

NIH Public Access

Author Manuscript

J Immunol Methods. Author manuscript; available in PMC 2010 May 31.

Published in final edited form as:

J Immunol Methods. 2009 May 31; 344(2): 116–120. doi:10.1016/j.jim.2009.03.017.

Aberrant tumor-associated antigen autoantibody profiles in healthy controls detected by multiplex bead-based immunoassay

Brian Nolen^{1,2}, Matt Winans¹, Adele Marrangoni¹, and Anna Lokshin^{1,3,4,5}

¹ University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue 1.18, Pittsburgh, PA, 15213 nolanb@upmc.edu, winamt@upmc.edu

² Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, A300 Crabtree Hall, 130 Desoto Street, Pittsburgh, PA 15261

³ Department of Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15213 lokshina@upmc.edu

⁴ Department of Pathology, School of Medicine, University of Pittsburgh, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261

⁵ Department of Ob/Gyn, School of Medicine, University of Pittsburgh, 300 Halket Street Pittsburgh, PA 15213

Abstract

There is an increasing amount of emphasis being placed on serological biomarkers as tools for early detection of various cancers. In addition to the tumor-related circulating antigens under current investigation, autoantibodies to tumor-associated antigens are emerging as alternative candidates due to their potential high sensitivity and specificity. Already a number of specific autoantibodies have been identified and several groups have reported on the ability of panels of autoantibodies to discriminate malignant from non-malignant conditions. In this investigation we evaluate tumor-associated antigen autoantibody profiles in a group of healthy individuals. We identify a subset of individuals that demonstrate high levels of autoantibody production across the spectrum of tumor-associated antigens tested. We conclude that this observation is a result of undefined non-malignant autoimmune stimulation. Our findings may be an indication of factors present in the general population that may confound multiplex autoantibody-based diagnostic tests by reducing assay specificity. Such factors will require further characterization and the development of adequate controls in order to improve the performance of diagnostic tests.

Keywords

Tumor-associated antigens; autoantibody profiles; autoimmunity; early detection

Request for reprints: Anna E. Lokshin, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Suite 1.19d, 5117 Centre Avenue, Pittsburgh, PA 15213, Phone: 412-623-7706, Fax: 412-623-1415, email: E-mail: lokshina@pitt.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Introduction

Immune surveillance of the early events of tumorigenesis may provide the key to early detection. Molecular alterations emanating from malignant cells stimulate a localized humoral immune response in nearby lymph nodes, which in turn leads to a systemic immune response. This response may be detected clinically in the form of circulating autoantibodies specific for tumor-associated antigens (TAA). An increasing amount of attention is being paid to the potential role of circulating antigens as cancer biomarkers. Such antigens are held to represent factors shed from the growing tumor as well as components of the host response. TAA autoantibodies offer several distinct advantages over antigenic biomarkers due to their inherent stability and specificity [1]. The nature of B-cell stimulation results in an amplified antibody response to a relatively small amount of antigen. This stimulation may stem from subtle changes such as antigen upregulation or altered glycosylation patterns [2]. Autoantibodies specific for TAAs have been detected in high titer in early stage cancer patients [3] and may indicate potential targets for immune therapy given their demonstrated activation of immune pathways [4–6].

Autoantibodies specific for oncogenic proteins such as p53 [7], her2/neu [3], MUC1 [8] and c-myc [9] have been previously detected in human cancers and considered as potential biomarkers. Serological expression cloning utilizing phage expression libraries, or SEREX, was first developed over 10 years ago [10] and has led to the identification of over 2000 autoantigens. While no single autoantibody has demonstrated the sensitivity and specificity required of a diagnostic test, advances based on the SEREX principle such as combinatorial phage display have enabled the development of multiplexed approaches. Investigations utilizing phage display have reported autoantibody panels that discriminate prostate [11], stage I NSCLC [12], and breast cancers [13] from controls with sensitivity/specificity of 88/82%, 90/90%, and 77/83% respectively. High throughput methods such as protein microarrays and glycan arrays, which screen for immunogenic alterations in glycosylation [14], have also been utilized to identify autoantibodies in ovarian [15] and breast cancers [2].

The greatest challenge encountered in the development of any diagnostic test based on serological biomarkers is the identification of individual markers highly specific for the malignant condition. The use of autoantibodies as biomarkers presents a unique set of challenges in that non-malignant conditions such as environmental factors, pathogen invasion, and autoimmune disease can trigger the production of a high-level of IgG and IgM autoantibodies which recognize various TAAs and thus reduce biomarker specificity [16–18]. We conducted an analysis of TAA autoantibodies in a large set of healthy control subjects. We identified a subgroup of individuals within our study set that demonstrated highly elevated levels of TAA autoantibodies for most of the antigens tested. We present these results as evidence of a potentially significant obstacle that must be overcome in order to advance the clinical relevance of autoantibody-based diagnostic methods.

Experimental

Materials and Methods

Study population and serum collection—Serum samples from 205 healthy controls were obtained for use in this study. 150 samples were collected as part of the Pittsburgh Lung Screening Study (PLuSS) [19] according to study protocols. An additional 55 samples were collected by the Early Detection Research Network (EDRN) according to a defined protocol [20]. Written and informed consent was obtained for each patient and all protocols were approved by the University of Pittsburgh IRB. The study group included active and non-active smokers and non-smokers. The characteristics of the study group are outlined in Table 1.

Multiplexed bead-based TAA autoantibody assay development—Serum samples were tested for autoantibodies to 36 distinct tumor associated antigens chosen on the basis of published evidence (Table 2). The Luminex (Austin, TX) xMAPTM platform allows the simultaneous detection of up to 100 analytes based on the covalent attachment of specific capture molecules to internally-dyed spectrally distinct microbeads. Recombinant or native peptides corresponding to each target antigen were employed as capture probes and coupled to Luminex microbeads as previously described [21]. The individual microbead-antigen combinations were combined into multiplex panels in a stepwise fashion as each assay completed development and validation. Assay specificity was first evaluated by incubation of antigen-coupled microbeads with serum preincubated with antigen coated polystyrene beads (Sigma, St. Louis, MO) to remove specific autoantibodies, or Protein A/G Sepharose (EMD, Gibbstown, NJ) to absorb all IgG.

Data collection and analysis—Assays were performed and validated as described previously [22]. Briefly, antigen-coated microbeads were blocked with bovine serum albumin for 1 hour, washed, and then incubated with serum diluted 1:100 in blocking buffer for 30 min at 4°C. This dilution was deemed optimal for antibody recovery based on titration (data not shown). Following this incubation, microbeads were washed and bound antibodies detected by phycoerythrin-conjugated donkey anti-human IgG/IgM (Jackson Laboratories, West Grove, PA). Fluorescence was measured on a Luminex 100 analyzer. The data was analyzed using GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA) Standard statistical methods were used to establish relative fluorescence intensity distributions for each analyte and divide the data into percentiles. Values observed to be greater than the ninety-fifth percentile were considered exceptional.

Results

The analysis of our experimental results revealed a subset of individuals that demonstrated significantly elevated levels of autoantibodies to multiple TAAs tested (Figure1, Table 3). We established a statistical cutoff at the 95th percentile for each analyte tested and noted the distribution of results above that level. While outliers with respect to each analyte were observed intermittently throughout the study population, serum samples from nine individuals were found to contain autoantibody levels above the cutoff level for >40% of the antigens tested. Four of these samples were above cutoff levels for >75% of all tested antigens and many of the observed autoantibody intensities represented >10-fold increases over the cutoff levels. Each of these noteworthy subjects demonstrated autoantibody levels which fell below the cutoff value for at least one tested antigen, indicating that these results were not a product of sample evaporation. These observations in healthy control subjects suggest the influence of external stimuli of autoimmunity serving to confound our investigation.

Discussion

As was previously discussed, any effective serological biomarker-based screening test would require the use of combinations of biomarkers, as all individual biomarkers evaluated to date have lacked either sufficient sensitivity or specificity. The results we present here may represent a potential pitfall for multimarker approaches. We describe healthy normal individuals with elevated levels of numerous TAA autoantibodies which would serve to lower the specificity of any multimarker screening strategy based on those autoantibodies. Current clinical standards for cancer screening include stringent requirements for specificity. For example, given the low prevalence of ovarian cancer, it has been suggested that a screening strategy must achieve a minimum specificity of 99.6% and a sensitivity of >75% for early stage disease to avoid an unacceptable level of false-positive results [23,24]. In our investigation the 9 individuals

demonstrating elevated levels of >40% of tested autoantibodies represent 4.39% of our study population. If our study population is representative of the general population, this suggests a maximum diagnostic specificity of <96% for a test based on these autoantibodies, a level which no published study of this type has yet achieved. Clearly this is an observation that must be incorporated into continuing efforts to develop TAA autoantibody-based screening.

The 205 healthy subjects considered in this investigation represent the control arm of a larger study group that includes 815 patients diagnosed with a variety of benign and malignant conditions. The diseased group was comprised of conditions of the liver, esophagus, pancreas, lung, ovary, breast, and prostate and also melanoma. We found that sera from 24 (~2.9%) of these patients contained TAA autoantibody profiles similar to those of the 9 control subjects discussed above (data not shown). Considered together, these findings support the notion that these aberrant autoantibody profiles arise independent of our current set of clinical variables.

The source of the background level of autoimmunity observed in our investigation is unclear. One aspect or our study population that distinguishes it from the general population is the prevalence of smokers. In our study almost 88% of subjects were current or former smokers, while the CDC estimates the equivalent prevalence in the entire US to be almost 42% [25]. Epidemiologists have established causal links between cigarette smoking and autoimmune disorders such as system lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), Graves' hyperthyroidism, and primary biliary cirrhosis (PBC) [26-29]. In attempts to characterize these links, researchers have shown that cigarette smoke has profound stimulatory effects on peripheral blood leukocytes, particularly neutrophils, macrophages and monocytes, and leads to increased cellular release of CRP, IL-6, fibrinogen, and matrixmetalloproteinases (reviewed in [30]). Although the role of smoking in autoimmunity is well established, its role in this investigation is not as straightforward, as four out of the nine exceptional subjects we identified are non-smokers. The nine-subject subset is equally nondescript with regards to gender and age, being comprised of five males and four females with ages ranging from 38–83. Thus, the observation we describe here is evidently multifactorial and warrants further investigation.

Conclusions

We report the findings outlined above not with the intent to discourage attempts to develop TAA autoantibody screening panels, but in the hope that our observation might lead to further refinement of those efforts. These refinements are certain to involve methods of controlling for background autoimmunity and the identification of tumor-associated antigens that interact with host immunity in a manner independent of any background humoral response. Given the inherent complexity and our limited understanding of the humoral response to tumorigenesis, it is not surprising that obstacles such as these will arise. However, the substantial promise and potential benefits of this type of diagnostic strategy remain clear.

Acknowledgments

The authors would like to thank Dr. Joel Weissfeld, Dr. Jeffrey Schragin, and Dr. Herbert Zeh for their assistance in obtaining serum samples. The authors would also like to thank Dr. James N. Mubiru for providing the AMACR peptides and Dr. John McKolanis for providing the muc-1 peptide.

References

1. Anderson KS, LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 2005;4(4):1123–1133. [PubMed: 16083262]

- Anderson KS, Ramachandran N, Wong J, Raphael JV, Hainsworth E, Demirkan G, Cramer D, Aronzon D, Hodi FS, Harris L, et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J Proteome Res 2008;7(4):1490–1499. [PubMed: 18311903]
- Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. High-titer HER-2/neu proteinspecific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997;15(11): 3363–3367. [PubMed: 9363867]
- Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005;54(8):721–728. [PubMed: 16010587]
- 5. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 1997;18(4):175–182. [PubMed: 9136454]
- Suzuki H, Graziano DF, McKolanis J, Finn OJ. T cell-dependent antibody responses against aberrantly expressed cyclin B1 protein in patients with cancer and premalignant disease. Clin Cancer Res 2005;11 (4):1521–1526. [PubMed: 15746055]
- 7. Soussi T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 2000;60(7):1777–1788. [PubMed: 10766157]
- von Mensdorff-Pouilly S, Petrakou E, Kenemans P, van Uffelen K, Verstraeten AA, Snijdewint FG, van Kamp GJ, Schol DJ, Reis CA, Price MR, et al. Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. Int J Cancer 2000;86(5):702–712. [PubMed: 10797294]
- Koziol JA, Zhang JY, Casiano CA, Peng XX, Shi FD, Feng AC, Chan EK, Tan EM. Recursive partitioning as an approach to selection of immune markers for tumor diagnosis. Clin Cancer Res 2003;9(14):5120–5126. [PubMed: 14613989]
- Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 1995;92(25):11810–11813. [PubMed: 8524854]
- Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, Mehra R, Montie JE, Pienta KJ, Sanda MG, et al. Autoantibody signatures in prostate cancer. N Engl J Med 2005;353(12):1224– 1235. [PubMed: 16177248]
- Zhong L, Coe SP, Stromberg AJ, Khattar NH, Jett JR, Hirschowitz EA. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J Thorac Oncol 2006;1(6):513–519. [PubMed: 17409910]
- Zhong L, Ge K, Zu JC, Zhao LH, Shen WK, Wang JF, Zhang XG, Gao X, Hu W, Yen Y, et al. Autoantibodies as potential biomarkers for breast cancer. Breast Cancer Res 2008;10(3):R40. [PubMed: 18460216]
- 14. Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, Brand RE, Haab BB. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 2007;4(5):437–444. [PubMed: 17417647]
- Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A 2007;104 (44):17494–17499. [PubMed: 17954908]
- Averbeck M, Gebhardt C, Emmrich F, Treudler R, Simon JC. Immunologic principles of allergic disease. J Dtsch Dermatol Ges 2007;5(11):1015–1028. [PubMed: 17976144]
- Lu H, Goodell V, Disis ML. Humoral immunity directed against tumor-associated antigens as potential biomarkers for the early diagnosis of cancer. J Proteome Res 2008;7(4):1388–1394. [PubMed: 18311901]
- Shoenfeld Y, Zandman-Goddard G, Stojanovich L, Cutolo M, Amital H, Levy Y, Abu-Shakra M, Barzilai O, Berkun Y, Blank M, et al. The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases--2008. Isr Med Assoc J 2008;10(1):8–12. [PubMed: 18300563]
- Wilson DO, Weissfeld JL, Fuhrman CR, Fisher SN, Balogh P, Landreneau RJ, Luketich JD, Siegfried JM. The Pittsburgh Lung Screening Study (PLuSS): outcomes within 3 years of a first computed tomography scan. Am J Respir Crit Care Med 2008;178(9):956–961. [PubMed: 18635890]
- 20. EDRN Biological Specimens SOP. [http://edrn.nci.nih.gov/resources/standard-operating-procedures/biological-specimens]

Nolen et al.

- Gorelik E, Landsittel DP, Marrangoni AM, Modugno F, Velikokhatnaya L, Winans MT, Bigbee WL, Herberman RB, Lokshin AE. Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005;14(4):981–987. [PubMed: 15824174]
- 22. Lokshin AE, Winans M, Landsittel D, Marrangoni AM, Velikokhatnaya L, Modugno F, Nolen BM, Gorelik E. Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol 2006;102(2):244–251. [PubMed: 16434085]
- Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteomics 2004;3(4):355–366. [PubMed: 14764655]
- 24. Menon U, Jacobs IJ. Ovarian cancer screening in the general population. Curr Opin Obstet Gynecol 2001;13(1):61–64. [PubMed: 11176234]
- 25. Centers for Disease Control and Prevention Smoking and Tobacco Use.
- 26. Bertelsen JB, Hegedus L. Cigarette smoking and the thyroid. Thyroid 1994;4(3):327–331. [PubMed: 7833671]
- 27. Karlson EW, Lee IM, Cook NR, Manson JE, Buring JE, Hennekens CH. A retrospective cohort study of cigarette smoking and risk of rheumatoid arthritis in female health professionals. Arthritis Rheum 1999;42(5):910–917. [PubMed: 10323446]
- Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from the united states. Hepatology 2001;33(1):16–21. [PubMed: 11124815]
- 29. Prummel MF, Wiersinga WM. Smoking and risk of Graves' disease. JAMA 1993;269(4):479–482. [PubMed: 8419666]
- 30. Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus 2006;15(11):737–745. [PubMed: 17153844]
- Mubiru JN, Valente AJ, Troyer DA. A variant of the alpha-methyl-acyl-CoA racemase gene created by a deletion in exon 5 and its expression in prostate cancer. Prostate 2005;65(2):117–123. [PubMed: 15880524]

Nolen et al.

Figure 1. Autoantibodies to tumor associated antigens

Autoantibodies were measured by bead-based immunoassay in serum obtained from 205 healthy donors. Autoantibody levels from nine high-titer subjects are shown along with 95th percentile level for selected antigens. Solid lines connect measurements from individual subjects. Legend abbreviations: fem – female, NS – no smoking history, CS – current smoker, FS – former smoker.

Characteristics of Study Population

Table 1

Description	Age	N	%
Male	34–83	101	49.3
Female	36-81	104	50.7
Smoking Status		Ν	%
Active		84	41.0
Former		96	46.8
Never/Unkown		25	12.2

~
~
_
_
0
_
-
~
_
<u> </u>
_
_
_
0
$\underline{}$
_
~
\leq
_
ຸດາ
~
_
_
CO
õ
0
-
0
9
-

Tumor Associated Antigens Antigen

Antigen	Supplier	Form	Antigen	Supplier	Form
AFP	Bio Processing	Native	HCG	Fitzgerald	Native
Akt1	Invitrogen	Rec	Her2/neu	R&D	Rec
AMACR*	Gift	Rec	H-Ras	Jena Bioscience	Rec
AMACR Variant*	Gift	Rec	L-6	Peprotech	Rec
CA125	Bio Processing	Native	L-8	Peprotech	Rec
CA 15-3	Bio Processing	Native	K-Ras	Jena Bioscience	Rec
CA 19-9	Bio Processing	Native	MART-I	Lab Vision	Rec
CA 72-4	Bio Processing	Native	Vfesothelin	Genway	Rec
CEA	Bio Processing	Native	Muc-1	Gift	Rec
c-myc (1-262)	Santa Cruz	Rec	Dsteopontin	R&D	Rec
c-myc (408-439)	EMD	Rec	53	Santa Cruz	Native
CRP	Biodesign	Native	2DGF-BB	US Biological	Rec
Cydin-B1 (1-433)	Santa Cruz	Rec	ЭDGFR-α	Santa Cruz	Rec
Cydin-D1 (1-295)	Santa Cruz	Rec		Bio Processing	Native
EGF	Peprotech	Rec	Survivin	Alpha Diagnostics	Rec
EGFR	R&D	Rec	Transglutaminase	Sigma	Native **
FasL	Peprotech	Rec	Tyrosinase	Lab Vision	Rec
GplOO	Spring Bioscience	Rec	VEGF	ID Labs	Rec
* α-methyiacyi-	CoA Racemase, see	ref[31];			

J Immunol Methods. Author manuscript; available in PMC 2010 May 31.

** guinea pig; Rec - recombinant

~
~
_
- T
. 0
~
►
-
—
_
<u> </u>
0
-
· ·
~
5
0
<u>u</u>
_
1
1
~
0
-
_
0
-

NIH-PA Author Manuscript

Autoantibody levels of high-titer individuals

	_													_	_												_		_
6	78 yom FS		319	814	332	756	2304	8756	382	4174	5862	2382	3398	NT	1258	1714	836	560	305	2244	437	2754	1426	1419	882	1572	8656	230	521
8	53 yof NS		523	910	1014	1190	1171	3978	194	2694	3278	335	4308	ΤN	679	1173	1663	1131	724	1734	844	322	51	3955	1427	1866	1632	841	471
7	49 yof NS		905	805	1558	1277	1535	4429	289	3346	4113	552	5171	ΤN	673	1697	2148	1349	1125	3650	1173	439	109	3160	2052	2254	5480	1283	846
9	70 yom FS		369	542	805	838	1235	4240	177	2550	3310	5028	3297	NT	678	2173	1282	785	351	8604	560	324	82	3667	1089	1528	7102	607	894
5	69 yom FS		882	1630	NT	ΝΤ	368	575	583	2070	471	2310	6594	1734	1884	2445	2681	1689	1601	NT	1281	242	1014	3553	2972	1400	NT	NT	2060
4	53 yom FS		829	1780	927	1479	1323	4099	948	3703	3361	2001	7037	NT	2571	3123	2095	1973	1808	LΝ	1431	222	1892	3395	2957	2508	NT	723	2027
3	42 yof NS		835	3320	1024	2561	2465	2628	892	4890	6655	3038	6031	ΤΝ	3162	3762	1596	1445	1536	2790	1692	966	1917	2897	2195	2381	11075	728	1703
2	83 yom CS		3039	7585	3823	6229	5396	12445	5667	12841	13178	7811	24386	IN	5552	8137	11461	7515	4480	IN	4171	006	8378	10372	12641	11345	IN	3190	6051
1	38 yof NS		3665	7624	3920	5950	4587	11372	4486	12336	12287	5739	23978	IN	6938	8794	9813	8131	7044	IN	5100	657	7360	11192	11435	9209	IN	3683	8329
Subject #	Description																												
		95th Pctl	322	1962	669	1462	2121	7302	524	3025	5518	1614	3208	1202	1572	1925	1130	362	390	4208	424	966	467	3108	897	1376	7387	317	876
		Antigen	AFP	Akt-1	AMACR	AMACR variant	CA125	CA15-3 0	Cetho CA19-9	CA72-4 CA72-4	CEA CEA	c-myc (1-2👮)	c-myc (4085439)	cKP CRP	Cyclin-B1 ison	Cyclin-D1 alda	in P HD	EGFR	2010 FasL	May 001dg	- 31. DOH	Her2/Neu	H-Ras	IL-6	IL-8	K-Ras	MART-1	Mesothelin	Muc-1

Nolen et al.

	uscript	Author Man	NIH-PA		Manuscript	PA Author I	-HIN	cript	hor Manuso	IH-PA Aut	Z
		Subject #	1	2	3	4	5	9	7	8	6
		Description	38 yof NS	83 yom CS	42 yof NS	53 yom FS	69 yom FS	70 yom FS	49 yof NS	53 yof NS	78 yom FS
Antigen	95th Pctl										
Osteopontin	404		821	407	242	282	259	513	176	137	389
p53	5067		6973	5811	2943	1380	2485	806	1202	805	972
PDGF-BB	831		4358	4039	6312	1175	1369	415	644	424	1473
PDGFR-a	987		6613	8411	1543	1551	1128	989	1489	1154	980
PSA	808		10909	10419	7417	2975	3150	1268	2712	1766	893
Survivin II	1150		9976	10230	1600	2454	4617	1225	2253	1712	817
Transglutan	e 541		8890	11414	1801	2238	2257	1158	1842	1520	898
Tyrosinase ou	1766		TN	LΝ	2406	ΝΤ	NT	2347	4550	3206	2238
letho ABGH	1533		10377	12583	3152	3287	2856	1177	2576	1132	1386
# Markers			32	32	35	33	31	35	35	35	36
# Outlying	ers		31	31	31	26	23	20	18	16	16
% Outlying			97	97	89	79	74	57	51	46	44
All autoantibedy v	'alues represent mean	fluorescence intensity	y (MFI) determined	d by Luminex analys	sis. 95 percentile de	termined for each au	utoantibody by analy	ysis of all subjects (N=205). Shaded val	lues	
are above 95th per	rcentile cutoff (outlier	rs), shaded and bold v	'alues represent >1(0-fold increase over	cutoff value. yom-	year old male, yof-y	ear old female. CS-	current smoker, FS-	-former smoker, NS	ou-	

are above 0.2 parcentile cutoff barcentile cutoff barcentile cutoff in transition of the cutoff of t