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Iridescence from photonic crystals and its
suppression in butterfly scales
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Regular three-dimensional periodic structures have been observed in the scales of over half a
dozen butterfly species. We compare several of these structures: we calculate their photonic
bandgap properties; measure the angular variation of the reflection spectra; and relate the
observed iridescence (or its suppression) to the structures. We compare the mechanisms for
iridescence suppression in different species and conclude with some speculations about form,
function, development and evolution.
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1. INTRODUCTION

Structural colour results when light interacts with
physical structures that have variations on a spatial
scale comparable with the wavelength of light. Irides-
cence is usually said to be the change of hue with the
angle of observation. Iridescencemay also occur over any
range of wavelengths (and is not necessarily restricted
to the range visible to humans). Although iridescence
requires structural colour, the converse is, of course, not
true. Related phenomena include change of intensity
and change of polarization with the angle of observation.

Structural colour occurs in a variety of species, but
perhaps themost diverse range of structures is exhibited
by the wing scales of butterflies. To date, the most
complex scale architectures known are the regular three-
dimensional periodic lattices that occur within the
lumen of some scales. Observation of these structures
in butterflies dates back at least three decades (Morris
1975; Allyn & Downey 1976; Ghiradella & Radigan
1976). Similar three-dimensional geometries have also
become of interest to physicists (who have dubbed them
photonic crystals) in the last two decades. These
photonic crystals are of technological importance since
some (but not all) of them canbe the basis of devices that
block the propagation of certain frequencies in all
possible directions (the so-called complete photonic
bandgap devices). The photonics community has
explored an extremely large variety of geometries with
names or descriptions such as inverse opal (Wijnhoven&
Vos 1998), woodpile (Ho et al. 1994), diamond network
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(Ho et al. 1990) and Yablonovite (Yablonovitch et al.
1991). Thus, many of these names and the corresponding
models have also been variously proposed for the
structures observed in butterfly scales.

The earliest proposal for a geometry was a simple
cubic (SC) arrangement of spherical air holes in a chitin
background for the species Callophrys rubi (Morris
1975). Later authors (Ghiradella & Radigan 1976)
proposed instead a face-centred cubic (FCC) arrange-
ment of air holes (this is also called the inverse opal
structure). This same structure has also been proposed
by various authors for Cyanophrys remus, Parides
sesostris, Callophrys dumetorum and Mitoura gryneus
(Vukusic & Sambles 2003; Kertész et al. 2006; Prum
et al. 2006). Another extremely similar model that
shares the same FCC lattice and has the same local
topology is the woodpile structure proposed for species
of the genus Polyommatus (Biró et al. 2003).
A tetrahedrally coordinated network of struts was
previously proposed for Teinopalpus imperialis,
although the measured lattice was different from
FCC (Argyros et al. 2002). Wickham (2006) used
transmission electron tomography to compare the
lattice structures of three species (P. sesostris, C. rubi
andM. gryneus), and concluded that they mostly share
similar tetrahedral structures but that the lattices
differed slightly in their degree of symmetry. For
example, the lycaenid C. rubi had the most symmetric
structure with equal length lattice vectors and angles
close to those of a body-centred cubic (BCC) lattice;
M. gryneus was similar but with one lattice vector
significantly longer than the other two and angles that
did not correspond to any of the common lattices;
finally, although the angles in P. sesostris were all equal
to each other, they were different from that expected in
either the BCC or the FCC. It was also noted there that
M. gryneus had a combination of fourfold- and
threefold-coordinated nodes. Most recently, it has
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Figure 2. Optical image of the underside of individual scales
from P. sesostris. From this side, the scales exhibit strong
iridescence.

Figure 1. Optical image of a section of the dorsal wing from
P. sesostris. From this side, the scales do not exhibit much
iridescence.
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been proposed that structures in most of these species
might instead be modelled by a gyroid (Michielsen &
Stavenga 2008). The gyroid also has a BCC lattice, but
it has a locally threefold-coordinated topology.

Certainly, it still appears difficult to determine a
unique or unambiguous geometry for these structures.
The spectral response of these structures is, of course,
primarily determined by the lattice periodicity, index
contrast, filling fraction and the geometry within the
unit cell. However, the spectral response may also be
complicated by a number of other factors such as the
number of unit cells in the crystal structure, the size of
crystal domains and the presence of other structures
that may also interact with the incident or reflected
light. In this paper, we hope to clarify the quantitative
and qualitative differences between different models
and focus attention on those aspects relevant to the
biological context. We compare structural features,
spectral measurements and calculations highlighting
both generic and distinguishing properties.

An optical image of a section of the wing of
P. sesostris is shown in figure 1. Despite being
produced by a regular lattice, the green coloration
is thought to be largely non-iridescent (Ghiradella
1989; Prum et al. 2006). Calculations based on any of
the proposed models for the periodic lattice would
predict that the scales should be much more
iridescent than they actually appear. The mechanism
usually invoked to explain this discrepancy is that the
crystal is made up of many randomly oriented small
domains (Ingram & Parker 2008). We show later that
this explanation can only be true for some species.
Indeed, when the scales from P. sesostris are removed
and viewed from below, they exhibit a striking
iridescence (figure 2), suggesting that some other
mechanism rather than polycrystalline averaging is
responsible. The relevant mechanisms are elucidated
by comparing different species.

In §2, we give a detailed but not too mathematical
explanation of photonic bandgap theory concentrating
on those visualizations and tools that help us under-
stand the nature of the iridescence produced by periodic
lattice structures. We then investigate the importance
of the specific lattice structure in §3 by comparing the
bandgap properties of different periodic structures. We
include each of the major crystal types (SC, FCC and
BCC) that have been variously proposed for the
geometry and discuss what features are common and
what features can be used as a signature to optically
distinguish these different structures. In §4, we present
and compare the microstructures of the scales from four
butterflies: two of them, P. sesostris and T. imperialis,
are papilionids and two of them, C. rubi and
M. gryneus, are lycaenids. They have similar periodic
lattices but differ in that the papilionids have a
honeycomb structure above the photonic crystal.
While the periodic lattices are similar, the four species
differ in other aspects such as domain size. We then
explain how variation in these additional features of the
scale modifies the intrinsic iridescence of the periodic
lattice. The arguments are further supported in §5 by
quantitative measurements and comparisons of the
variation of reflection spectra with angle.
J. R. Soc. Interface (2009)
We conclude this paper with a discussion of the role
of polarization and then present some speculations and
suggestions for fruitful areas for future activity.
2. BACKGROUND OPTICS

When waves interact with a periodic structure, waves
with some frequencies can propagate through the
structure while waves with other frequencies are
blocked. The observed effect is that light having such
blocked frequencies will be strongly reflected by the
structure. The range of blocked frequencies is called a
bandgap or reflection band. The bandgaps are
determined by the Fourier properties of the structure
and vary with the direction of propagation and
polarization. Since bandgaps can vary with the direc-
tion of propagation, such structures are usually
iridescent. For those readers without a theoretical
optics background, we give a very brief recapitulation
of photonic band theory attempting to use a minimum
of mathematics.

The natural description of a periodic structure uses
Fourier analysis. Solid-state physics has developed
powerful geometric visualizations to capture the most
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Figure 3. The first BZ for different lattice structures. (a) Simple cubic, (b) BCC and (c) FCC.

(a) (b) (c)

Figure 4. Estimated variation of reflected colour with angle
for different lattice structures. (a) Simple cubic, (b) BCC and
(c) FCC.
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important aspects of such a Fourier analysis for regular
crystal structures. There are a variety of different three-
dimensional crystal structures (e.g. trigonal, rhombo-
hedral, FCC) that differ in the arrangement of the
crystal planes also called Bragg planes. The Brillouin
zones (BZs) are a geometric construction that help
reveal many important properties of the periodic
structure. For example, the first BZs for the three
simplest lattices are shown in figure 3. Note that the BZ
for the SC lattice has six identical square faces, the BZ
for the BCC lattice has 12 identical rhombus-shaped
faces and the BZ for the FCC lattice has eight
hexagonal faces and six square faces.

The details on how to construct these shapes can be
found in any standard text on solid-state physics
(Kittel 1996). However, the most important thing to
know is that the faces of a BZ correspond to different
crystal planes. If one were to perform a Fourier series
analysis of a periodic structure, each face or crystal
plane would correspond to a different term in that
series. For those with more mathematical background,
the directions perpendicular to each face correspond to
what are known as reciprocal lattice vectors. These
vectors contain information about the spatial period-
icities of the structure. The shortest vectors correspond
to leading terms in the Fourier expansion, and the
longer vectors correspond to higher harmonics. Tech-
nically, the first BZ is the smallest geometric figure
formed by planes that perpendicularly bisect these
reciprocal lattice vectors. Thus, each face of the first BZ
corresponds to one of the leading terms in the Fourier
series expansion of the periodic structure. The BZ can
be used as the basis for both a quick qualitative
estimate of the reflected colours and a complete
detailed numerical calculation of bandgaps.

The reflected colours can be estimated from the BZ
without detailed calculation as follows. The distance of
each point on the surface of the BZ from the centre of
the BZ is directly proportional to the frequency in
the centre of the bandgap (i.e. the reflected colour).
Thus, the vertices (which are the points furthest out)
represent higher frequencies (shorter wavelengths) and
the centres of faces (which are closer in) represent lower
frequencies (longer wavelengths). This variation is the
ultimate origin of the iridescence. Figure 4 shows the
iridescence for the structures in figure 3 by presenting
the hue as a function of angle over a complete hemi-
sphere. For the sake of making comparisons, the longest
wavelength in each case was chosen to be in the green.
Wavelengths ranging into the UV are represented
visually by progressively darker shades of violet.
J. R. Soc. Interface (2009)
We predict that for a SC structure, which has a BZ in
the shape of a cube (figure 3a), the highest and lowest
reflected frequencies should differ by

ffiffiffi
3

p
z1:7. In

figure 4a, note that the faces reflect in the green and
the vertices reflect in the UV. The closer the BZ is to
approximating a sphere, the less iridescent the reflected
colours will be. The BCC structure (figure 3b) has a
smaller ratio of

ffiffiffi
2

p
z1:41. Likewise, in figure 4b, the

faces reflect in the green but the vertices now reflect
in the violet. Finally, the FCC structure (figure 3c)
has the smallest ratio of only

ffiffiffiffiffiffiffiffi
5=3

p
z1:29. In figure 4c,

the hexagonal faces reflect in the green, the square
faces reflect in the blue and the vertices reflect in
the violet.

The indicated hues correspond to the centre
frequency in each gap. The width of each gap is related
to the magnitude of the corresponding Fourier com-
ponent. The magnitudes of the Fourier components
depend on the local structure but also, more impor-
tantly, on the index contrast (i.e. the ratio of the
highest and lowest refractive indices occurring in the
structure). As this contrast increases, these individual
bandgaps become wider. If the gaps are sufficiently
wide, then they will overlap. If all the gaps overlap, then
we have what is called a complete bandgap; that is,
a common range of frequencies or wavelengths that are
reflected from any direction and any polarization.
Structures with complete bandgaps will appear to be
non-iridescent (or at least much less iridescent). In fact,
a minimum index contrast is required to produce gaps
wide enough to overlap: for FCC structures, this ratio is
at least 2. There are no known biological materials with
a high enough index and thus no biophotonic crystals
can have complete bandgaps. We hope that this
clarifies a common misconception that all photonic
crystals must have complete bandgaps, and emphasizes
that the degree of iridescence can vary significantly
with the symmetry of the crystal structure (in addition
to the more obvious factors such as index contrast and
filling fraction).
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A variety of programs exist that can calculate the
bandgaps exactly. In §3, we use the MIT photonic
bands program (Johnson & Joannopoulos 2002), which
most easily models the structures by an assemblage of
simple geometric objects such as spheres and inter-
connecting cylinders.
Figure 5. Strut or skeleton models of the simplest
geometries associated with different lattice structures.
(a) Sixfold-coordinated P-structure in the SC lattice,
(b) fourfold-coordinated D-structure in the FCC lattice and
(c) threefold-coordinated G-structure in the BCC lattice.
3. COMPARING BAND STRUCTURES

In this section, we calculate and compare band
structures for different periodic structures. Two
different types of models have appeared in the
literature: those that model the lattices by skeletons
of interconnecting struts and those that use smooth
surfaces (such as the minimal surfaces formed by lipid–
water mixtures; Hyde et al. 1997). Different models that
share the same leading terms in their Fourier series will
exhibit very similar optical properties; in particular,
skeletal and minimal surface models differ only in their
higher order Fourier harmonics. The MIT photonic
bands program does allow both types of models but the
strut models are slightly easier to implement.

We have constructed skeletal strut models of three
common periodic structures, and one primitive unit of
each of these structures is shown in figure 5. Note that the
outermost struts in each structure occur as three pairs of
corresponding struts that point in the same direction;
these pairs of struts join adjacent primitive units
together to create a three-dimensional periodic structure.

Note also that the P-structure has nodes where six
struts connect at mutual angles of 908; the D-structure
has nodes where four struts connect at mutual angles of
109.478; and the G-structure has nodes where three
struts connect at mutual angles of 1208.

The topological connectivity and symmetry of these
three structures also correspond to the three funda-
mental cubic minimal surfaces (Hyde et al. 1997).
Minimal surfaces have also been proposed (Ghiradella
1989; Ingram & Parker 2008; Michielsen & Stavenga
2008) as possible candidates for the periodic lattices
observed in butterfly wing scales since they are
ubiquitous in nature and have interesting self-assembly
properties. For some other visualizations of the mini-
mal surfaces and corresponding skeletal models, we
refer the reader to Hyde et al. (1997) and Michielsen &
Stavenga (2008).

The Fourier series of the refractive indices all have
the form

nðx; y; zÞZ �nCDFðx; y; zÞC/ ð3:1Þ

where �n is the average index of the structure; D is
proportional to the index contrast; and F(x, y, z) rep-
resents the leading terms in the series. Both �n and D will
vary with the volume fraction of chitin in butterfly wing
scales. Chitin exhibits some absorption that could be
modelled by allowing �n andDn to have a small imaginary
part. This small effect has been ignored since it does not
alter any of the conclusions made in this paper.

The form of the function F for the three different
structures is

FP Z cosðxÞCcosðyÞCcosðzÞ; ð3:2Þ
J. R. Soc. Interface (2009)
FD Z cosðxCyCzÞCcosðxCyKzÞ
CcosðyCzKxÞCcosðzCxKyÞ; ð3:3Þ

FG Z sinðxCyÞCsinðyCzÞCsinðzCxÞ

KsinðxKyÞKsinðyKzÞKsinðzKxÞ: ð3:4Þ

Note that elsewhere in the literature these expressions
may have been written in different but mathematically
equivalent forms. These same trigonometric functions
can also be used to approximate minimal surfaces. In
such models, the boundary between chitin and air is
defined by an equation of the form

Fðx; y; zÞZ c; ð3:5Þ

or, in other words, a level set. For strut-based models,
the volume fraction of chitin can be chosen by
varying the thickness of the struts. For minimal surface
models, the volume fraction can be chosen by varying
the parameter c. For cZ0, a 50 per cent volume fraction
is obtained.

The mathematically inclined will note that the
leading terms precisely capture the rotation and
reflection symmetries of their respective structures.
Importantly, FP and FD have inversion symmetry,
whereas FG does not and thus corresponds to a chiral
structure (i.e. it is not equivalent to its mirror image).
Furthermore, we would like to point out how the
Fourier series relate to the BZ. The three terms in FP

correspond to the three pairs of opposite faces of the BZ
in figure 3a. Likewise, the six terms in FG correspond to
the six pairs of opposite faces of the BZ in figure 3b.
Finally, the four terms in FD correspond to the four
pairs of opposite hexagonal faces of the BZ in figure 3c.
The smaller square faces on this BZ do not have any
Fourier terms associated with this type of tetrahedral
geometry (though there are more complicated higher
connectivity minimal surfaces, such as the C(P)
structure, that do contain such terms). This lack of
leading terms in some directions is important; thus, in
figure 4c, we expect to see wider bandgaps in the
direction of the hexagonal faces (which reflect in
the green) and much narrower gaps in the direction of
the square faces (which reflect blue).

The band structure of these geometries has been
investigated previously (Michielsen & Kole 2003) in a
technological context, where large refractive index
contrasts were assumed and the authors were interested
in complete photonic bandgaps. Here, we focus on the
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Figure 6. Comparison of the band diagrams for different
crystal structures. The refractive index and volume fraction
are 1.5 and 50%, respectively. (a) SC with P-type sixfold
coordination. (b) FCC with D-type fourfold coordination.
(c) BCC with G-type threefold coordination.
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iridescence and the polarization properties, which are
more relevant for low-contrast structures.

For low index contrast systems (such as chitin–air),
the location and width of the bandgaps are approxi-
mately proportional to the relevant Fourier coefficients.
Thus, the qualitative structure of the bandgap diagram
will change in a systematic way with volume fraction
and index contrast: increasing the index contrast will
increase the width of the bandgaps and increasing the
average index (either by changing the contrast or
changing the volume fraction) will systematically shift
the mid-gap frequency of all the bandgaps. Thus, it is
sufficient to compare different lattice types for just one
typical combination of contrast and volume fraction to
understand their qualitative behaviour.

The photonic bandgaps were calculated for a volume
fraction of 50 per cent and refractive index of 1.5 and
are shown in figure 6. For the purpose of making
comparisons between different lattices, the overall
lattice scale sizes were chosen to yield the same lowest
frequency bandgaps. The vertical scale on each chart is
frequency and the bandgap (where no propagating
solutions exist) has been coloured with the correspond-
ing hue. Frequencies in the UV are shown by
progressively darker shades of violet. In addition,
there are polarization bandgaps: these are frequency
ranges where only one polarization state can propagate
and are shaded in grey. In such cases, one polarization
state can propagate through the structure, but the
other polarization state is reflected. The horizontal axis
shows the conventional letters used in solid-state
physics to denote special directions associated with
each BZ. The corresponding orientations of the BZ are
shown pictorially across the top for those unfamiliar
with this notation. The angles between these directions
(in degrees) are also indicated in figure 6. The slope of
the bands can immediately reveal the degree of
iridescence as can the variation of the depicted hues.
Structures with steep bands are more iridescent than
structures with flatter band diagrams.

Let us first focus on generic properties. The relative
width of the bandgap at its widest is approximately 10
per cent for all three structures. This width would vary
with the volume fraction of chitin, but would vary in
about the same way for all three structures. Also note
that, in all cases, the colour changes from green to blue
over a 308–408 tilt. Although the amount of colour
change depends on index contrast and volume fraction,
the angular tilt is a fixed property of the lattice and does
not change with volume fraction.

Note that for the D-structure (figure 6b), the width
of the bandgap in the X-direction (square face) is much
narrower than that in the L-direction (hexagon face), as
expected from the presence and absence of leading
terms in the Fourier series. Under white light illumina-
tion, a narrower bandgap will reflect less light than a
wider gap. This effect will act to partially suppress
iridescence since in directions which reflect blue/violet,
there will not be as much reflected light as in the
directions that reflect green/yellow. Also as expected,
the P-structure (figure 6a) is most iridescent but, in
addition, at the shorter wavelengths, this reflected light
should be highly polarized. Likewise, the G-structure
J. R. Soc. Interface (2009)
(figure 6c) shows strong polarization effects in the
H-direction where it is reflecting in the violet and UV.
Thus, while some iridescence features are common to all
these structures and there are quantitative differences
between the structures, the most striking difference is in
the polarization properties (we return to this point later
in this paper).

In addition to the three regular models in figure 5,
the photonic crystal in T. imperialis was also recon-
structed using electron tomography (Argyros et al.
2002). The crystal was measured to be a distorted
version of the D-structure in figure 5b where the angles
between struts are no longer equal and the struts are of
different lengths. The corresponding distorted BZ is
shown in figure 7. The approximate colours in figure 7
suggest that although the structure should look green
from certain directions, it should also reflect reds, blues,
violets and even UV from other directions.

We calculated the bandgaps of the structure using
the published data and description of the structure



Figure 7. The first BZ corresponding to the distorted
D-structure of T. imperialis measured in Argyros et al.
(2002). The colours correspond to the wavelength of the
waves reflected in the direction normal to that face. Grey
indicates UV.
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Figure 8. Hemispherical map of hues corresponding to the
calculated central bandgap wavelengths. Black lines denote
the edges of the BZ shown in figure 7. The contours are
labelled with the wavelength in nm.

Figure 9. Optical image of the underside of individual scales
from T. imperialis.

(a)
(b)

(c) (d)

Figure 10. TEM images of green scales from four different
butterflies. Scale bar, 1 mm. (a) Parides sesostris,
(b) T. imperialis, (c) C. rubi and (d ) M. gryneus.
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(Argyros et al. 2002). The dimensions and coordinates
defining the structure and the various special points on
the surface of the BZ are all available in a format
compatible with the MIT photonic bandgaps program
in the electronic supplementary material. The optical
properties of the distorted D-structure closely resemble
the regular D-structure. For example, the bandgaps in
directions corresponding to the six-sided faces are large
(relative widths of approx. 10%), whereas those in the
directions corresponding to the four-sided faces are
small. The results of a quantitative calculation of the
central bandgap wavelength in all possible directions
are shown in figure 8.

The most obvious difference between figure 8 and the
iridescence maps in figure 4 is the presence of reflections
J. R. Soc. Interface (2009)
in the longer wavelength (orange). We were able to see
some visual evidence of this by looking at the underside
of some scales from T. imperialis as shown in figure 9.
The differences between figures 2 and 9 might be due
to the periodic crystals in two butterflies having
different structures, or possibly the same crystal
aligned differently.
4. SCALE MICROSTRUCTURES

The transmission electron microscopy (TEM) sections
of green scales from four different butterflies are shown
in figure 10. They reveal the photonic crystal and other
structures that occur in the scale. The bottom part of
each scale shows a regular periodic structure, the top
part shows a series of ridges. In figure 10a,b, there are
also a series of vertical columns that run down from the



Table 1. Comparison of feature sizes in four species having
similar three-dimensional photonic crystals. (All dimensions
are in mm.)

domain size crystal depth
honeycomb
depth

P. sesostris 25G3 3.7G0.1 4.1G0.2
T. imperialis 6G3 3.3G0.1 0.9G0.2
C. rubi 3.6G0.9 1.5G0.4 —
M. gryneus 2.8G0.7 1.4G0.4 —

Photonic crystals in butterfly scales L. Poladian et al. S239
ridges towards the crystal. We refer to these columns as
the honeycomb structure.

Comparisons of various TEM sections taken through
the crystals in a variety of directions reveal that not
only are the crystals in all four species topologically
similar, but they also have extremely similar dimen-
sions. However, the measurements also reveal a number
of features that vary from species to species: specifically,
the typical domain size of the crystals; the depth of the
crystal; and the depth of the honeycomb structure that
might lie above the crystal. These differences are
tabulated in table 1.

There is a clear systematic variation in feature sizes as
one proceeds down table 1: P. sesostris has the largest
domains, the deepest crystal and a honeycomb structure
that is actually deeper than the underlying photonic
crystal, whereas M. gryneus has the smallest domains, a
crystal that is only a few periods deep and a non-existent
honeycomb. Although the crystal is the same (or
similar), these other differences will manifest as different
modifications to the iridescence. Small, randomly
oriented domains will tend to suppress iridescence, and
crystals that are only a few periods deep have more
smeared out (less well-defined) bandgaps. The different
effects that these features have on the reflection spectra
were quantified by measuring the iridescence in each
species from both sides of the scales.
5. SPECTRAL MEASUREMENTS FOR
DIFFERENT SPECIES

Single-scale spectral measurements were carried out
using a Zeiss microspectrophotometer. This is a
modified microscope, in which the illumination and
detection use the same optics. This system is limited to
visible wavelengths in the range of 400–700 nm, and the
angles of incident and reflected light were restricted to
G33.38 owing to the numerical aperture of the lens
(Zeiss Epiplan 50!, 0.55). The sample was mounted
using black double-sided carbon tape onto a glass slide
on a tilt stage with a range of G708 (and an accuracy of
G2.58). The samples were tilted along the transverse
and longitudinal axes of the scales. Measurements were
taken from both the top- and underside of scales.
However, difficulties in manipulating single scales
meant that the top- and underside measurements
were not necessarily performed on the same individual
scale. A number of scales were tested in both
orientations to confirm that the scale-to-scale variation
is smaller than the effects described below. The
reflected intensity has been normalized to specular
J. R. Soc. Interface (2009)
reflection from a standard Al reference (Palik 1991).
The variation of reflected intensity with both angle and
wavelength is shown in figures 11–14. Each figure shows
four contour plots comprising combinations of measure-
ments from above and below and tilting the scale in two
different directions. The contour shading represents the
logarithm of the intensity. All the reflection spectra
show a peak near the centre of the visual spectrum; the
variation of the position of this peak with angle is
indicated by the thick grey curves. (Some of the spectra
also show additional intensity peaks at the extreme
ends of the visual spectrum.)

First, consider figure 11 for P. sesostris. There is a
dramatic difference between the top and bottom
measurements. From above, the reflection spectrum
does not vary much with angle and the peak wavelength
varies slowly between 550 and 525 nm. From below, the
scale is strongly iridescent: the spectrum changes
abruptly at certain angles and the peak wavelength
shifts suddenly from approximately 550 to approxi-
mately 500 nm. The range of angles over which the peak
is at longer wavelengths, and the tilt at which the shift
to shorter wavelengths occurs, is consistent with the
bandgap calculations in figure 6. (Unfortunately, this
behaviour does not uniquely confirm any particular
crystal lattice.) The intensity of the reflectance near
normal incidence is also considerably higher than for
the topside measurements, where the intensity is much
more uniform across the range of viewing angles. Thus,
the spectral measurements confirm the visual obser-
vations in figures 1 and 2 that the scale is only iridescent
from below. We attribute this difference in iridescence
to the presence of the honeycomb structure. To further
confirm this idea, the honeycomb was removed from
half the scale with double-sided tape and the optical
image of such a scale is shown in figure 15. The exposed
half clearly shows different colorations, suggesting that
the honeycomb is indeed suppressing the shorter
wavelengths. (Some speculations about how the hon-
eycomb achieves this suppression are discussed later.)
The dark spots are localized holes or defects in the
structure that occur near domain boundaries.

The difference between the top and bottom measure-
ments for T. imperialis in figure 12 is not nearly as
pronounced. This can mostly be attributed to the
honeycomb structure being much shorter than in
P. sesostris (table 1). The honeycomb structure in
P. sesostris was actually deeper than the lattice
structure, whereas in T. imperialis the honeycomb
is less than one-third of the depth of the crystal
lattice. Thus, as expected, the top and bottom of the
T. imperialis scales have a more similar appearance. The
domain size in T. imperialis is also approximately four
times smaller than in P. sesostris, and this will also tend
to suppress the iridescence; thus, the variation in peak
wavelength is not as dramatic. Note that, at wide angles,
the shift is towards longer wavelengths (shifting from 550
to approx. 600 nm), consistent with the visual obser-
vations in figure 9 which shows hues ranging from
green at the top to orange near the bottom. This might
indicate that the crystal lattice is different from that in
P. sesostris or that it is the same crystal but seen from



Figure 15. Optical image of the topside of a scale from
P. sesostris with the honeycomb removed from the left half.
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Figure 11. Reflection spectra for P. sesostris. Variation of
reflected intensity from scales (a,b) topside and (c,d ) under-
side for tilts in both (a,c) longitudinal and (b,d ) transverse
directions. Contour shading is logarithmic from 0.1% (black)
to 100% (white).
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Figure 12. Reflection spectra for T. imperialis. The other
descriptions are the same as given in the legend of figure 11.
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Figure 13. Reflection spectra for C. rubi. The other descrip-
tions are the same as given in the legend of figure 11.
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Figure 14. Reflection spectra for M. gryneus. The other
descriptions are the same as given in the legend of figure 11.
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directions that (on average) reflect longer wavelengths
(i.e. the regions of the BZ shown in the left of figure 8).

If we now compare T. imperialis with C. rubi, we
expect that the complete absence of any honeycomb
structure should imply that the degree of iridescence is
similar from above and below, as is indeed indicated by
the thick grey curves in figure 13. The absence of a
honeycomb structure would normally imply more
iridescence, but the smaller domain size compensates
for this. Note that the variation in the peak wavelength
is similar but the variation in intensity is less.

Finally, M. gryneus has the smallest domain size of
all (table 1) and thus should show the least iridescence,
as confirmed by the thick grey curves in figure 14. The
argument that polycrystalline photonic structures should
appear matter rather than iridescent has been made
several times previously in the literature (see a recent
review in Ingram&Parker 2008), but we see here that it is
not the only mechanism that can suppress iridescence.
6. THE ROLE OF POLARIZATION

Thus, we see that the properties of the crystal lattice
alone do not determine the appearance of the scales, but
that they must be considered in conjunction with other
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effects. Furthermore, the variation in hue does not
uniquely determine or confirm the crystal lattice
structure since many different periodic structures can
produce similar effects.

Many of the qualitative features of the band
structure can be obtained from group theoretical
arguments (Altmann 1991) that exploit the symmetry
of the structure and its BZ, and thus do not depend on
detailed specifics of the models. In particular, these
arguments predict such features as the complete closing
of the bands in the direction denoted R for the
P-structure as seen in figure 6a. They also predict the
presence of directions that have strong polarization
effects, such as the direction M for the P-structure or
the direction H for the G-structure as in figure 6a,c.
Light interacting with the horizontal and vertical struts
of the P-structure will experience linear polarization
effects, whereas light interacting with the chiral
G-structure can experience circular polarization effects.
The D-structure, on the other hand, exhibits only very
small polarization effects since the BZ closely approxi-
mates a sphere and the tetrahedral structure never
shows a strong difference between different directions.

In summary, the band diagrams lead us to expect
P-structures to reflect linearly polarized light in certain
directions, and we expect the polarized reflections
to have shorter wavelengths than the unpolarized
reflections in other directions. Similarly, we expect
the chiral G-structures to reflect circularly polarized
light in certain directions, and we expect the polarized
reflections to be at much shorter wavelengths than for
the unpolarized reflections in other directions. Thus, if
the structure looks green in the visible from most
directions, then from certain directions it will be
circularly polarized in the UV. This last property
(unpolarized green but polarized UV) should persist
even for structures made from differently oriented
domains. In fact, strong polarization effects have been
observed (Vukusic & Sambles 2001) for reflections from
P. sesostris. It was found that, under normal illumina-
tion, the scales appeared green, but that the different
domains appeared to have various hues of blue, violet
and black (interpreted as UV) when viewed through a
crossed linear analyser. This suggests that the structure
in P. sesostris is unlikely to be a D-structure and is
consistent with a gyroid. These effects certainly make
an appealing case for more detailed characterization of
the polarization of low-contrast photonic crystals and
might help unambiguously identify the geometry of
the structures.
7. DISCUSSION AND SPECULATIONS

In addition to factors such as the periodicity and filling
fraction, we have seen that the appearance of the scales
of the different species is modified by a combination of
structural factors: including but probably not restricted
to the type of photonic crystal, the domain size and
the presence of other intervening structures such as the
honeycomb. We have shown how calculations of the
photonic properties of the crystal lattices are consistent
with measurements of the spectral properties provided
the effect of these other features is included. We have
J. R. Soc. Interface (2009)
also tried to isolate features that are characteristic of
particular crystal structures as opposed to features that
are generic. Thus, surprisingly, quantitative features
such as the location or width of the bandgap or even the
amount of tilt required to change from green to blue
may be the same for many different structures, whereas
qualitative features such as reflection of polarized light
may help characterize the symmetry of the lattice.

In addition, we have seen that there is more than one
way to achieve iridescence suppression. We propose
two possible mechanisms for iridescence suppression by
the honeycomb. One possibility is that the honeycomb
acts as a collimating structure (the honeycomb
structure is reminiscent of an optical fibre bundle or
the naturally occurring crystal ulexite), taking light
that is incident at wide angles and refracting it into a
narrower numerical aperture. This explanation would
imply that the topside spectrum in species such as
P. sesostris is simply a stretched version of the
underside spectrum. One could try to confirm this by
varying the numerical aperture of the detection optics,
though it was difficult with our set-up to make
measurements at angles of incidence beyond 708.
A different explanation is that the honeycomb may
help to randomize the angles of the incident and
reflected beams (acting similar to frosted glass or a
translucent cover). Thus, at each angle, light is reflected
from different regions of the BZ giving an average or
uniform perceived colour that is therefore relatively
constant over all viewing angles.

If different crystal lattices occur in different species,
it raises the question: is it merely an accident of history
or are the different band structures or polarization
responses relevant to some function? On the other
hand, if it turns out that all three-dimensional periodic
lattices in butterflies have the same structure, then this
raises equally interesting questions: is this structure
developmentally constrained; is it optimal in some
sense; or is it again an accident of history? For example,
the reflection of non-iridescent green has often been
cited as a mechanism of camouflage. That some
structures can simultaneously be reflecting circularly
polarized light in the UV raises tantalizing questions
about cryptic signalling in regions of the spectrum
unavailable to certain predators.

That some of these three-dimensional periodic
structures can arise as minimal surfaces (such as soap
films that minimize surface tension by forming shapes
with mean constant curvature) has also led to
speculation that the development of these structures
may be in part based on self-assembly (Ghiradella 1989;
Ingram & Parker 2008; Michielsen & Stavenga 2008). If
so, what are the implications then for the develop-
mental processes of adjacent structures such as the
honeycomb? Indeed, one can also ask questions about
the evolution and development of other features such as
domain size or what controls the final depth of the
crystal lattice or the depth of the honeycomb.
A comparative study of many species may provide
clues or uncover phylogenetic or environmental pat-
terns within the diversity of features. Within the
limited study of the four species here, we point out
that the smaller butterflies have domain averaging
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while the larger butterflies have a honeycomb structure
(perhaps there is a material/weight cost to have a
honeycomb present).

Biomimetics is a fast growing field based on
technology inspired by naturally occurring processes
and structures. The evolution of biological structures
can be a complicated combination of historical acci-
dents, developmental constraints and environmental
pressures, and thus may not necessarily represent the
simplest or optimal approach to performing a particular
function. Nevertheless, the diversity of structures
observed may lead to new ideas or clues. For example,
structural colour has certain technological advantages
over pigments (lifetime, tunability, etc.). Having
control over the degree of iridescence (to either enhance
it or suppress it) is also important. For example,
suppression of angle-dependent effects is important in
permanent colour and display technologies. It has been
often assumed that structures having complete photo-
nic bandgaps are necessary to avoid angle dependence
and thus one needs high index contrasts. Unfortu-
nately, there seems to be a general trend that the more
easily processed materials (such as polymers) tend to
have lower refractive indices. The butterfly examples
show, however, that it may be possible to produce some
of the features of a complete photonic bandgap, notably
colour that does not change with angle, with low index
contrast systems.

By studying several species and comparing structure
and spectral appearance, we have answered some
questions about the cause and suppression of irides-
cence but, in doing so, have also raised some new and
equally interesting questions for the future.

The authors thank the Australian Research Council for
financial support and Lars Jermiin for interesting discussions.
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