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® Background and Aims Apomictic plants maintain functional pollen, and via pollination the genetic factors
controlling apomixis can be potentially transferred to congeneric sexual populations. In contrast, the sexual
individuals do not fertilize apomictic plants which produce seeds without fertilization of the egg cells. This
unidirectional introgressive hybridization is expected finally to replace sexuality by apomixis and is thought to
be a causal factor for the wide geographical distribution of apomictic complexes. Nevertheless, this process
may be inhibited by induced selfing (mentor effects) of otherwise self-incompatible sexual individuals. Here
whether mentor effects or actual cross-fertilization takes place between diploid sexual and polyploid apomictic
cytotypes in the Ranunculus auricomus complex was tested via experimental crosses.

e Methods Diploid sexual mother plants were pollinated with tetra- and hexaploid apomictic pollen donators by
hand, and the amount of well-developed seed compared with aborted seed was evaluated. The reproductive path-
ways were assessed in the well-developed seed via flow cytometric seed screen (FCSS).

o Key Results The majority of seed was aborted; the well-developed seeds have resulted from both mentor effects
and cross-fertilization at very low frequencies (1-3 and 1-6 % of achenes, respectively). Pollination by 4x apomic-
tic pollen plants results more frequently in cross-fertilization, whereas pollen from 6x plants more frequently
induced mentor effects.

e Conclusions It is concluded that introgression of apomixis into sexual populations is limited by ploidy barriers
in the R. auricomus complex, and to a minor extent by mentor effects. In mixed populations, sexuality cannot be
replaced by apomixis because the higher fertility of sexual populations still compensates the low frequencies of
potential introgression of apomixis.
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INTRODUCTION

Asexual reproduction is often thought to confer short-term
evolutionary advantages by avoiding the 2-fold costs of sexu-
ality: the cost of producing male individuals or organs, and
avoiding the break-up of favourable gene combinations at
meiosis (e.g. Bell, 1982). Nevertheless, a short-term success
of asexual organisms is manifested in distribution patterns
called geographical parthenogenesis, which describes the
widespread phenomenon whereby asexual populations often
have larger distribution ranges, tend to higher altitudes and
latitudes, and are more abundant in previously glaciated
areas than their sexual relatives (e.g. Van Dijk, 2003;
Kearney, 2005; Horandl, 2006).

Several hypotheses have been discussed to explain causality
and evolutionary implications of geographical parthenogen-
esis: (a) indirect benefits from polyploidy and/or hybrid
origin of asexual organisms (e.g. Kearney, 2005); (b) advan-
tages of uniparental reproduction (Stebbins, 1950; Baker,
1967; Horandl et al., 2008); (c) gene flow from apomicts to
sexuals and introgression of apomixis into sexual populations
(Mogie, 1992; Mogie et al., 2007); (d) production of
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generalists (general purpose genotypes; Baker and Stebbins,
1965; Lynch, 1984) vs. specialized genotypes (Vrijenhoek,
1984, 1994); or (e) biotic interactions with other organisms
(Maynard Smith, 1978; Bell, 1982; Glesener and Tilman,
1987). These factors may have different impacts in various
groups of organisms, but may also act synergistically
(Horandl, 2006). Climatic changes may provide opportunities
for origins of asexual organisms, which arise mainly from
hybrids of sexual species or from introgressive hybridization
(Horandl, 2009). We wanted to test specifically the potential
of apomicts to swamp sexuality by introgressive hybridization,
as predicted by theory (e.g. Mogie, 1992; Mogie et al., 2007).

In flowering plants, apomixis, the mode of reproduction via
asexually formed seed (Asker and Jerling, 1992), is frequently
connected to geographical parthenogenesis (Bierzychudek,
1985; Horandl, 2006; Horandl et al., 2008). The geographical
phenomenon is mostly observed in cases of gametophytic apo-
mixis (Richards, 1997), which comprises three functional
steps: (1) the formation of an unreduced egg cell (via for-
mation of an unreduced embryo sac); (2) the parthenogenetic
development of the embryo, i.e. without fertilization of the
egg cell; and (3) the formation of the endosperm, which pro-
vides nutritious tissue for the embryo. In the majority of apo-
mictic plants, fertilization of the polar nuclei by one sperm
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nucleus is still necessary for the development of the endo-
sperm (pseudogamy) because of genomic imprinting in the
endosperm (e.g. Vinkenoog et al, 2003; Curtis and
Grossniklaus, 2008). Male-sterile mutants may initially
spread because of fitness advantages, but finally the scarcity
of pollen drives the population to extinction. Male-sterile
plants and hermaphrodites may co-exist under spatial con-
ditions with a sufficiently large distance of pollen and seed dis-
persal (Stewart-Cox et al., 2005). Only a few taxa, mainly
Asteraceae, are capable of autonomous (pollen-independent)
endosperm formation, but nevertheless maintain pollen
production. This may be explained by selection for clonal
diversity, which is largely dependent on gene flow via the
pollen function (Meirmans et al., 2006). For these reasons,
the male function is maintained and viable pollen is still
produced in almost all apomictic plants.

Apomixis is a heritable trait and under genetic control (e.g.
Nogler, 1984; Grimanelli et al., 2001; Curtis and Grossniklaus,
2007). Hence the genetic factors controlling apomixis can be
potentially transferred from an apomictic individual to the off-
spring of a sexual plant via pollen. Consequently, the offspring
of the fertilized sexual individual will be at least partly apo-
mictic. In contrast, the pollen of the sexual individuals will
not fertilize the apomicts and will not result in the inheritance
of the sexual wild type. Because of this unidirectional hybrid-
ization, apomixis has a 1.5-fold fitness advantage over sexu-
ality, and in mixed populations apomixis is expected soon to
come to fixation (Mogie, 1992). This model is based on a
simple heritability mechanism of apomixis via a single
genetic factor and all progeny expressing the trait. In fact, mul-
tilocus genetic control and epigenetic effects may actually alter
expression in many apomictic plants (Curtis and Grossniklaus,
2007; Vijverberg and Van Dijk, 2007). In facultative apomicts,
reverse gene flow from sexuals to apomicts and potential
re-establishment of sexuality has to be considered.
Nevertheless, Mogie’s (1992) hypothesis provides a theoretical
basis for testing actual gene flow from apomicts to sexuals in a
model system with a single-locus control of apomixis.

During range expansions, apomicts have additionally a
superior colonizing ability because of uniparental reproduc-
tion. The faster moving apomicts will build up a barrier
against the slower moving sexual populations because the
latter will always be pollinated mainly by the more abundant
apomictic individuals. Consequently, sexuality would at best
remain in geographically isolated relic populations but other-
wise introgressed and replaced by apomixis (e.g. Mogie,
1992; Mogie et al., 2007). Side effects also have to be con-
sidered. Hybridization of apomictic lineages with sexually
related species increases genotypic diversity of the former
(Horandl and Paun, 2007). Diversity of clones or genotypes,
in turn, is an important prerequisite for colonizing various eco-
logical niches and is another important causal factor of geo-
graphical parthenogenesis (Vrijenhoek, 1984, 1994; Horandl,
2006).

Introgression of genetic factors controlling apomixis into
sexual species is further thought to contribute to the taxonomic
distribution of apomixis in angiosperms. Even if apomictic
lineages would be short-lived, apomixis genes can be trans-
ferred to novel genetic backgrounds via introgression and
could survive for long evolutionary time periods. This

mechanism may, beside pre-adapations for apomixis, explain
the observed clustering of apomixis in related genera of
angiosperms at the tribal and subtribal level (Van Dijk and
Vivjerberg, 2005).

The actual amount of introgression of apomixis into sexual
individuals depends on various factors. First, actual amounts
of female and male fitness may vary considerably among apo-
mictic taxa. While pseudogamous taxa often have a lower
female fitness compared with sexuals (e.g. Huber, 1988;
Voigt et al., 2007; Horandl, 2008), this may be the other
way round in autonomous apomixis (e.g. Michaels and
Bazzaz, 1986; Van Dijk, 2007). If we take fitness differences
into account, and assume that half of the pollen of apomicts
fertilizes sexual individuals and transfers apomixis to their oft-
spring, then the frequencies of apomixis will increase in the
population if

ﬁisex/fqex +0-5m>1

where f,..x 1 the female fitness of asexual individuals and fex
that of the sexual individuals, and m is the respective male
fitness quotient (Mogie, 1992). If m = 1, then the f quotient
must only exceed 0-5, or, in other words, asexual seed set
needs to exceed only half of that of the sexual individuals to
increase the frequency of apomixis in the population. One
questionable variable is the value of m, which is likely to be
lower than 1 (Mogie et al., 2007); apomicts usually produce
higher frequencies of aborted pollen than sexual species
because of meiotic disturbances during microsporogenesis.
The 50 % fertilization success of apomictic pollen on sexual
mother plants is a crucial variable for the success of introgres-
sion and cannot be taken for granted. It must be considered that
sexual relatives of apomictic plants are most frequently
diploid, whereas apomixis in flowering plants is almost exclu-
sively connected to polyploidy (e.g. Asker and Jerling, 1992).
Crosses between different ploidy levels are often unsuccessful
because of endosperm incompatibilities (e.g. Nogler, 1984;
Levin, 2002). Moreover, so-called mentor effects may block
the cross-fertilization of sexual individuals caused by mixtures
of self-pollen and apomictic pollen on their stigmas. Such
mixtures may lead to a breakdown of self-incompatibility
systems in outcrossing sexuals, and therefore to selfing (e.g.
Richards, 1997). This mentor effect has been proved in
many sexual, otherwise self-incompatible taxa of apomictic
complexes (Tas and Van Dijk, 1999; Mraz, 2003; Brock,
2004). Sexual progeny derived from selfing will have an
increase of homozygosity and may potentially suffer from
inbreeding depression; nevertheless, selfing of sexuals will
reduce frequencies of introgressed apomictic progeny.
Finally, frequencies of cross-pollinations between sexuals
and apomictic individuals may be limited by other pre-mating
barriers to crossing, such as different flowering times, different
frequencies of pollinator visits or microniche differentiation.
The apomictic Ranunculus auricomus complex provides a
model system for studying various factors of geographical
parthenogenesis. Most polyploid biotypes show aposporous
apomixis, i.e. a somatic cell of the nucellus divides to form
an unreduced, 8-nucleate embryo sac (Hifliger, 1943;
Izmaitow, 1967; Nogler, 1971, 1984). Apospory is heritable
and controlled by a single dominant Mendelian factor
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A— which can be transferred to the offspring of sexual species
via the pollen (Nogler, 1984). The unreduced egg cell develops
parthenogenetically into an embryo, which is genetically iden-
tical to the mother plant. Pollination is necessary for fertiliza-
tion of the endosperm; without pollination, seed set fails
(Rutishauser, 1954; Izmaitow, 1967; Horandl, 2008). The
pollen of apomictic plants is meiotically reduced, partly
aborted, but remains to some extent functional (Hifliger,
1943; Izmaitow, 1996; Horandl et al., 1997). The apomictic
biotypes are characterized by bad pollen quality, reduced
petals and partly aborted fruits (Héfliger, 1943; Izmaitow,
1996; Horandl et al.,, 1997; Lohwasser, 2001; Horandl,
2008). These developmental disturbances are usually thought
to be a consequence of the hybrid origin of apomicts (e.g.
Izmaitow, 1967; Paun et al, 2006b). Apomixis in the
R. auricomus complex is always connected to polyploidy.
The four sexual species known have small, partly disjunct
distribution areas in central and southern Europe (Horandl
and Paun, 2007). Apomictic polyploid cytotypes have been
reported throughout the range of the complex in the temperate
to arctic zones of Europe and Asia (e.g. Jalas and Suominen,
1989). Cytological and histological investigations have con-
firmed apomixis throughout the range of the complex, thus
confirming a pattern of geographical parthenogenesis. The
causal factors still remain to be studied. When pollinators
are available, apomictic biotypes have a significantly lower
female reproductive fitness compared with sexuals because
of high frequencies of aborted fruits (Lohwasser, 2001;
Horandl, 2008). Nevertheless, the mean female asexual seed
set regularly exceeds 50 % of that of the sexuals, but germina-
tion rates of sexual or apomictic taxa are not significantly
different (Horandl, 2008). This infers that cross-fertilization
could potentially lead to an introgression of apomixis into
sexual populations, and finally replacement of sexual individ-
uals. This process could have swamped sexual populations and
contributed to the present predominance of apomictic lineages.
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Here we wanted to test to what extent the pollination of
diploid sexuals by polyploid apomicts actually results in cross-
fertilization as a potential causal factor of the wide distribution
of the apomictic complex. The diploid sexual species
R. cassubicifolius and R. carpaticola were use here as mother
plants and their sympatric polyploid apomictic hybrid deriva-
tives were used as pollen donors; from this model system, infor-
mation on fertility is available (Horandl, 2008). To exclude
other potential pre-mating barriers to crossing in natural popu-
lations, we tried an experimental approach with plants collected
in the wild and cultivated in the experimental garden. We
assessed whether hand-performed cross- and self-pollinations
result in cross-fertilization and transfer of apomixis to sexuals,
or rather in induced selfing (mentor effects). Seeds were ana-
lysed via flow cytometric seed screen (FCSS), a highly efficient
method measuring the ratio of DNA content in the embryo com-
pared with the endosperm arising from different ploidy levels.
This ratio is informative about reproductive pathways and has
been used in numerous studies for assessment of modes of
reproduction and quantification of progeny (Matzk et al.,
2000; Caceres et al., 2001; Barcaccia er al., 2006, 2007,
Krahulcova and Suda, 2006; Hufft Kao, 2007; Matzk, 2007;
Talent and Dickinson, 2007; Voigt et al., 2007; Horandl
et al., 2008). In our experimental set-up, induced selfing
would result in embryo : endosperm ratios of 2 :3, while cross-
fertilization would result in ratios of 3:4 and 4 : 5, respectively
(Fig. 1). By including information on fitness and other reproduc-
tive parameters, such as self-compatibility and fitness of apo-
mictic biotypes (Horandl, 2008), we wanted to gain insights
into the impact of these processes on the observed distribution
patterns and on the evolution of the complex.

MATERIALS AND METHODS

Plant materials were collected from natural populations of
Ranunculus (see Table 1 and Horandl er al., 2000; Horandl
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Fi1G. 1. Scheme of the expected ratios of DNA content in the embryo compared with the endosperm on a diploid sexual mother plant with a reduced embryo sac.
(A) Sexual reproduction or selfing; (B) cross-fertilization by a tetraploid pollen donor; (C) cross-fertilization by a hexaploid pollen donor (terminology after
Greilhuber et al., 2005).
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TaBLE 1. Materials used in this study

Chromosome no. ploidy level,

Taxa (no. of individuals) somatic 1C-values (pg DNA)

Locality

Collectors, population number
(herbarium)

Sexual mother plants
R. cassubicifolius (4) 2n =16 (2x)*, 3-11 pg

R. carpaticola (3) 2n =16 (2x), 3-06 pg"

R. carpaticola (7) 2n =16 (2x), 3-:06 pg*, 2:93-3-05 pg
Apomictic pollen donor
R. carpaticola x cassubicifolius (2) 48 (6x)*, 7-89-8-11 pg*,T

R. carpaticola x cassubicifolius (1) 48 (6x), 7-91-7-99*

R. carpaticola x cassubicifolius (1) 48 (6x), 7-61-7-73 pg*

R. x hungaricus (1) 32 (4x), 6-17 pg*

Austria, border Burgenland/Hungary,
Hammer

Slovakia, Slovenské rudohorie, Reviica, hill
Skalka

Slovakia, Slovenské rudohorie, Reviica, hill
Pavlusove bane

Slovakia, Liptovska kotlina, Ruzomberok

C. Slovakia, Liptovska kotlina, Liptovsky
hradok

C. Slovakia, Turcianska kotlina,
Vritky-Piatrova

E. Slovakia, Nizke Beskydy, near NPR
Humenska

Horandl, 9562, and Paun, 46
(WU)
Horandl, 8483 (WU)

Horandl, 8486 (WU)

Klimovd, Paun and Horandl,
C40 (SAV)

Klimova, Paun and Horandl,
C44 (SAV)

Klimovd, Paun and Horandl,
C35 (SAV)

Klimova, C10, 23.5.2003 (SAV)

* Paun et al. (2006a).
 Horandl and Greilhuber (2002).
* E. Horandl ef al. (unpubl. res.; data J. Greilhuber).

and Greilhuber, 2002; Paun et al., 2006a, b), and cultivated in
the experimental garden of the Botanical Garden of the
University of Vienna, in a half-shaded area under a large
tree, resembling the natural forest habitats of the plants.
Plants were selected to represent different ploidy levels and
sexual vs. apomictic reproduction, according to information
from earlier studies (Horandl et al., 1997, 2000, 2008;
Horandl and Greilhuber, 2002; Paun et al., 2006a, b;
Horandl, 2008). For the sexual species, plants from three
different populations were used as mother plants. On a few
individuals, flow cytometric measurements were performed
on leaves to confirm ploidy levels and pg values as determined
in earlier studies. These measurements were in accordance
with earlier DNA content measurements on these populations
(see Table 1). In 2007, test runs on open-pollinated control
plants of diploid sexual R. cassubicifolius revealed embryo :
endosperm ratio peaks of 1-56—1-80. Cross-pollination of
sexual individuals with pollen from apomicts revealed a
clear case of a mentor effect, with an embryo : endosperm
ratio of 1-56 (Horandl et al., 2008). Here the aim was to try
to quantify the occurrence of mentor effects vs. cross-
fertilization on a larger data set, which was collected in
spring 2008 (Table 2). Plants from one tetraploid population
of R. x hungaricus (Horandl et al., 2009), and three hexaploid
populations of R. carpaticola x cassubicifolius (Paun et al.,
2006b; Table 1) donated the apomictic pollen.
Self-incompatibility of the diploid sexual species has been
assessed in an earlier study by a pollinator exclusion test on
the same plants as used here, plus on other individuals of
the same populations (Horandl, 2008). For the introgression
study, flowers were enclosed from the bud stage until fruit
maturity in cellophane bags, and bags were opened only for
controlled hand-pollinations with tetraploid or hexaploid apo-
mictic pollen plants (Table 1). For this purpose, plants were
taken indoors to avoid possible influence from airborne
pollen during the manipulations. One flower of an apomictic
polyploid individual was gently rubbed on the flowers of a

sexual individual during the period of stigma receptivity.
Because of the close vicinity of anthers and carpels in
flowers, this manipulation produced a mix of self and
foreign pollen on the stigma, as happens under natural con-
ditions. At fruit maturity, the total fruits (developed plus
aborted achenes) were collected, and achenes were counted
to assess retrospectively the total number of ovules per
flower according to the methods of Horandl (2008). In well-
developed achenes, the pericarp was removed, and the seed
(testa + embryo + endosperm tissue) was prepared for flow
cytometry. Many achenes appeared to be empty, and the fre-
quency of aborted seeds compared with the total number of
achenes was calculated both for flowers and for the total
number of ovules to get an estimate of the total rates of seed
abortion, mentor effects and interploidal cross-fertilization.
Around 100 achenes from three flowers were germinated on
wet filter paper at room temperature, but failed to germinate
completely, confirming an overall very low rate of seed set
(see Results).

Well-developed seeds were analysed via FCSS in order to
assess the reproductive pathways. The seeds and the tissue of
the standard organisms were chopped according to Galbraith
et al. (1983) in Otto I buffer (Otto et al, 1981) using a
razor blade. After filtration through a 30 wm mesh and incu-
bation with RNase A (0-15 mg mL_l) at 37 °C for 30 min,
Otto II buffer (Otto et al., 1981) containing propidium
iodide (PI; final concentration 50 wgmL™'; Greilhuber
et al., 2007) was added. Staining was carried out at 7 °C
from 1 h up to overnight. For measurement, a CyFlow ML
flow cytometer (Partec, Muenster, Germany) equipped with a
green laser (520 nm, Cobolt Samba, Cobolt AB, Stockholm,
Sweden) was used. Seeds were either used singly or were
pooled (Table 2). Data calculation was performed on the
resulting histograms either from the peaks of embryo : endo-
sperm ratios, or by evaluating pg values measured from
external standards (Pisum sativum ‘Kleine Rheinldnderin’,
1C=4-42 pg DNA; Greilhuber and Ebert, 1994). The
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TABLE 2. Results of crossings of diploid sexual plants and polyploid apomictic plants (well-developed seeds only) analysed by FCSS
(mother plants designated by population number/individuals number)

Ploidy No. of good DNA content Ratio of first peak to Mode of

Mother plant Pollen donor pollen plant achenes pg (1C) diploid pg value* Histogram peaks reproduction

46/10 10/1 4x 3 6-75 2:2 4x endosperm Hybridization

46/10 10/1 4x 1 6-50 2-1 4x endosperm Hybridization

46/12 10/1 4x 8 4-99 1-6 3x embryo, 4x Hybridization
endosperm

46/03 10/1 4x 1 6-53 2-1 4x endosperm Hybridization

46/03 10/1 4x 1 597 19 4x endosperm Hybridization

8483/25 10/1 4x 3 6-34 2-1 4x endosperm Hybridization

8483/25 10/1 4x 1 6-30 2-1 4x endosperm Hybridization

8483/05 10/1 4x 4 7-00 23 4x endosperm Hybridization

8483/05 10/1 4x 6 n.a. n.a. 4x endosperm Hybridization

8486/12 10/1 4x 2 n.a. n.a. 4x endosperm Hybridization

46/17 40/1 6x 1 10-80 3.5 6—7x endosperm Hybridization

8483/25 10/1 4x 2 5-18 1.7 3x endosperm Mentor

46/06 44/3 6x 4 535 1.7 3x endosperm Mentor

46/06 44/3 6x 2 5-18 1.7 3x endosperm Mentor

46/06 44/3 6x 1 5-38 1.7 3x endosperm Mentor

8486/22 40/1 6x 3 n.a. n.a. 2x embryo, 3x Mentor
endosperm

8486/12 10/1 4x 1 n.a. n.a. 4x, 8x, 12x and 16x cf. hybridization

46/14 40/5 6x 12 n.a. n.a. Approx. 16x cf. hybridization
endosperm

Each measurement represents the pooled seed set of 1-3 flowers. Flowers with zero seed set are not included here. Cases without a pg value were measured

without standards; see text.
* Measured from leaves, see Table 1.

expected embryo: endosperm ratios after selfing and outcross-
ing are illustrated in Fig. 1. For an estimate of the potential for
introgression according to Mogie’s formula, we used mean
values of seed set of diploid sexual plants and the hexaploid
apomictic plants from 3 years from the data set of Horandl
(2008) as fitness measures.

RESULTS

Altogether seed set was very low after all experimental polli-
nations. From a total of 49 flowers, 1960 achenes were pro-
duced (mean: 50-3 achenes per flower), but only 69 (3-5 %)
of them had normally developed seed that could be analysed
via FCSS (Table 2). Surprisingly, many achenes had a well-
developed hardened and brown pericarp, but were empty
inside; this is in contrast to seed abortion in bagged self-
incompatible plants. Here even the pericarp was not devel-
oped, and achenes remained dwarfish, yellow and empty
(Horandl, 2008). In the experiments presented here, even
those flowers with some well-developed achenes had very
low amounts of seed set, ranging from one to 12 achenes per
flower. The percentage of well-developed achenes per collec-
tive fruit ranged from 0-8 to 31-7 %.

Flow cytometric histograms revealed ideally two peaks for
embryo and endosperm, as shown in Fig. 2. In some measure-
ments, the embryo peak was not clearly visible, but only a
single endosperm peak, sometimes accompanied by smaller
G, peaks of the growing endosperm, was observed. This can
be explained by the delayed development of the embryo com-
pared with the endosperm in the R. auricomus complex, as
described in detail by Izmaitow (1967): most egg cells start
to divide only 11 d after pollination; at this time, the

25
Peak Index Mean Area Area% CV% ChiSqu.
L 1 1.000 214-87 133 44.34 359 0-05
2 1.357 291.59 167 5566 3.69  0.05
20 |-
15
12}
IS
5 L
o]
O
10
L 3Cx
4Cx
5+
O 1 1 1 1 1 1 1 1
0 200 400 600 800 1000

Fluorescence intensity

Fi1G. 2. Flow cytometry histogram (fluorescence intensity vs. number of par-

ticles) of seeds (mother plant R. cassubicifolius 46/12) showing a 3Cx embryo

and a 4Cx endosperm peak, indicating cross-fertilization by the 4x apomictic
pollen donator.

endosperm already has 500—1000 nuclei. Even at the fruit
stage, the small embryo may often not provide enough tissue
to be detected by flow cytometry, especially if single
achenes are being analysed. Nevertheless, the ploidy level of
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the endosperm peak could be assessed via DNA content.
Genome size in the endosperm ranged from 4-99 to 5-38 pg
(triploid), from 6-:30 to 7-00 pg (tetraploid) and up to
10-80 pg (hexa- to heptaploid); Table 2.

In five measurements, FCSS revealed a triploid endosperm
peak as can result only from haploid pollen. Two such cases
were obtained after pollination by a tetraploid and four after
pollination by a hexaploid pollen donor (Table 2). The
diploid embryo peak was clearly visible in two histograms;
in the other cases, triploid endosperm could be inferred from
somatic C-values (Table 1). We infer from these observations
that the seed originated from induced self-fertilization (mentor
effects) by the plant’s own pollen. From the total number of
achenes produced, 1-3 % resulted in such selfed diploid
sexual seed.

Increased ploidy levels of the endosperm were observed in
13 measurements altogether; in 11 of them, the expected
ploidy level of endosperm after cross-fertilization was
observed. In most cases, a tetraploid endosperm was revealed
after pollination by a tetraploid pollen donor (Table 2); the
expected triploid embryo peak was sometimes visible
(Fig. 2). Only in one flower with a single seed was a 6—7x
endosperm (most probably hexaploid) observed after pollina-
tion by a hexaploid pollen donor. In this case, we suppose
that 4x pollen originated from a disturbed meiosis of the apo-
mictic plant and fertilized both embryo and the 2x endosperm.
Alternatively, the embryo sac of the sexual was unreduced and
3x pollen fertilized a 4x endosperm. In any case, cross-
fertilization is inferred. Seeds that have resulted from cross-
fertilizations developed only in 1-6 % of the total number of
achenes. In two samples, unexpected high ploidy levels were
observed (one sample of single seeds with 4x, 8x and 16x
peaks and one pooled sample of 12 seeds with a peak at
approx. 16x). It is supposed that endomitotic endosperm has
developed after fertilization by pollen of the apomicts, or
that unreduced gametes have been involved. These seeds
have probably also resulted from hybridization, but represented
just 0-7 % of the total seed set.

DISCUSSION

Our results confirm the utility of FCSS for assessment of
modes of reproduction (Matzk et al., 2000; Matzk, 2007;
Horandl et al., 2008). Intraspecific variation of C-values in
the parental individuals explains the minor deviations of
observed embryo: endosperm ratios from the exact mathe-
matical ratios of 2:3 for sexual selfing and 3:4 for cross-
fertilization (Table 2).

The results confirm the occurrence of mentor effects in the
R. auricomus complex, but at very low frequencies. In exper-
imental crosses of Taraxacum, mentor effects were observed in
89 % of the offspring after pollination of diploid sexual plants
with pollen from triploid apomicts (Tas and Van Dijk, 1999).
The authors suggested that aneuploid pollen or interploidal
crosses may cause the breakdown of the self-incompatibility
system. Our data also show a more frequent occurrence of
mentor effects after pollination by hexaploid than by tetraploid
pollen donors (Table 2). For a generalization, however, more
data and statistical tests would be needed. The functional back-
ground of mentor effects is still not well understood, and

studies need to be carried out to determine whether a greater
difference in ploidy levels, a certain allelic composition or
the genetic distance of parental individuals causes the break-
down of self-incompatibility systems. Mentor effects have
been mainly reported in heterospecific crosses and can be
facilitated by inactive or dead pollen (de Nettancourt, 2001).
The hexaploid apomictic cytotype used here is probably a
hybrid derivative of the sexual species (Paun et al., 2006b),
and not a distant taxon. It is more likely that the high percen-
tages of aborted pollen in apomicts and the different ploidy
levels induce a mentor effect in our study taxa. In
Ranunculus, several pollen tubes grow in parallel in compe-
tition, such that only one pollen tube reaches the micropyle
(Rendle and Murray, 1988). The higher frequencies of good
pollen grains of sexual individuals probably confer a quantitat-
ive advantage of self-pollen tubes by increasing the likelihood
of self-fertilization compared with apomictic pollen tubes.
The frequencies of seed derived from mentor effects remain
strikingly low. This may be explained by an incomplete break-
down of the self-incompatibility system. Ranunculus probably
has a gametophytic self-incompatibility system (Horandl,
2008), where mentor effects are less likely (de Nettancourt,
2001). Details of pollen tube growth and inhibition,
however, need to be studied. Another possible reason for
low seed set may be early abortion of selfed seed because of
inbreeding depression (Tas and Van Dijk, 1999). However,
mentor effects probably have a rather limited impact on the
genetic population structure of diploid sexuals. In natural
populations of dandelions, mentor effects occur at even
lower frequencies than in experimental crosses (e.g. Brock,
2004). A potential reduction of fitness of sexuals because of
inbreeding depression needs to be studied, but the impact of
induced selfing on population genetic structure is probably
negligible. The phenomenon may instead be of importance
by inhibiting introgression of apomixis into sexual individuals.
The frequencies of actual cross-fertilized seeds were also
very low even after enforced crossing, inferring that actual
introgression of apomixis genes into sexual populations
occurs much more rarerly than theoretically expected. The
exclusion of pre-mating crossing barriers in the experimental
set-up infers that incompatibilities between cytotypes probably
act as a strong barrier to crossing (Nogler, 1984). Possible
reasons for failure of seed set are manifold. First, percentages
of good pollen in apomictic R. auricomus are usually very low
(Izmaitow, 1996; Horandl et al., 1997). As discussed above,
low frequencies of viable pollen tubes may be a disadvantage
for the success of pollination by apomicts. This disadvantage
could theoretically be compensated by higher frequencies of
apomictic individuals in a natural population, thus increasing
the total quantity of apomictic pollen. Secondly, seed set
may fail because of endosperm imbalance. In angiosperms, a
2 : 1 ratio of the maternal to the paternal genome in the endo-
sperm is optimal for endosperm development because of
genomic imprinting; shifts of this ratio result in developmental
disturbances or even seed abortion (Spielmann ez al., 2003;
Vinkenoog et al., 2003). Apomictic plants have evolved
various modifications of reproduction to maintain this ratio
(e.g. Savidan, 2007). Fertilization of diploid endosperm
nuclei by diploid or triploid apomictic pollen may cause
failure of endosperm development and consequently abortion



Horandl & Temsch — Introgression barriers in the Ranunculus auricomus complex 87

of the embryo. In R. auricomus, the 2 : 1 ratio in the endo-
sperm may be conserved, because even tetraploid pseudoga-
mous plants tend to maintain it by using both pollen nuclei
for fertilization of the endosperm (Rutishauser, 1954; Talent
and Dickinson, 2007). The endosperm problem of pseudoga-
mous plants brings further minority cytotype exclusion prin-
ciples into play (Levin, 1975, 2002): a rare apomictic
individual in a population will be mainly pollinated with
haploid pollen of the dominating sexual individuals, resulting
in reduced fertility. The minority cytotype will consequently
have problems in establishing in a population. Introgression
of apomixis probably follows a single-locus model of inheri-
tance of apospory (Nogler, 1984). Uncoupling of apospory
and parthenogenesis is possible, but extremely rare (Nogler,
1995). Theoretically, this infers that unreduced egg cells of
apomictic plants may also occasionally be fertilized by
sexual pollen. Such hybrids are extremely rare even in exper-
imental crossings (Nogler, 1995). Moreover, expression of
apomixis is dosage dependent. Haploid sexual pollen transfers
only one copy of the wild-type allele (A+) to a polyploid
apomict that might have more copies of the allele controlling
apospory (A—). To what extent fertilization by sexuals actually
re-establishes sexual phenotypes in the offspring needs to be
studied. It is more likely that such processes contribute to
the origin of novel apomictic genotypes. Altogether we face
an unexpected complexity when estimating actual introgres-
sion of apomixis into sexuality.

If we try to estimate the basic potential for introgression by
using Mogie’s formula with data gained from experimental
approaches, we get the following values (values for female
fitness fisex/fsex taken from mean numbers of well-developed
achenes per flower in Horandl, 2008, multiplied by frequencies
of cross-fertilized seed set as observed here, and male fitness m
set as 1): 17-047/27-419 4 0-016 = 0-638. That is, even if we
leave complexity of external crossing and inheritance patterns
in natural populations aside, and even if we assume 100 %
male fertility, the value remains <1 which means that frequen-
cies of apomixis will decrease in our model system.

The value above might still overestimate the amount of
introgression for natural populations, where pre-pollination
crossing barriers may additionally keep sexual and apomictic
cytotypes separated. In two mixed populations of diploid
sexual R. notabilis and tetraploid R. variabilis, ploidy determi-
nations and isoenzyme studies did not support a hypothesis of
frequent hybridization between apomictic and sexual cyto-
types. In this case, different flowering times and different
habitat preferences of the sexual and apomictic taxa may
limit cross-pollinations and inhibit introgression of apomixis
(Horandl et al., 2000). The taxa used for the crosses here do
not differ in their phenology, but they do have slightly differ-
ent habitat preferences: sexual R. cassubicifolius and
R. carpaticola grow preferentially on forest floors, whereas
the apomictic hybrid taxa also occur in meadows. Finally, fre-
quencies of pollinator visits may differ between sexual and
apomictic taxa; in the R. auricomus complex, apomictic
plants are visited less frequently by insects, probably
because of the partly aborted petals (Steinbach and
Gottsberger, 1994).

We conclude that introgression of apomixis into sexuals via
unidirectional hybridization is not an important causal factor

for geographical parthenogenesis in the R. auricomus
complex. Sexual populations should be able to maintain sexu-
ality as long as female fitness is higher than that of apomicts,
and as long as population size and availability of pollinators
suffice to maintain outcrossing. These conclusions are sup-
ported by the general rarity of triploids in the complex (Jalas
and Suominen, 1989) and the rarity of mixed populations.
Apomictic lineages may have originated either from hybridiz-
ation of sexual taxa (Paun et al., 2006b) or from facultative
sexuality within apomicts, which is suggested from population
genetic structure (Paun er al., 2006a; Horandl et al., 2009).
The main advantage of apomictic populations is probably
the ability for uniparental reproduction, which is provided by
pseudogamy and self-compatibility of apomictic taxa
(Horandl, 2008). This feature may allow for rapid colonization
of novel or moderately disturbed habitats, such as meadows
(Paun et al., 2006a; Horandl and Paun, 2007). The occupation
of potential novel niches by apomicts may inhibit range expan-
sions of sexual populations and limit their distribution to
ancient relic areas. In these populations, however, sexuality
remains because of higher fitness (Horandl, 2008).

The generalization of the model, however, needs to be
studied. First, introgression of apomixis should be facilitated
if sexuals have the same ploidy level as apomicts. Secondly,
in interploidal crosses, a relaxation of endosperm balance
may help to produce triploid offspring. Insensitivity against
endosperm imbalance is expected in autonomous apomicts,
where no sperm nuclei are used for fertilization of the polar
nuclei. This mode of reproduction is present in most
Asteraceae, and indeed introgression of apomixis into sexual
populations has been observed (Brock, 2004). Such a case
may also occur in Ranunculus kuepferi, an alpine apomict
showing geographical parthenogenesis (Huber, 1988). Here
FCSS and population genetic studies suggest frequent for-
mation of triploid apomicts in the diploid—tetraploid hybrid
zone, and various types of ploidy level in the endosperm
(Cosendai and Horandl, unpubl. res.). We conclude that
modelling approaches have to consider the actual modes of
reproduction before generalizations can be made.
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