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Mapping global sensitivity of cellular
network dynamics: sensitivity heat maps

and a global summation law
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The dynamical systems arising from gene regulatory, signalling and metabolic networks
are strongly nonlinear, have high-dimensional state spaces and depend on large numbers of
parameters. Understanding the relation between the structure and the function for such
systems is a considerable challenge. We need tools to identify key points of regulation,
illuminate such issues as robustness and control and aid in the design of experiments. Here,
I tackle this by developing new techniques for sensitivity analysis. In particular, I show how
to globally analyse the sensitivity of a complex system bymeans of two new graphical objects:
the sensitivity heat map and the parameter sensitivity spectrum. The approach to sensitivity
analysis is global in the sense that it studies the variation in the whole of the model’s solution
rather than focusing on output variables one at a time, as in classical sensitivity analysis.
This viewpoint relies on the discovery of local geometric rigidity for such systems, the
mathematical insight that makes a practicable approach to such problems feasible for highly
complex systems. In addition, we demonstrate a new summation theorem that substantially
generalizes previous results for oscillatory and other dynamical phenomena. This theorem
can be interpreted as a mathematical law stating the need for a balance between fragility and
robustness in such systems.

Keywords: sensitivity; robustness; mathematical models; circadian clocks;
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1. INTRODUCTION

It has recently been emphasized that uncovering the
design principles behind complex regulatory and
signalling systems requires an analysis of degrees of
complexity that cannot be grasped by intuition alone
(Csete & Doyle 2002; Kitano 2002, 2004; Stelling et al.
2004b). This task requires some form of mathematical
analysis and the discovery of some more universal
principles. In particular, this is true of two related key
aspects of the design principles problem: firstly,
determining how such systems address the need for
robustness and trade-off robustness of some aspects
against fragility of others; and, secondly, determining
the key points of regulation in such systems, aspects
of the network that are crucial to its behaviour
and control.

Because it identifies which parameters a given
particular aspect of the system is most sensitive to,
classical sensitivity analysis (Hwang et al. 1978; Kacser
pplementary material is available at http://dx.doi.org/
008.0084.focus or via http://journals.royalsociety.org.
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et al. 1995; Heinrich & Schuster 1996; Campolongo
et al. 2000; Stelling et al. 2004a) is a very useful tool that
has been used to address both of these aspects.
However, apart from some summation theorems
about the control coefficients for period and amplitude
of free-running oscillators that are analogous to those
derived as in metabolic control analysis (Kacser et al.
1995; Heinrich & Schuster 1996; Fell 1997), there is
currently rather little general theory about general
non-equilibrium networks. There is a great need to
develop tools that give a more integrated picture of all
the sensitivities of a system and to develop more
coherent universal or widely applicable general
principles underlying these sensitivities. To this end,
we provide a compact and easily comprehensible
representation of all the sensitivities and a precise
statement of the robustness–fragility balance (a global
summation theorem).

Control coefficients have been widely used particu-
larly in the engineering sciences and metabolic control
theory. In such applications, it is natural to fix a
particular observable or performance measure Q of
interest and then ask how sensitive this is to the various
parameters. However, in many systems biology appli-
cations there are multiple performance measures of
interest. For example, in the study of circadian
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Table 1. A list of some models analysed together with the number of state variables n, the number of parameters s and the rate of
decay a of the singular values si (i.e. log10 siwKai). (The superscripts ‘u’ and ‘f’ for the circadian oscillators indicate,
respectively, the values for the cases where the oscillator is unforced and forced by light.)

model n s a

Neurospora clock; Leloup et al. (1999) 3 10 0.30u/0.26f

Drosophila clock; Leloup et al. (1999) 10 38 0.24u/0.19f

Drosophila clock; Ueda et al. (2001) 10 55 0.15u/0.20f

Drosophila clock; Tyson et al. (1999) 2 9 0.48u

mammalian clock; Leloup & Goldbeter (2003) 16 53 0.21u/0.17f

mammalian clock; Forger & Peskin (2003) 73 36 1.63f

yeast cell cycle; Tyson et al. (2002) 9 26 0.27
full NF-kB model; Hoffmann et al. (2002) and Nelson (2004) 24 35 0.45
glycolytic oscillations; Ruoff et al. (2003) 9 10 0.44

2 4 6 8 10 12 14

0

–1

–2

–3

lo
g 10

–4

–5

index 

Figure 1. The plot shows log10 si for the largest singular values
of the models in table 1. The case shown is for relative changes
in both parameters and the solution (as explained in §2.4). We
see that, for all these examples, the si decay exponentially like
expðKaiÞ and that the rate of decay aO0 varies significantly
from model to model. The models are listed in the same order
as in table 1, which are as follows: open circle, Neurospora;
open square, Drosophila 1; open diamond, Drosophila 2;
open down triangle, Drosophila 3; open up triangle, mamma-
lian 1; filled circle, mammalian 2; filled square, cell cycle;
filled diamond, full NF-kB; filled down triangle, glycolytic
oscillations.
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oscillators one is interested in many aspects such as the
free-running period, the strength of entrainment and
the consequent phases of the various molecular
products, the phase response curves, period and phase
as a function of temperature and the response to
different day lengths. For signalling systems such as
that of the NF-kB system, one is interested in multiple
aspects of the response to a signal related to its
strength, timing, persistence, decay and transient,
equilibrium or oscillatory structure. Moreover, in the
search for key points of regulation there may be aspects,
where the system is particularly sensitive, that do not
correspond to obvious performance measures. There-
fore, it would be extremely useful to have an effective
approach that will find the sensitivity of all the
performance measures and operating aspects of a
given model.

The approach to sensitivity analysis developed here is
a global one that studies the variation of the whole
solution rather than focusing on just one output variable.
In addition, this more global approach allows us to
address which observable variables Q (henceforth called
observables) are affected bywhich parameters kjwithout
having to choose the variable or parameter in advance.
The results of this analysis can be summarized in

— the sensitivity heat map (SHM ) fromwhich one is able
to effectively identify those observables Q that are
sensitive to some parameter, and

— the parameter sensitivity spectrum (PSS ) that charac-
terizes the sensitivity of these observables and the
system as a whole with respect to each parameter.

The crucial observation that makes the theory
applicable in practice by ensuring that for a given
tolerance the above objects are compact and manage-
able is that such network systems are rigid in the
following sense. The map from parameters to the
corresponding solutions of interest (a map from a
high-dimensional space R

s to an infinite-dimensional
solution space) locally maps round balls to ellipsoids
with axes lengths s1Rs2Rs3/Rss where the lengths
si decrease very rapidly. This is rigidity because
random jiggling of the parameter vector in the high-
dimensional parameter space results in the variation of
the solution of interest that effectively occupies a space
of much lower dimension.
J. R. Soc. Interface (2008)
The sensitivity principal components (PCs) Ui(t)
that we present in §2 are key components of our theory.
These are multidimensional time series from which all
system derivatives can be calculated and whose import-
ance rapidly decreases as i increases. We show that,
when the parameters being varied are a full set of linear
parameters, the sensitivity PCs satisfy a global sum-
mation theorem which says that a certain linear
combination of them sums to a function that is simply
related to the original differential equation. This global
summation theorem contains within it the other known
simple summation theorems for dynamic systems such
as those for the period and amplitude of an oscillatory
solution of an unforced oscillator. However, it is a
substantial generalization because it relates a set of
functions rather than a set of numbers and thus is
effectively an infinite number of simple summation
conditions. Moreover, unlike the classical summation
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Figure 2. C1(t)Zs1U1(t) for the model of the mammalian circadian clock due to Leloup & Goldbeter (2003) with no forcing by
light (i.e. in DD). Each of the 16 components C1,mZs1U1,m is represented by a coloured strip that shows the value of C1,m(t) at
the corresponding time 0%t%T, where T is the period of the oscillation. In order to highlight their structure the C1,m are scaled
by a factor 1/am so that the values taken by C1,m(t ) fill a maximal range of the interval from minm0,tC1,m0(t) to maxm0,tC1,m0(t).
They are shown in order of decreasing am and the values of am are shown in the column headed ratio. Thus one sees that the
amplitude am of C1,m for CRY protein is more than 100 times that of phosphorylated cytoplasmic PER CRY complexes or
phosphorylated cytoplasmic BMAL1 protein. A glance shows that CRY is the most sensitive in that am is largest, followed by
cytoplasmic PER CRY complexes (cyto PER:CRY), nuclear PER CRY complexes (nuc PER:CRY), Per mRNA and PER
protein in that order. We can also quickly see at what times or phases these variables are fragile or robust. Thus we see that CRY
is most fragile at times close to tZ14.5 hours and relatively fragile over a broad band of phases centred on this time, while the
variable for nuclear PER CRY complexes is most fragile close to tZ18 hours, but even there, much less so than CRY. On
the other hand since their amplitude is so small, the last six variables are relatively insensitive at all phases. In calculating these
sensitivity PCs no scaling of the dynamical variables is carried out but the scaled parameters hjZlog kj have been used. In cases
where these variables have significantly different scales, it is usually preferable to scale the variables to concentrate on relative
changes rather than absolute ones. As is explained in §3, this scaled approach is very easy to implement. In (b), the curves are as
follows: dark blue, CRY; green, cyto PER:CRY; red, nuc PER:CRY; light blue, Per mRNA; purple, PER.
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theorems, it applies to non-autonomous systems such
as forced oscillators as well as to autonomous systems.

I have applied the theory to a broad range of examples
(table 1), but for the purposes of discussion and
illustration in this paper we will mainly consider two
representative examples: a model of the mammalian
circadian oscillator (Leloup & Goldbeter 2003) and a
version of the Hoffmann model for the NF-kB signalling
system (Hoffmann et al. 2002).The former is a reasonably
representative example of a periodically oscillating
system and for the latter the solution of interest is a
transient solution produced by an incoming signal.
2. RESULTS

Suppose we are considering a regulatory or signalling
system modelled by the differential equation

_x Z
dx

dt
Z f ðt; x; kÞ; ð2:1Þ
J. R. Soc. Interface (2008)
where t is time; xZðx1;.; xnÞ are the state variables of
the system; and kZðk1;.; ksÞ is a vector of parameters.
The vector kmay contain all the parameters but we will
also consider the case where it only contains some and
where the other parameters are held fixed and only
k1;.; ks are varied. For example, k may consist of just
those parameters that the system is particularly
sensitive to or may consist of just the linear parameters
as defined in §2.5.

In general, there will be a solution xZgðt; kÞ or a class
of solutions defined for a specific time range 0% t%T
that are of particular interest. For example, for circadian
oscillations the primary object of interest is an attracting
periodic orbit of equation (2.1) and T will be the period
of this orbit. On the other hand, for models of signalling
systems, one is often interested in a solution that is not
periodic but is defined by a given initial condition x0.
Such a signalling system is usually also subject to a given
perturbation caused by an incoming signal and this
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will typically be modelled by a sudden change in a
system parameter or by the time dependence of the r.h.s.
f ðt; x; kÞ of equation (2.1).

In regulatory and signalling systems, the values of two
parameters may differ by an order of magnitude or more.
Therefore, it is usually not appropriate to consider the
absolute changes in the parameters kj, but instead to
consider the relative changes. A good way to do this is to
introduce new parameters hjZ log kj because absolute
changes in hj correspond to relative changes in kj. Then,
for small changes dk to the parameters, dhjZdkj=kj , so
the changes dhj are scaled and non-dimensional.
2.1. Fundamental observation

There are two aspects to the fundamental observation
behind the tools and analysis presented here. The first is
that for such regulatory and signalling systems there are
the following easily computable objects:

(i) a set of n-dimensional time seriesUiðtÞ ZðUi;1ðtÞ;
.;Ui;nðtÞÞ, iZ1;.; s defined for 0% t%T ,
which are of unit length and orthogonal to each
other in the sense of equation (2.3),

(ii) a decreasing sequence of s positive numbers
s1R/Rss called sensitivity singular values, and

(iii) a special set of new parameters lZðl1;.; lsÞ
that are related to the original (scaled) parameter
variations dh by an orthogonal linear transfor-
mation W (i.e. liZ

P
j Wij dhj),

with the following key property that connects them: if
dh is any change in the (scaled) parameter vector then
the change dg in the solution g of interest is given by

dgðtÞZ
X
i

lisiUiðtÞCOðkdhk2Þ: ð2:2Þ

The second aspect is that for a broad range of
networks such as those in table 1, the amplitudes
s1R/RssR0 actually decrease very rapidly, usually
exponentially in the sense that log si decreases linearly
with i, i.e. siwexpðKiaÞ, aO0.

TheUi are of unit length and orthogonal to each other
in the following sense

Xn
mZ1

ðT
0
Ui;mðtÞUj;mðtÞdt Z dij ; ð2:3Þ

where dijZ0 if isj and equals 1 if iZj. These are called
sensitivity PCs.

We stress two points here: (i) that the given system
and solution of interest determine the Ui , the si , W and
the li and (ii) that the change dg is described by (2.2) in
terms of these for any parameter perturbations dh.

It can easily be shown (see the electronic supple-
mentary material) that the derivatives vg=vhj of the
solution g with respect to the parameters hj are given by

vg

vhj
Z

Xs

iZ1

SijUi; ð2:4Þ

where SijZsiWij.
One can regard equation (2.3) as saying that Ui and

Uj (isj ) are uncorrelated as functions of time t. The
J. R. Soc. Interface (2008)
derivatives vg=vhi and vg=vhj will in general be
correlated with each other and writing them as in
equation (2.4) is a decomposition of them into uncorre-
lated time series. Since the si decay rapidly from a
significant value we see that, in fact, the derivatives are
highly correlated and their correlation is concentrated in
a few components Ui with low values of i .

The usefulness of the Ui , the si and the Sij arises from
a combination of the following facts:

(i) they are straightforward to compute (see §3),
even for very complex models,

(ii) classical sensitivity coefficients can be expressed
in terms of them,

(iii) when represented in a heat map (see below), one
can rapidly map out all the sensitivities of a
complex model, and

(iv) since the amplitudes si get small very quickly, for
a broad class of network models it is usually
necessary to consider only a small number of the
dominant Ui.

Let us illustrate the fundamental observation by
considering the two models mentioned above. For the
modified Hoffmann model (Hoffmann et al. 2002), there
are nZ10 state variables x 1;.; x10 corresponding to the
concentrations of nuclear and cytoplasmic NF-kB and
IkBa and their complexes plus IKK, and sZ42
parameters kj most of which are rate constants. This is
a simplified version of the model in Hoffmann et al.
(2002) in which, of the IkB’s, only IkBa is included
and not IkBb and IkB3. The solution g(t) considered
is the transient orbit produced when an incoming
signal at tZ0 increases the level of IKK above the
equilibrium level. The IKK is washed out at tZ600 min.
The mammalian clock model (Leloup &Goldbeter 2003)
has nZ16 state variables and sZ53 parameters. Both
have rapidly decreasing sensitivity spectra as is shown
in figure 1. The s1-scaled sensitivity PC C1ðtÞZs1U1ðtÞ
for the above model of the mammalian oscillator is
shown in figure 2 as a heat map. Although these two
models have a large number of state variables and
parameters, to study all their sensitivities that are no
smaller than 5% of the biggest it is enough to consider
only the first five Ui.

The results behind this observation about the rapid
decay of the si were first developed independently in
Brown & Sethna (2003), Brown et al. (2004) and Rand
et al. (2004, 2006). In the former work, the si appeared as
the square roots of the eigenvalues of the Hessian of
the function that has to be minimized when doing
least-squares fitting of parameters to data for such
models. In the latter reference they arose as part of an
argument about the complex structure of circadian
clocks being a result of the inflexibility of such systems
despite the large number of parameters. The link
between these two approaches is provided by the matrix
SZðSijÞ defined above (see equation (2.4)) by
SijZsiWij. The square S tS is an example of a Fisher
information matrix and its eigenvalues are the s2i . It can
be shown that under certain conditions it is the mean
value of the abovementioned Hessians (see electronic
supplementary material). In Waterfall et al. (2006), it is
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argued that such systems form a universality class and it
will be important to determine whether this is true or
whether there is a more mundane reason for this decay.
More evidence for the seemingly universal ubiquity of
the rapid decay of the si in tightly coupled systems
biology models and the consequences for parameter
estimation are discussed in Gutenkunst et al. (2007).
2.2. Classical sensitivity coefficients from the Ui

Typical classical sensitivity coefficients can be written in
terms of the Ui and Sij. As explained in the electronic
supplementary material many can be written either as
a sum

CQ
j Z

v log Q

v log kj
Z

1

Q

vQ

vhj
Z

1

Q

X
[

a[Dj;mðt[ Þ ð2:5Þ

for some finite set of times t[ or as an integral over a
interval of times t1% t[ % t2

CQ
j Z

1

Q

ðt2
t1

aðt[ ÞDj;mðt[ Þdt[ ;

where Dj;mðt[ Þ is eitherX
i

SijUi;mðt[ Þ or
X
i

Sij
_Ui;mðt[ Þ; ð2:6Þ

and _Ui;m is the derivative of Ui,m with respect to time t.
Examples involving a sum include the control coeffi-
cients of phase and amplitude for forced oscillators and
the time for signals to peak in signalling systems.
Examples involving an integral include the Fourier
transforms of the components of the solution (reflecting
changes in the shapes of the time series). Thus, we
conclude that the control coefficients of interest are all
linear sums or integrals over t[ of terms that are of the
form given in (2.6). This fact is key to understanding the
use of the SHMs.

In the electronic supplementary material the reader
will find a table listing some key observables for
oscillators and signalling systems and giving the
expressions for their control coefficients in terms of the
Ui,m using formula (2.5).
2.3. SHM and parameters sensitivities
graphically summarize all the system’s
sensitivities

We now discuss how to analyse the sensitivity of such a
complex dynamical system globally using the SHM and
the PSS (figures 3 and 6). They allow us to graphically
analyse what observables are significantly changed by
what parameters. We do not have to fix the observable
or parameter in advance but let the model decide what
the most salient observables are. The SHM and PSS are
intrinsic to the system and characterize its sensitivity in
a global fashion.

The strategy is to

(i) use the SHM to identify all those times t[ and
indices i and m that correspond to the terms,
which are significantly large, of the form given in
J. R. Soc. Interface (2008)
equation (2.6) and thus to effectively determine
which observables Q have CQ

j significantly large
for some parameters k j, and then to

(ii) use the PSS to identify, for thoseQ from (i), which
of the parameter indices j have CQ

j significantly
large.
2.3.1. Sensitivity heat map. Suppose

fi;mðtÞZ si
max

j
jWij j

� �
jUi;mðtÞj ð2:7Þ

and

f
ðd Þ
i;m ðtÞZ si

max
j

jWij j
� �

j _Ui;mðtÞj: ð2:8Þ

(Note that f
ðd Þ
i;m ðtÞZ j _f i;mðtÞj, maxj jWij j%1, jUi;mðtÞj

%1 and the si are decreasing rapidly for the systems
of interest.)

Then j
P

i SijUi;mðtÞj%
P

i fi;mðtÞ and j
P

i Sij
_Ui;mðtÞj

%
P

i f
ðd Þ
i;m ðtÞ. Thus, ifCQ

j is a linear combination of terms
as in equation (2.6) using a given m and a given set of
times t[, the following is true: if fi;mðt[ Þ and f

ðdÞ
i;m ðt[ Þ are

small for all those values of t[, then jCQ
j j must be small.

Therefore to determine which observables can have a
significant control coefficient CQ

j we need to determine
all i, m and t[ such that either fi;mðt[ Þ or f

ðdÞ
i;m ðt[ Þ have

significant values. To do this we fix a small threshold t

(e.g. 1% of the maximum value achieved by all the fi,m
and f

ðdÞ
i;m ) and identify all pairs (i,m) such that either

maxt fi;mðt[ Þ or maxt f
ðdÞ
i;mðt[ Þ is greater than t. Luckily,

since these sizes are comparable to si , there are

relatively few pairs (i,m) for which fi,m or f
ðdÞ
i;m have to

be plotted: in the examples studied so far about twice the
number of state variables.

These fi,m and f
ðdÞ
i;m are then plotted in the SHM. Since

relatively few fi,m or f
ðdÞ
i;m have to be plotted, the heat map

is compact and therefore convenient. For each such pair
(i,m) we inspect the fi,m plotted in the SHM to determine
the set Ti,m of times such that fi,m(t) or f

ðdÞ
i;m is

significantly large. This achieves step (i) above.
SHMs for the mammalian clock model and the NF-kB

signalling systems are shown in figures 3 and 6.
2.3.2. Parameter sensitivity spectrum. The matrix
SijZsiWij characterizes the sensitivity of the system
with respect to each parameter. Recall that, up to
second-order terms that are Oðjjdhjj2Þ, the variation dg
produced by a parameter variation dhZðdh1;.; dhsÞ is

dgðtÞZ
X
j

vg=vhjðtÞdhj Z
X
i;j

SijUiðtÞ dhj ;

since vg=vhjðtÞZ
P

iSijUiðtÞ. We see that Sij completely
determines the effect of small changes dhj in the jth
parameter hj. Moreover, since theUi(t) are orthogonal in
time-series space, the Sij act in independent directions
and efficiently parametrize the derivatives vg=vhj . In
fact, the Sij give a representation of the derivatives that
is optimal in that it maximizes the effect of terms with
low i (for a precise statement see the electronic
supplementary material).
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Figure 3. (a) The SHMs for the model of the mammalian circadian clock discussed in figure 2: (i) fi,m and (ii) f
ðdÞ
i;m . The

threshold for the fi,m is set to be 5% of the global maximum of the fi,m(t). For the f
ðdÞ
i;m (t) heat map, the corresponding

threshold is 7.5%. These were chosen to keep the figure size small and smaller thresholds can be used. The only values of i
(the sensitivity PC index) and m (the variable index) for which maxt fi,m(t) or f

ðdÞ
i;m (t) is greater than this threshold have iZ1,

2, 3, 4 or 5. Each block of variables corresponds to one value of i. Thus, in (i), the first block of nine variables corresponds to
iZ1. The plotted fi,m are coloured on the scale shown after scaling each of them by a factor 1/ai,m to make all their
amplitudes the same as that with maximum amplitude. These factors ai,m are in the column marked ratio. (b) The PSS where
each group of bars corresponds to the value of log10 jSijj for a particular parameter k j. These are only plotted for those i for
which jSij j is significant (in this case iZ1–4). They are coloured as follows: red (pc 1), iZ1; blue (pc 2), iZ2; green (pc 3),
iZ3; light blue (pc 4), iZ4. The parameters k j are ordered by maxiZ1–4jSijj and only the 25 most sensitive are plotted. To
demonstrate how the heat maps can be used, we consider the sensitivity of the 32 phases of the maxima and minima of the
various products. We see from table 1 of the electronic supplementary material that the control coefficient of such a phase for
xm(t) is proportional to a linear sum of the Wij

_Ci;mZSij
_Ui;m, and we therefore need to check whether the phases of the

maxima or minima are hot times for the f
ðdÞ
i;m . We have therefore plotted the maxima and minima on the f

ðdÞ
i;m heat map (black,

minima; white, maxima). We immediately see that some of the maxima are sensitive, notably Per mRNA and cytoplasmic
PER–CRY complexes that are the most sensitive. Following these, approximately one-third as sensitive are nuclear PER–
CRY complexes, Cry mRNA and CRY protein. Of the minima, only those of cytoplasmic PER–CRY complexes and CRY
protein appear to be significantly sensitive. Using the software described in the electronic supplementary material, one can
quickly turn this into quantitative information. For the most sensitive phases f, the high values of f

ðdÞ
i;m ðfÞ occur when iZ1.

Therefore, to see what parameters these most sensitive phases are sensitive to, we check the red bars in the PSS in the second
row of the figure, since these are the values of log10 jS1j j. We quickly see that four parameters dominate (vsp, vsc, vmp and
kib) and three others have a sensitivity a little above 10% of the maximum. Only 12 out of the 56 parameters have more than
1% of the maximum sensitivity for these phases.
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In figure 4 we see that, for the model of the
mammalian circadian clock, the magnitude of the Sij
decreases rapidly with i and relatively few of them have
log10jSij jO10K3. In figures 3 and 6, the log10jSij j are
plotted as a grouped bar chart with the parameters
kj reordered according to the size of their sensitivity.
Using this for a given value of i we can immediately
identify the strength of each parameter in moving
the solution g in the direction of Ui. Although not
monotonically decreasing in i, the Sij nevertheless
rapidly get small as i increases. This can be seen in
figure 4 where we plot log10jSij j and see that very few of
J. R. Soc. Interface (2008)
the Sij have a magnitude greater than one per cent of
maxij jSij j. Therefore, we only have to consider the Sij for
a few values of i and the grouped bar chart can be
restricted to these.

Thus, if we (i) use the SHM to determine the set Ti,m

of times t such that either fi,m(t) or f
ðdÞ
i;m ðtÞ is significantly

large, and (ii) use the PSS to identify those parameters hj
such that jSijj is significantly large we obtain a set of

triples (i,m, j ) that give the significant terms of the form
in equation (2.6). These are called hot. We can then
conclude that the control coefficients CQ

j that are
significant are those which involve terms of the form
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Figure 4. (a, b) The values of log10 jSij j (for the same systems
as in figure 2) are shown as a bar chart, showing only those Sij
whose magnitude is greater than 10K3. We note the generally
fast decline in jSij j as i increases and the large variation in
these values with the parameter index j.
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given in equation (2.6) where (i,m, j ) is hot and the times
t[ are in Ti,m.
2.4. Signalling: the NF-kB system

There are now a number of models of the NF-kB system
(see the references in Tiana et al. 2007). For illustrative
purposes, we consider amodified version of themodel due
to Hoffmann et al. (2002) although a similar analysis can,
and, in most cases, has been applied to the other models.
There are nZ10 state variables x 1;.; x10 corresponding
to the concentrations of nuclear and cytoplasmic NF-kB
and IkBa and their complexes plus IKK, and sZ42
parameters kj most of which are rate constants. The
solution g(t) considered is the transient orbit produced
when at tZ0 an incoming signal increases the level of
IKK above the equilibrium level. The IKK is washed out
at tZ600 min. A conventional sensitivity analysis of a
related model was carried out in Ihekwaba et al. (2004)
and Cox (2005) and an analysis based on the variation in
the full solution was carried out in Yue et al. (2006).

The solution of interest is shown in figure 5. For
oscillators it is clear how to choose the length T of the
time period under consideration. For signalling systems
like this, the choice ofT depends upon the problem being
considered. For example, if one is only interested in the
initial response, then T will be chosen small, while if one
is interested in the full response, then a longer period will
be chosen.
J. R. Soc. Interface (2008)
For the purposes of illustration let us suppose that we
are interested in the first two oscillations (i.e. until
tZ200) and in the full trajectory (i.e. until tZ1000).

We see from figure 5 that the different components
gi(t) of the solution gðtÞZðg1ðtÞ;.; gnðtÞÞ have very
different amplitudes. This raises the problem that
parameter changes will tend to produce larger absolute
changes to those variables with larger magnitudes.
Therefore, it will usually be the case that, in situations
like this, relative changes in the gi are more appropriate
than absolute ones. One way to allow for this is to use
log giðtÞ instead of giðtÞ. However, this is not sensible in
this case as for some times t, gi(t) is very close to 0.When
this is the case it is usually more appropriate to
normalize and non-dimensionalize the gi by dividing by
the mean value or some other appropriate measure to
obtain a scaled solution ĝðtÞ and then to consider the
control coefficient Cgi

j Zvĝi=vhj .
Using the software described in the electronic

supplementary material the analysis of this system
takes a few seconds and in figure 6 we show the SHM
and the appropriate rows of the sensitivity matrix. We
apply this to discuss the sensitivity of the peak values and
their timing for the sequence of oscillations (figure 7).
2.5. Summation law

Like certain metabolic control coefficients, the sensi-
tivity PCs satisfy a summation law. This law can be
interpreted as a mathematical statement of the idea (e.g.
Csete & Doyle 2002; Kitano 2002, 2004) that there is a
balance between fragility and robustness in systems like
those we study and that increasing robustness in parts
will increase fragility in others.

This result holds when the parameters k1;.; ks being
considered are a full set of linear parameters, i.e. are the
parameters in front of the terms which make up f with
such a parameter in front of every term. A precise
definition of such a set is as follows: it satisfies f ðt; x; rkÞZ
rf ðt; x; kÞ for all rO0. There may be other parameters
but we consider here the case where these are held fixed
and only the linear parameters are varied so that the
parameter vector k just consists of these parameters.

We first consider (i) autonomous systems (i.e. when f
does not depend explicitly on t) and (ii) non-autonomous
systems where the solution of interest g(t) is defined
by its initial condition as in signalling systems (i.e. is the
solution of the differential equation with a given fixed
initial condition). Then the summation law isX

i; j

SijUiðtÞZFðtÞ: ð2:9Þ

The function F is given by

FðtÞZ tf ðt; gðtÞ; kÞK
ðt
0
sXðs; tÞ$ vf

vt
ðs; gðsÞ; kÞds;

ð2:10Þ
where X(s,t) is the n!n matrix solution of the
variational equation

v

vt
Xðs; tÞZ JðtÞ$Xðs; tÞ;
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with initial condition given by X(s,s) being the identity
matrix. In the above equation, J(t) is the Jacobian dx f
evaluated at xZgðt; kÞ.

In the remaining case where the solution of interest is
a periodic solution of a non-autonomous system, the
summation law is
X
i;j

SijUiðtÞZXðtÞðIKXðtÞÞK1FðtÞCFðtÞ; ð2:11Þ

where F is as above and t is the period.
When the system is autonomous then vf =vtZ0 and

therefore FðtÞZ tf ðgðtÞ; kÞ and the summation law
reduces to X

i; j

SijUiðtÞZ tf ðgðtÞ; kÞ: ð2:12Þ

From equation (2.12), one can deduce the following
known summation laws for free-running oscillations with
period t and amplitude Am for the mth state variable
(see §5.8.5 of Heinrich & Schuster 1996):

X
j

v log t

v log kj
ZK1;

X
j

v log Am

v log kj
Z 0

form Z 1;.;n:

However, these can also be proved in a much easier
manner using the fact that scaling the linear parameters
corresponds to scaling time. Again the sums are over just
the linear parameters.
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Note that for autonomous systems
P

SijUiðtÞZ
tf ðgðtÞ; kÞ (sum over all i and j ). Thus, if we have
exponential decay of the si ,

X
j

S1j

� �
U1ðtÞZ tf ðgðtÞ; kÞCOðs2Þ;

because SijZOðsiÞ. Therefore, if s2 is small compared to
s1, as is often the case, we deduce that U1(t) is
approximately proportional to t _gðtÞZ tf ðgðtÞ; kÞ. But,
for oscillators, t _gðtÞ is the infinitesimal generator of a
change in the period of g, i.e. t _gðtÞ is the derivative at
4Z1 of 4/gð4tÞ. Thus, in this case U1(t) is roughly
proportional to an infinitesimal period change.
3. METHODS

The mathematical object underlying this analysis is a
matrix M that is made up from the partial derivatives
vgmðtÞ=vhj , where 0! t!T . We restrict time t to a
discrete set of equally spaced values t1;.; tN and for
each parameter kj and each state variable xm consider the
column vectors rm; jZðdgm=dhjðt1Þ;.; dgm=dhjðtN ÞÞ.
For each j we concatenate the rm, j into a single column
vector rj and then consider the matrix M whose j th
column is rj.

This matrix is a time-discretized version of the linear
operator that associates with each change of scaled para-
meters dhZðdh1;.; dhsÞ the linearized change dg in the
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solution of interest g that is in the infinite-dimensional
space of appropriate n-dimensional time series.

In order to ensure that in the limit Dt/0 the singular
value decomposition (SVD) of M is independent of the
choice of the time discretization DtZ tiC1K ti (assumed
for the moment to be independent of i ), we normalizeM
by

ffiffiffiffiffiffiffiffiffiffiffiffi
Dt=T

p
and consider instead M1Z

ffiffiffiffiffiffiffiffiffiffiffiffi
Dt=T

p
M .

We use the version of SVD that is often called thin
SVD. SinceM1 has nN rows and s columns (i.e. is nN!s),
this thin SVD is a decomposition into a product of the
form MZUDV t (superscript ‘t’ denotes transpose),
where U is a nN!s orthonormal matrix (UU tZInN
and U tUZIs), V is a s!s orthonormal matrix and
D Zdiagðs1;.; ssÞ is a diagonal matrix. The elements
s1R/Rss are the singular values of M. The matrix
W is the inverse of V and since V is orthogonalWZV t.

The columns Uj of U are orthogonal unit vectors and
can be augmented to provide an orthonormal basis for
the space of discretized time series. As for rj they are in
the concatenated form. To restore them to their form as
time series in n-dimensional space, the concatenation
must be undone but this is straightforward. The Uj(ti)
then approximate the UjðtÞ. From MZUDV t one
immediately deduces that M$VjZsjUj , where Vj is
the jth column of V. The fundamental equation (2.2)
follows directly from this.

If it is appropriate to scale the solution g as above in
§2.4 then, in the definition of M, we use the derivatives
vĝm=vhj for the scaled ĝ rather than those for g. If it is
preferred to use the original variables kj instead of the
scaled ones hjZ log kj , then we just use the derivatives
with respect to kj instead of hj in the definition of M.
4. DISCUSSION

There is a pressing need for effective tools with which to
probe how a network’s function depends upon its
structure and parameters. The development of such
tools presents many challenges because typically (even
when they have relatively few components) these
networks have significant complexity, are highly non-
linear and the states of interest are dynamical and
non-equilibrium. In particular, they involve large
numbers of state variables and even larger numbers of
parameters. The paper by Kitano (2007) points out that
a solid theoretical foundation of biological robustness is
yet to be established and represents a key challenge in
systems biology, and starts a discussion of how this can
be achieved.

However, Brown& Sethna (2003), Brown et al. (2004)
and Rand et al. (2004, 2006) uncovered a surprising
property of such systems that aids the construction of
such tools. This is the local geometric rigidity described
in §2.1: variation in the high-dimensional parameter
space causes variations of the solution of interest that
effectively occupies a space of much lower dimension.

We have shown that the fundamental observation
enables a more global approach to sensitivity analysis
in which we do not have to fix an observable function
in advance but can instead effectively consider the
effect of all the parameters on all reasonable obser-
vables. As a result we are able to represent all the
sensitivities of these complex dynamical systems in
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terms of a pair of relatively simple graphical objects,
the SHM and the PSS.

Since FZS*S is intimately related to the Fisher
information matrix for such systems, it is clear that the
approach presented here will be useful in developing
techniques for experimental optimization (Brown
et al. 2004).

Our approach is local in phase space, estimating the
structure of the model in a small neighbourhood of a
given set of parameter values. An important task for the
future is to extend this to a theory that is more global in
parameter space. This will require the development of
tools that allow one to sew together the local domains.
Luckily, all the computations used in this paper are very
fast and can be carried out on relatively small
computers. Moreover, many of the computations can
be effectively parallelized. Thus, it is probable that this
task is quite practical from a computational point of
view. This more global approach will be of relevance to
algorithms that search parameter or structure space.
These spaces are very high dimensional and one needs
help in determining in which direction to move. The
current theory suggests how to do this since only
movement in the directions of the dominant PCs
produces substantial changes in the system.

Another limitation is that the approach presented
here, being deterministic in nature, does not make
any use of the significant amount of information
contained in the stochastic fluctuations in data. The
ability to incorporate this into the approach would be
a significant addition.

We mentioned above that in order to allow for the
fact that different parameters and different components
gi(t) of the solution may differ in size by an order of
magnitude or more, it is usually appropriate to scale the
parameters (i.e. take hjZ log kj as the parameters)
and/or to scale the components gi(t). The choice of
whether to scale one or other or both of these depends
upon the context. It is also sometimes natural not to
scale either; for example, this is sometimes the case when
using this approach for experimental optimization.

The software used in my analysis was developed with Paul
Brown and much of it was originally developed in collaboration
with Boris Shulgin. I am very grateful to both of them and also
to Nigel Burroughs and How Sun Jow for their discussions on
the experimental optimizations that are related to some
aspects discussed here. I had some very useful discussions
with David Broomhead andMarkMuldoon about how to prove
the fundamental observation. I am very grateful to Hugo van
den Berg for a critical reading of a draft manuscript. I also
thank Sanyi Tang, Andrew Millar, Bärbel Finkenstadt,
Isabelle Carré and John Tyson for their useful discussions
on these topics, the KITP for its hospitality and the
BBSRC, EPSRC and EU (BioSim Network Contract no.
005137) for funding. I currently hold an EPSRC Senior
Research Fellowship.
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