of
such investigations point to the coupling mechanisms
that give rise to spontaneously synchronized networks
of stochastic biophysical nodes. Without such insight,
we would not have been able to reproduce the
synchrony observed in the SCN. As a result, it is
important for experimental biologists to adopt the tools
necessary to analyse the structure of both in vitro and
in vivo systems.

Biologists may further benefit from the analysis of
mathematical models, since the circadian phase
response may target areas of further experimental
interest. Our investigation of the Drosophila clock
model, for instance, suggested that only 82 (out of 960)
cellular coupling mechanisms would provide synchrony,
significantly decreasing the number of candidates an
experimentalist may consider. Even further, circadian
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phase analysis may point to non-photic control targets
that may be used in place of, or in combination with,
light as a means of optimizing phase resetting.

In summary, the study of synchronization supports
the reverse engineering of the clock in the SCN while
providing a foundation to engineer other communi-
cation networks. Analysis of the pIPRC provides
separation of the timing characteristics of the oscillator
and signal. Altering the signal (duration, magnitude or
shape) can have profound effects prescribed by the
pIPRC. For example, it is possible to speed up an
oscillator when (and only when) there is an advance
area in the target pIPRC. To synchronize, the signal
must meet the conditions for stable entrainment.
Through MPC, we solve for a sequence of light pulses
that resets the circadian clock in a fraction of the time
required by natural open-loop entrainment. The study
of circadian phase entrainment provides a forum to
address the re-synchronization properties of the clock,
at both the single-cell and population levels.
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