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Abstract
Differences in breast tissue composition are important determinants in assessing risk, identifying
disease in images and following changes over time. This paper presents an algorithm for tissue
classification that separates breast tissue into its three primary constituents of skin, fat and glandular
tissue. We have designed and built a dedicated breast CT scanner. Fifty-five normal volunteers and
patients with mammographically identified breast lesions were scanned. Breast CT voxel data were
filtered using a 5 pt median filter and the image histogram was computed. A two compartment
Gaussian fit of histogram data was used to provide an initial estimate of tissue compartments. After
histogram analysis, data were input to region-growing algorithms and classified as to belonging to
skin, fat or gland based on their value and architectural features. Once tissues were classified, a more
detailed analysis of glandular tissue patterns and a more quantitative analysis of breast composition
was made. Algorithm performance assessment demonstrated very good or excellent agreement
between algorithm and radiologist observers in 97.7% of the segmented data. We observed that even
in dense breasts the fraction of glandular tissue seldom exceeded 50%. For most individuals the
composition is better characterized as being a 70% (fat)−30% (gland) composition than a 50% (fat)
−50% (gland) composition.
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I. INTRODUCTION
Breast cancer is a high-prevalence disease that will affect the lives of one of every eight women
in the United States. Breast cancer arises in the glandular and ductal tissues and generally
becomes detectable by mammography when the size of the lesion approaches 1 cm in size.1
Early identification of breast cancer is the most important consideration determining prognosis.
X-ray mammography is the principal screening tool for breast cancer detection world-wide.
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A difficulty with mammography is the superposition of overlaying glandular structures, which
can obscure visualization of a breast tumor. Conventional computed tomography (CT), while
producing adequate images of the breast, lacks the fine detail in spatial resolution and slice
thickness to optimally identify breast tissues. Conventional CT also suffers from the additional
radiation dose to the chest organs and artifacts from cardiac and respiratory motion. Magnetic
resonance imaging (MRI) shows promise for specialized breast imaging and biopsy
guidance5–8 but availability and cost considerations limit its widespread application.
Producing tomographic breast images with a dedicated x-ray breast computed tomography
(breast CT) scanner can eliminate the influence of overlapping tissues.

Breast CT also provides high-quality volume data that enhances visualization of breast
glandular tissue and architecture compared to other breast imaging methods9–12 providing
mammographers with a clear view of breast architecture and glandular tissues. Breast CT data
also lends itself to detailed quantitative analysis of breast tissue composition and structural
organization. Differences in breast tissue composition are important determinants in assessing
risk, identifying disease in images and following changes over time.13–22

I.A. Breast tissue architecture
The normal breast has a complex tree-like architecture consisting of glandular tissue supported
by a network of connective tissues cushioned by fat and contained within a shroud of skin (Fig.
1). At puberty the rapid proliferation of glandular tissues gives the breast its characteristic
conical shape. With age, especially after menopause, the relative distribution of breast tissues
reflects the transition from predominately glandular tissues to predominately fatty replacement
tissues. Connective tissues also slacken contributing to an overall reduction in structural
support with age.

I.B. Breast tissue composition
Even though the breast is composed of a variety of tissues (e.g., skin, fat, gland), a commonly
held assumption in mammography is that the breast is composed of approximately 50% fat
and 50% glandular tissue.12 This assumption, while not precise, serves as the basis for
dosimetry estimates and technique chart optimization. Mammography does not readily permit
tissue classification due to the significant superposition problem inherent in a projection
imaging technique.

Although various approaches have been tried to develop computer algorithms to classify breast
tissues,23–26 and identify micro-calcifications and tumors,27–29 accurate information
regarding breast tissue composition has been difficult to obtain. Breast tumors furthermore
exhibit similar radiographic characteristics to glandular tissue. Even so there have been
attempts to estimate breast tissue composition by analysis of mammograms30–37 and MRI
data.5–8,38

Breast CT is capable of producing high-resolution volumetric images of pendant breasts.10
Breast CT images are subjectively of higher quality than the images from projection
mammography.39 Breast CT images provide both high spatial and contrast resolution that
facilitates identification and classification of breast tissue.

I.C. Breast tissue classification
Analysis of breast tissue raises the question of defining how many components are sufficient
to describe the tissue in question. It is common to approximate the breast as partially
homogeneous wherein the fat and glandular tissue have one set of mechanical properties and
the skin a second.40 For this work, we use a classification model of the breast consisting of
three tissues: skin, fat, and glandular tissue. One method of classification is intensity (or CT
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number) thresholding. For the breast this is not sufficient as our measurements demonstrate
that skin and glandular tissue have similar CT values.

In this article, we present an automated algorithm for tissue classification that separates breast
tissue into its three primary constituents of skin, fat and glandular tissue. Once tissues have
been classified, a more detailed analysis of glandular tissue patterns and a more quantitative
analysis of breast composition may be made. After a discussion of the methodology, we present
data from a series of patients to demonstrate algorithm performance.

II. METHODS
II.A. Breast CT scanner

A dedicated breast CT scanner has been developed that produces high-resolution volumetric
breast images.9–12,41 Each breast was scanned individually without compression in the
pendant position while the patient lay prone in the scanning table. Patient scans were made at
80 kVp (0.5 mm Al HVL) using 50–120 mAs depending on breast size. Scanning acquired
approximately 500 projection images through a complete scanner gantry revolution over a
period of 16 s. The average glandular dose was approximately 6.4 mGy per breast, comparable
to a standard two-view mammogram.11

II.B. Image reconstruction
Acquisition image data were reconstructed using a modified Feldkamp cone-beam
algorithm42 resulting in a series of approximately 300 5122 image slices depending on breast
size with a nominal resolution of 250 µm by 250 µm by 300 µm. The resulting image slices
were embedded into a 5123 cubic volume. Variations in CT number across the field of view
and through the volume due to cone-beam artifacts required normalization between slices by
aligning the pixel histograms for each slice. Future enhancement in reconstruction software
including improved field flattening correction and regional analysis should eliminate these
difficulties.

Volume data were analyzed and displayed on a specially designed interactive volume
workstation. Volume data could be viewed as individual slices, thick slices and volume
rendered images using blending, maximum-intensity-projection and x-ray projection
algorithms. Interactive review or original and segmented data was possible for the entire
volume. Classification analysis was performed offline.

II.C. Patient scanning
All patient studies were performed according to protocols approved by the institutional review
board with informed consent obtained from each subject. The study was conducted in
compliance with HIPAA regulations. Typical uncompressed original breast slice images are
shown in Fig. 2.

We used the following mammography terminology for breast density: fatty replaced (0%–25%
glandular tissue), scattered fibroglandular density (25%–50% glandular tissue),
heterogeneously dense (50%–75% glandular tissue) and dense (over 75% glandular tissue).
The classifications were based on mammographically assessed breast density and for our
subject distribution was fatty replaced (4.5%), scattered fibroglandular (44.3%),
heterogeneously dense (23.9%) and dense (27.3%).

An initial pilot study imaged ten normal volunteers. Subsequently, we imaged 45 women with
mammographically identified suspicious lesions who underwent bilateral, unenhanced,
dedicated breast CT imaging prior to core biopsy. The same imaging techniques were used
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with both sets of individuals. All subjects were asked to hold their breath during the 16 s scan
time to minimize motion. The distribution of biopsy confirmed diagnoses is shown in Fig. 3.

The breast CT images were compared to images from conventional film screen mammography
using the craniocaudal and mediolateral oblique views by an experienced mammographer to
assess overall clinical image quality.39 No other diagnostic imaging studies were included in
the comparison. An estimate of breast density was obtained from the mammography report for
comparison to breast CT estimates of percent glandular tissue. Breast implants posed additional
difficulties and patients with them were excluded from the present analysis.

II.D. Tissue classification
Voxel data were input to an automated segmentation algorithm for classification into skin, fat
and glandular tissues. Image slices were filtered using a 5 pt median filter and an image slice
histogram was computed. Since skin and glandular tissue had similar CT values we used a two
compartment Gaussian fit of slice histogram data to separate fat and skin/ glandular tissue.
Skin and glandular tissue were differentiated based on their geographic location using the
general assumption that skin is always exterior and that gland is interior.

The Gaussian fit provided an initial estimate of the different tissue compartments in the slice
and provided a threshold voxel value. After the histogram classifier, a seed point was identified
for input to region-growing algorithms. Voxels in each slice were classified as belonging to
skin, fat or gland based on their voxel values and architectural features.

The specific details of the tissue classification algorithm are as follows:

1. Three-dimensional voxel data were obtained from the breast CT scanner.

2. Each 5122 image slice was filtered using a 5 pt median filter

3. The image slice histogram was computed (Fig. 4).

4. The histogram peak maximum value was determined.

5. The 1st histogram peak was fit using a Gaussian curve of the form

(1)

6. The histogram residual was computed by subtracting the Gaussian fit curve.

7. The center of mass of the residual was computed and compared to the center of mass
of the Gaussian peak to determine the predominant tissue type present (i.e., gland or
fat).

8. An initial segmentation threshold was set at 0.05 of the Gaussian peak maximum on
the residual side of the peak based on the center-of-mass location for the Gaussian
peak and the center of mass of the residual.

9. Histogram values under the Gaussian peak were assigned to either fat or gland based
on the relative center-of-mass locations to accommodate both dense and fatty breast
compositions.

10. A seed point on the skin surface was automatically identified by searching inward
from the border of the image until the first voxel having a skin value based on the
histogram analysis was identified. During the search, image voxels exterior to the
breast and outside the histogram tissue values were identified and flagged.
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11. A region growing algorithm beginning at the skin seed point identified the skin voxel
values as determined by the skin/gland histogram segmentation threshold.

12. After the skin region growing was completed, a new seed point was identified in the
fat pixels adjacent to the skin segmented voxels and interior to the skin by searching
for an arbitrary voxel value corresponding to a value assigned to fat based on the
histogram. The particular location of the seed point was not crucial other than
providing a starting point for the region growing algorithm.

13. A second region growing algorithm beginning at the fat seed point identified all fat
interior voxels using values determined by the fat histogram segmentation threshold.

14. After identification of voxels corresponding to skin and fat the remaining unassigned
interior voxels were assigned to gland.

15. Upon completion, the algorithm automatically compared the classification tissue type
(skin, fat, gland) of each voxel to the original histogram. In situations where the voxel
value was incorrectly assigned, such as might occur if voxels representing fatty tissue
are interior to a large glandular structure, the voxel values were reassigned
automatically by the algorithm to the correct tissue type as defined by the histogram
and threshold to yield the final classification (Fig. 5). Since glandular tissue was
interior and skin was exterior this was a reasonable strategy to refine the segmentation.
However, since skin and glandular tissue have similar values it was possible for
misclassification to occur near skin/gland boundaries such as might be found near the
nipple. We are exploring additional strategies to address this issue.

16. The number of voxels for each tissue type was computed for each individual slice and
then summed for all breast CT slices in the volume to obtain global tissue fractional
composition in each breast.

II.E. Segmentation validation
Algorithm performance was validated using example slices derived from actual breast CT data.
We assessed algorithm performance using two approaches, one to assess performance in the
presence of noise and one to assess accuracy of classification:

First, we selected five mid-breast CT slices and their corresponding segmented slices, from
studies covering the range of breast densities (% glandular fraction) [2-fatty replaced (0%–
25% glandular tissue); 2-scattered fibroglandular dense (25%–50% glandular tissue); and 1-
heterogeneously dense (50–75% glandular tissue)] in our patient population. The segmented
slice data were used as reference standard images to assess algorithm performance using a
realistic breast tissue architecture. Next, we set the pixels in the segmented images to values
corresponding to skin, fat and gland tissue as determined from region-of-interest measurements
in the original breast CT breast slices for each tissue type. The skin and gland tissue typically
had a value of 152±9 CT units while the fat had a value of 126±7 CT units for a net difference
of approximately 26 CT units. Finally we added increasing amounts of Gaussian noise to each
slice (e.g., mean values of the noise distribution were: 10, 15, 20, 25, 30, 40, 50 CT units).

Different noise levels had the effect of broadening the pixel intensity distribution (Fig. 6). The
range of pixel values for each tissue in these test cases covered, and generally exceeded, those
found in the original breast CT images permitting us to assess algorithm performance in a noisy
environment. Finally, the classification algorithm was applied to these noise added images.

Our second approach initially considered using a skilled mammographer to manually outline
the breast glandular tissues. However, the significant time (∼30 min/slice) required precluded
this approach for practical considerations. Instead, we used an alternate approach based on a
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series of subimages taken from the original and segmented breast CT data that were presented
to the radiologist (Fig. 7).

Typically between 70 and 100 sub-image sets for each breast CT slice were presented to the
radiologist for evaluation depending on breast size. The radiologist was asked to rate the
segmentation against what they would draw using a 5 pt scale as follows [1-(Poor) (<60%
pixels properly segmented); 2-(OK) (60%–70% pixels properly segmented); 3-(Good) (70%–
80% pixels properly segmented); 4-(Very Good) (80%–90% pixels properly segmented); and
5-(Excellent) (>90% pixels properly segmented)].

Three radiologists (two mammographers and one body imager) participated in the review. The
tabulated results were summed across all reviewers as a measure of the algorithm performance.

III. RESULTS
All 55 subjects (mean age 56.1±13.4 years) were able to maintain the 16 s breath-hold. There
were no problems with breast positioning or patient tolerance of the examination. Overall the
breast CT scans demonstrated excellent image quality.39 Estimation of breast density from
film-screen mammography was compared to breast CT % glandular tissue measurements in a
total of 105 breasts in 55 patients (Fig. 8).

Breast tissue classification required approximately 20 min per breast running on a dual 2.7
GHz PowerPC G5 with 4 GByte DDR SDRAM (Apple, Cupertino, CA). Overall the algorithm
performed well as described below. However, the greatest challenge with respect to algorithm
performance was field non-uniformity due to cone-beam geometry. Image noise, from using
low radiation dose techniques, also ultimately limited breast CT number resolution.

III.A. Segmentation validation
Algorithm validation was based both on accuracy of classification and noise tolerance. The
results for the algorithm validation using noise-added images are shown in Fig. 9. The
segmented slices with noise added agreed with the original reference segmented slices to within
1% for each fraction of segmented tissues using a voxel to voxel comparison. These results
demonstrate the robust noise tolerant performance of the algorithm which is important,
particularly when using low radiation dose techniques.

The results for the radiologist assessment of classification performance validation are shown
in Fig. 10 and demonstrate overall excellent performance with 97.7% of the classifications
judged to be very good or better (81.1% excellent; 16.6% very good). On average it required
approximately 6 min per slice for their analysis. The majority of the poor evaluations were
from one slice that experienced marked slice non-uniformity that affected the histogram
threshold on a global basis. A more regional histogram analysis could be used to address this
issue and is being investigated.

III.B. Population results
The algorithm was able to successfully classify breast tissues into skin, fat and glandular tissues
and quantify breast composition. Figure 11 shows the distribution in fractional breast tissue
composition as a function of age with a general decline in breast glandular tissue with age.

A better sense of the overall tissue composition is given in Fig. 12 that shows the relative
distribution of tissues across all subjects. Note that the majority of individuals imaged had
breasts predominately composed of fat (mean composition: gland 17.1%± 15.2%; fat 72.8%
±17.1%; skin 10.1%±3.3%).
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Also, we compared the tissue composition between the right and left breasts. Figure 13 shows
the variation between the right and left breasts for gland (ratio=1.14±0.75, ρ=0.96; fat
(ratio=1.00±0.08, ρ=0.97), and skin [ratio=1.00±0.14, ρ=0.90]).

III.C. Case examples
Comparison of breast CT tissue classification to mammographer-based density classification
suggests that it is difficult to accurately estimate breast glandular tissue fraction from projection
imaging. Tomographic imaging facilitates this task. We present several representative
examples from the subject population with different breast densities showing the variability in
breast tissue distribution and composition.

First, Fig. 14 is a fatty replacement breast; second, Fig. 15 is a fibroglandular breast; and third,
Fig. 16 is a dense breast.

In each of the examples, the fractional composition plotted is computed by slice whereas the
percentage of each tissue number represents the total breast composition.

Our results suggest that even in denser breasts the fraction of glandular tissue seldom exceeds
50%. For most individuals the composition is better characterized as being a 70% (fat)−30%
(gland) composition rather than a 50% (fat)−50% (gland) composition12 consistent with the
results of others.5 While glandular patterns are generally similar between the right and left
side, glandular patterns varied widely between individuals.

Also, since the classification algorithm produced a series of segmented slices for the entire
breast volume, these slices could be viewed as a volume from any orientation (Fig. 17) in
addition to as individual slices.

IV. DISCUSSION
Breast CT provides high-quality volume data that enhances visualization of breast glandular
tissue and architecture compared to other breast imaging methods. Breast CT also uses radiation
doses comparable to x-ray mammography.9–12 Initial clinical experience39 has shown
performance similar to that of film-screen mammography with improved soft-tissue contrast
and excellent breast parenchymal and glandular structure detail.

In the present study we were able to evaluate the composition of breast tissue in a relatively
small group of normal volunteers and patients with mammographically identified breast lesions
using breast CT and classify breast tissues into skin, fat and gland. While individual tissue
distributions varied widely, for most individuals our results suggest that the breast composition
can be characterized as being a 70% (fat)−30% (gland) composition rather than a 50% (fat)
−50% (gland) composition5 with similar distributions and patterns between the right and left
breasts. A larger patient study will be useful to confirm these results.

Tissue classification makes possible a range of quantitative measurements regarding breast
composition, density and tissue distribution with age. In addition, quantitative tissue
classification is valuable as input to finite-element analysis algorithms simulating breast
compression for comparison to mammography.43 Classified breast data also may be of use in
dose estimation44 and computer-aided diagnosis.29 There have been reports of differences in
the density and Hounsfield number associated with different types of cancers compared to
normal breast tissues.45 While the present work focuses on classification of breast tissue, with
improvements in image signal-to-noise performance, it may be possible to differentiate
between breast cancers and normal glandular tissue using the same strategies.
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FIG 1.
Three component model of breast tissues (fat, skin, gland).
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FIG 2.
Selected original mid-breast images from breast data CT scan for a typical breast.
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FIG 3.
Distribution of biopsy confirmed breast diagnoses. Benign lesions (Adenosis; Columnar
alteration with prominent apical snouts and secretions (CAPSS); fibrocystic changes (FC);
fibroadenoma (FA); lobular carcinoma in situ (LCIS); benign) and Malignant Lesions (ductal
carcinoma in situ (DCIS); invasive ductal carcinoma (IDC); invasive lobular carcinoma (ILC);
lymphoma).
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FIG 4.
Voxel histogram for image slice used for tissue classification showing the original histogram
and the Gaussian fit curves for the fat and skingland components plus the automatically
determined threshold value.
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FIG 5.
Corresponding segmented images from slices shown in Fig. 2. Note the excellent agreement
between the images and original breast CT slices.
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FIG 6.
Histogram distribution of pixel intensity in original slice and test cases derived from segmented
slice with Gaussian noise added. Gaussian noise with mean CT number values ranging from
10 to 50 were segmented with the algorithm. The segmented original image served as the
reference image to compare algorithm performance. Image histograms demonstrate varying
degrees of pixel distribution across the images.
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FIG 7.
Radiologist breast CT slice evaluation image set. The radiologist was presented with three
subimages: the first was the original breast CT slice, the second was the segmented slice and
the third was a composite color coded slice showing the segmented regions superimposed on
the original breast CT slice.

Nelson et al. Page 17

Med Phys. Author manuscript; available in PMC 2009 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG 8.
Patient breast density (mean ± standard deviation) as rated by a mammographer vs the fractional
glandular tissue composition from breast CT. The large symbols correspond to the breast CT
images presented later [Fig. 14, fatty replacement (triangle); Fig. 15 scattered fibroglandular
(circle); and Fig. 16 heterogeneously dense (square)]. The large overlap between
mammographic estimates of breast densities suggests the difficulty in assessing glandular
tissue composition in mammograms.
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FIG 9.
Selected slices from algorithm validation slices. Each column represents a different percentage
of breast glandular tissue in that slice for the breast CT data presented later (Fig. 14, fatty
replacement; Fig. 15 scattered fibroglandular; and Fig. 16 heterogeneously dense). The row
sequence is as follows: breast CT slice; segmented breast CT slice; segmented slice with
Gaussian noise of mean 25 CT units added; segmented slice with Gaussian noise of mean 40
CT units added; classification results for noise added images for 25 CT units; classification
results for noise added image for 40 CT units; difference image between segmented noise image
(25 CT units) and original segmentation; difference image between segmented noise image
(40 CT units) and original segmentation.
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FIG 10.
Histogram showing radiologist rating of algorithm classification performance. 97.7% of the
classifications were judged to be very good or better (81.1% excellent; 16.6% very good; 1.3%
good; 0.2% OK; 0.8% poor).
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FIG 11.
Distribution of fractional breast composition as a function of age.
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FIG 12.
Histogram of the patient distribution of the fractional breast composition showing the majority
of breasts composition is fat with a relatively smaller distribution being predominantly
glandular.
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FIG 13.
Comparison of right and left composition by tissue classification.
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FIG 14.
Classification of fatty replacement breast. (Upper) One mid-breast slice of the breast CT with
the corresponding segmented image. (Lower) The composition analysis through all slices. The
total breast volume was 350 ml with a volume fractional composition of 6.5% skin, 80.4% fat
and 12.9% gland.
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FIG 15.
Classification of a scattered fibroglandular breast. (Upper) One mid-breast slice of the breast
CT with the corresponding segmented image. (Lower) The composition analysis through all
slices. The total breast volume was 353 ml with a volume fractional composition of 9.7% skin,
53.9% fat and 36.4% gland.
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FIG 16.
Classification of a heterogeneously dense breast. (Upper) One mid-breast slice of the breast
CT with the corresponding segmented image. (Lower) The composition analysis through all
slices. The total breast volume was 248 ml with a volume fractional composition of 10.2%
skin, 23.4% fat and 66.4% gland.
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FIG 17.
Classification of a highly glandular breast. (Upper Panel) Three orthogonal slices from the
original CT scan plus a volume rendered image of the breast CT with the corresponding
segmented images (Lower Panel).
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