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Abstract
Brain injury in premature infants is of enormous public health importance because of the large number
of such infants who survive with serious neurodevelopmental disability, including major cognitive
deficits and motor disability. This type of brain injury is generally thought to consist primarily of
periventricular leukomalacia (PVL), a distinctive form of cerebral white matter injury. Important
new work shows that PVL is frequently accompanied by neuronal/axonal disease, affecting the
cerebral white matter, thalamus, basal ganglia, cerebral cortex, brain stem, and cerebellum. This
constellation of PVL and neuronal/axonal disease is sufficiently distinctive to be termed
“encephalopathy of prematurity”. The thesis of this Review is that the encephalopathy of prematurity
is a complex amalgam of primary destructive disease and secondary maturational and trophic
disturbances. This Review integrates the fascinating confluence of new insights into both brain injury
and brain development during the human premature period.

Introduction
The enormity of the problem of encephalopathy in premature infants relates in substantial part
to the large number of affected infants. Every year in the USA, approximately 63000 infants
are born with a very low birthweight (VLBW; ≤1500 g).1 This group represents 1·5% of all
livebirths, a proportion that has increased gradually over the past decade. The importance of
encephalopathy in this large group is indicated by the subsequent occurrence of cognitive,
behavioural, attentional, or socialisation deficits in 25–50%, and of major motor deficits (eg,
cerebral palsy) in 5–10%.2–8 Cognitive deficits without major motor deficits are by far the
dominant neurodevelopmental sequelae in infants with VLBW. Particular note should be made
of the increasingly important contribution to this burden of disability by the most premature
infants. Because of sharply increased survival (50–70%) in recent years, these extremely
premature infants comprise a substantial proportion of infants with VLBW in many centres.
Disability in this subset exceeds 50% in most studies.8–12

The neuropathological correlates of this encephalopathy include various lesions, most notably
periventricular leukomalacia (PVL; figure 1), and accompanying neuronal/axonal deficits that
involve the cerebral white matter, thalamus, basal ganglia, cerebral cortex, brainstem, and
cerebellum. Severe germinal matrix haemorrhage–intraventricular haemorrhage (GMH-IVH),
particularly with periventricular haemorrhagic infarction (PHI; figure 1), is an important, albeit
quantitatively less common, lesion in premature infants. Imaging studies indicate that 50% or
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more of infants with VLBW show findings consistent with PVL and apparent neuronal/axonal
disease, whereas severe GMH-IVH with PHI occurs in only approximately 5%.8 (Importantly,
the occurrence of PHI can rise to as much as 20–30% in infants below 750 g.) Thus, the
emphasis of this Review is on PVL and neuronal/axonal disease, because quantitatively, this
constellation seems to account for most of the brain injury and the resulting neurological
sequelae. The term “encephalopathy of prematurity” is proposed for this combination.
However, the emerging role for severe GMH-IVH with PHI, especially in the smallest infants,
is discussed briefly.

The pathogenesis of PVL has been reviewed in detail elsewhere,8,13 and will not be discussed
here. The main initiating pathogenetic mechanisms are ischaemia and inflammation, the latter
often due to maternal intrauterine infection or postnatal sepsis. These two upstream
mechanisms often co-exist and can potentiate each other. The main downstream mechanisms
are excitotoxicity and free-radical attack. Various maturation-dependent factors, including a
propensity for premature infants to experience episodes of cerebral ischaemia and infection or
inflammation, and an intrinsic susceptibility to excitotoxicity and free-radical accumulation,
converge to accentuate vulnerability. The cellular targets of these pathogenetic mechanisms
are discussed below.

The thesis of this Review is that the encephalopathy of prematurity is a complex amalgam of
primary destructive disease and secondary maturational and trophic disturbances. Recent
delineation of the extraordinary array of rapidly developing neurobiological processes that
occur at 20–40 weeks of gestation in the human brain provides new insights into the bases for
the likely maturational/trophic disturbances. I will first review the neuropathology of the
encephalopathy of the premature infant, then describe the brain developmental events that
occur in the premature period, and finally discuss the likely interrelations of destructive and
developmental mechanisms in the genesis of the encephalopathy.

Neuropathology
The main neuropathological processes in the premature infant—PVL and neuronal/axonal
disease—have been defined in recent years both in vivo by MRI and post mortem by advanced
histological and immunocytochemical techniques. The neuropathology of severe GMH-IVH
with PHI, a venous infarction, has been well delineated by conventional histological
approaches and by cranial ultrasonography and is described in standard sources.8

PVL
PVL refers to injury to cerebral white matter, classically with two components: focal and
diffuse (figure 1).8 The focal component consists of localised necrosis deep in periventricular
white matter, with loss of all cellular elements. These necroses can be macroscopic in size
(several millimetres or more) and evolve over several weeks to multiple cystic lesions, readily
visualised by cranial ultrasonography and known as “cystic PVL” (figure 1). In modern
neonatal intensive care units, this severe lesion is observed in less than 5% of infants with
VLBW and therefore accounts for a small minority of PVL.14–18 Much more commonly,
focal necroses are microscopic in size and evolve over several weeks to glial scars that are not
readily seen by neuroimaging. This form of PVL, which accounts for the vast majority of cases,
is termed “non-cystic PVL” (figure 1).8

The second component of PVL, which is more diffusely apparent in cerebral white matter, is
characterised by marked astrogliosis and microgliosis, and initially by a decrease in
premyelinating oligodendrocytes (pre-OLs).19–21 Subsequently, the decrease in cells of the
oligodendroglial lineage is counteracted by an increase in oligodendroglial progenitors.22 This
response of oligodendroglial progenitors to injury in the developing brain has been shown in
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several animal models.23,24 However, in PVL, these cells, which often lack processes, seem
not to have the capacity for full differentiation to mature myelin-producing cells, and
hypomyelination with ventriculomegaly is the later sequela.22,25–33 The cause of the apparent
disturbance of pre-OL maturation is currently unknown, but the failure of the regenerating
oligodendroglial progenitors to mature has been well documented in a neonatal animal model
of PVL.34 In this animal model, these progenitors are exquisitely vulnerable to a subsequent
hypoxic–ischaemic insult, a common feature in premature infants. Although precise imaging
and anatomical correlations are lacking, the correlates of the diffuse component of PVL on
MRI in the neonatal period seem to include diffuse signal abnormalities and disturbances in
diffusion parameters.2,15,17,18,35–41

Neuronal/axonal disease
Neuronal/axonal disease is a previously under-recognised accompaniment of PVL. The regions
of involvement include the cerebral white matter (axons and subplate neurons), thalamus, basal
ganglia, cerebral cortex, brainstem, and cerebellum (figure 2). The neuronal/axonal
involvement has been delineated, particularly in vivo, by volumetric MRI analyses, which
show in infants with VLBW a decreased volume of neuronal structures such as the thalamus,
basal ganglia, cerebral cortex, and cerebellum, as early as term-equivalent age, as well as later
in childhood, adolescence, and adulthood. Diffusion tensor MRI studies have similarly
suggested the possibility of axonal disturbance at these various maturational times. Recent
neuropathological studies have provided further insight into the neuronal/axonal involvement.

Cerebral white matter: axons—Cerebral white matter axons (ie, projection, commissural,
and association fibres) are in a phase of rapid growth during the premature period, the peak
period of vulnerability for PVL. Earlier neuropathological evidence for axonal injury in PVL
was derived from studies of the necrotic foci and, expectedly, included findings of axonal
spheroids and positive immunocytochemical staining for beta-amyloid precursor protein, both
indicators of overt axonal damage.21,42–47 Of particular interest, a recent report used the
apoptotic marker fractin to show that widespread axonal degeneration is present in the diffuse
component of PVL, separate from the focal necroses.48 Although the latter finding does not
allow distinction of a primary destructive lesion from a secondary disturbance, the observation
suggests that axonal abnormality with PVL is more pervasive than previously thought.

Axonal disturbance is also suggested by MRI studies of premature infants, especially by
diffusion tensor MRI (figure 2).33,39,49–59 These reports show that the normal rapid increase
in relative anisotropy in various fibre tracts of premature infants is blunted, especially (although
not exclusively) in association with the MRI appearance of non-cystic PVL. The normal
increase in this measure of preferred directionality of diffusion parallel to the fibre tract is likely
to relate to increased axonal size or density, or axonal microstructural changes.60 However,
ensheathment of axons by pre-OLs, also an active process in the premature brain, might be
involved in the increase in anisotropy.49,56,60–63 Another potential indicator of cerebral
axonal disturbance in premature infants, especially those with PVL, is the subsequent
impairment of growth of the corpus callosum, as shown by MRI.64–70

Cerebral white matter: subplate neurons—The major neuronal type in cerebral white
matter is the subplate neuron. This transient population of neurons reaches a maximum during
the peak period for the occurrence of PVL in the premature infant and is central to both cortical
and thalamic development. Subplate neurons contain excitatory amino acid receptors (both
NMDA and calcium-permeable [GLUR2-deficient] AMPA receptors),71 and have been shown
in a developing animal model to be selectively vulnerable to hypoxia–ischaemia.72
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Because hypoxia–ischaemia and excitotoxicity are important in the pathogenesis of PVL, and
because PVL is associated with volumetric deficits of the cerebral cortex and thalamus, it is
reasonable to suggest the occurrence of concomitant injury to subplate neurons. Initial work
does show increased apoptosis (activated caspase 3 expression) in the subplate of premature
infants with PVL versus those without PVL.21 However, more detailed studies are needed.

Thalamus—Thalamic neurons are commonly affected in premature infants, especially those
with PVL. The most detailed neuropathological analysis of 41 premature infants from a modern
neonatal intensive care unit showed that, of supratentorial structures, neuronal loss (40%) and
gliosis (60%) were most common in the thalamus (figure 2).73 Neuronal loss was absent in
those without PVL. In a later, more detailed study of the thalamus in 22 cases of PVL, thalamic
pathology, consisting of neuronal loss, gliosis, and axonal abnormality (fractin expression),
was noted in 60%.74 The mediodorsal and reticular nuclei were especially involved, which is
of particular relevance to the neurological sequelae in premature infants.

The neuropathological findings are consistent with the finding of diminished volume of the
thalamus (often measured with basal ganglia) by MRI studies of premature infants at term-
equivalent age and later in childhood and adolescence (figure 2).16,18,25–29,75–78 For those
studies that assessed the presence of PVL by MRI, the thalamic volumetric deficit was found
to be particularly characteristic of (although not always confined to) infants with imaging
features of white matter injury.16,18,25 The MRI abnormalities correlated with subsequent
cognitive deficits.18,25,77 The mechanism that underlies the neuronal loss and gliosis
observed neuropathologically and the volumetric deficits observed by MRI is not clear from
these studies. The findings could indicate direct injury or a maturational/trophic disturbance,
or both.

Basal ganglia—Basal ganglia neurons are affected only slightly less commonly than are
thalamic neurons, again mainly in infants with PVL (figure 2). Thus, in the recent
aforementioned post-mortem study of 41 premature infants, neuronal loss was observed in the
caudate and putamen in approximately 15% of infants with PVL and in none of the infants
without PVL.73 In infants with PVL, gliosis occurred in these basal ganglia nuclei in 50–60%.
As for the thalamus, the findings do not allow distinction of a primary destructive lesion from
a secondary disturbance.

MRI volumetric studies of living premature infants at term-equivalent age or older show
diminished basal ganglia volumes (figure 2).16,26,28,29,76–79 Of the studies done with
systematic MRI in the neonatal period to identify non-cystic PVL, a clear relation of the deep
nuclear deficits with the presence of white matter injury has been apparent.16

Cerebral cortex—Neurons of the cerebral cortex are affected less than those of the thalamus
and basal ganglia (figure 2). Earlier work showed that cortical neuronal injury might
accompany particularly severe forms of cystic PVL.43,80–82 The neuropathological study of
the modern, less severe, noncystic PVL showed that neuronal loss or gliosis, or both, could be
detected in several cortical regions in 13–30% of PVL cases, but only rarely in non-PVL
controls.73 Whether the cortical neuronal loss and gliosis indicated a primary destructive effect
or a secondary maturational/trophic effect or both could not be determined.

MRI studies of living infants with VLBW also indicate a disturbance of the cerebral cortex,
especially in the presence of PVL (figure 2). Decreased volume of the cerebral cortex in
premature infants with non-cystic PVL has been documented as early as term-equivalent age.
16,83,84 Volumetric deficits occurred in multiple cortical regions, especially parieto-occipital
cortex, which overlies the region of white matter most susceptible to PVL. Premature infants
studied later in childhood, adolescence, and adulthood show persisting cerebral cortical
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volumetric deficits.26–29,32,79 The most pronounced decreases generally occur in parieto-
occipital, sensorimotor, premotor, temporal, and hippocampal cortices.26,27,29,77,78,85,86
These cortical neuronal deficits correlate with a wide variety of cognitive deficits observed at
follow-up.26,32,77–79,84,86

Cerebellum (and brainstem relay nuclei)—Cerebellar abnormality is particularly
characteristic of premature infants with VLBW. The aforementioned neuropathological
analysis of 41 premature infants identified neuronal loss in the dentate nucleus and the
cerebellar cortex in 25–30% of the infants (figure 2).73 In the cerebellar relay nuclei, basis
pontis, and inferior olive, neuronal loss was found in 15–20%. However, gliosis was more
common, identified in the cerebellar cortex and dentate in 30–45%, and in the pons and olive
in 90–100% (figure 2). The abnormalities were generally more likely to occur in the presence
of PVL than in non-PVL, but in non-PVL cases, gliosis in the pons and olive did occur in 80–
90%. Of note, PVL involving cerebellar white matter was unusual, occurring in only 8% of
the infants. More detailed neuropathological study of the cytological characteristics of the
cerebellar abnormality is needed.

MRI studies have been particularly valuable in the identification of cerebellar disease in
premature infants. Cerebellar involvement has consisted most often of bilateral, generally
symmetric, decreases in cerebellar hemispheric volumes at term-equivalent age or later in
childhood or adolescence (figure 2).26,87–99 A strong correlation with supratentorial lesions,
particularly PVL, but also haemorrhagic lesions (eg, PHI), has been documented.93–97 In two
MRI studies that analysed pontine size, both pontine diameter and cerebellar volume were
reduced in premature infants with PVL (figure 2).92,98 In unilateral cerebral lesions, decreased
volume of the contralateral cerebellar hemisphere has been greater than the decrease in the
ipsilateral cerebellar hemisphere, consistent with an element of crossed cerebellar diaschisis.
93

Clinico-pathological correlations
Definition of specific clinico-pathological correlations in premature infants has been difficult,
mainly because of a relative paucity of (1) detailed high-resolution, regional neuroimaging,
(2) careful correlative neuropsychological studies, and (3) co-occurrence of white matter and
neuronal/axonal disease. However, some important general conclusions seem warranted. With
regard to PVL, cystic PVL probably accounts for the small group of infants who show spastic
diplegia.8 Non-cystic PVL correlates with the cognitive deficits observed later, usually in the
absence of major motor deficits.18,41 However, the full spectrum of cognitive, attentional,
behavioural, and socialisation deficits is likely to relate in major part to neuronal/axonal
disease. Such deficits include impairments in overall intelligence, object working memory,
various executive functions, impulse control, and some characteristics of autistic spectrum
disorders.2,3,7,77,78,85,87,100–102 Initial correlations with deficits in volumetric
development of the cerebral cortex, thalamus, basal ganglia, and cerebellum have been made.
The correlations are consistent with studies in older children that concern the roles not only of
the cerebral cortex, but also of the dorsomedial and reticular nuclei of the thalamus, the basal
ganglia, and the cerebellum in this cognitive spectrum.103–107

Brain development during the premature period
The neuropathology of brain injury in the premature infant as described above occurs against
a background of multiple active developmental events that take place at 24–40 weeks of
gestation and involve pre-OLs, microglia, axons, subplate neurons, the proliferative cerebral
dorsal subventricular zone (SVZ) and ventral germinative epithelium of the ganglionic
eminence (GE), thalamus, cortex, and cerebellum. Because of the very active and complex
characteristics of these events, they are likely to be vulnerable to exogenous and endogenous

Volpe Page 5

Lancet Neurol. Author manuscript; available in PMC 2009 July 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



insults, such as ischaemia, inflammation, excitotoxicity, and free-radical attack. The
possibilities of vulnerability to certain drugs, hormones, undernutrition, or other facets of
neonatal intensive care deserve further study. This concept of enhanced vulnerability of rapidly
developing events during brain maturation was postulated and corroborated by the classic
studies of the effects of infantile undernutrition by Dobbing and colleagues nearly 40 years
ago.108,109

pre-OLs
pre-OLs, which have been shown to be a key cellular target in PVL, are in a phase of active
development during weeks 24–40 of gestation.8,110–114 The four sequential stages of
oligodendroglial maturation include the oligodendroglial progenitor, the pre-oligodendrocyte
(or late oligodendroglial progenitor; positive for monoclonal antibody O4), the immature
oligodendrocyte (positive for monoclonal antibodies O4 and O1), and the mature myelin-
producing oligodendrocyte (positive for myelin basic protein). Pre-oligodendrocytes and the
immature oligodendrocytes are referred here together as pre-OLs. These differentiating forms
(especially the O4/O1-positive immature oligodendrocytes) ensheath axons in preparation for
full differentiation to myelin-producing oligodendrocytes (figure 3). Mature, myelin-basic-
protein-expressing and ultimately myelin-producing oligodendrocytes do not become
abundant in cerebral white matter until after term.

During the peak period of PVL, the O4-positive late oligodendroglial progenitors predominate
in cerebral white matter and at 28 weeks account for 90% of the total oligodendroglial
population.114 At 28–40 weeks of gestation, the O4-positive cells begin differentiation to O1-
positive immature oligodendrocytes, which account for approximately 30% of the total
oligodendrocyte population during the later premature period and about 50% by term. These
two early differentiating forms show maturation-dependent characteristics that render them
especially vulnerable to injurious insults, such as ischaemia and inflammation, which lead to
excitotoxicity and generation of free radicals. These pre-OL characteristics include enhanced
vulnerability to the following factors: (1) reactive oxygen and nitrogen species, because of
impaired antioxidant defences; (2) excitotoxicity, because of exuberant expression of calcium-
permeable glutamate receptors (ie, GLUR2-deficient AMPA receptors, preferentially on cell
bodies, and NMDA receptors, preferentially on cell processes), and enhanced expression of
the main glutamate transporter, which can become a source of injurious glutamate; and (3)
cytokine injury, because of both expression of the interferon-gamma receptor on the pre-OL
in the context of pronounced availability of interferon gamma in the abundant astrocytes of
PVL, and sensitivity to injury by tumour necrosis factor, which is secreted by the abundant
activated microglia.8,13,19,20,71,115–125

Microglia
Microglia have key roles during brain development, involving apoptosis, vascularisation,
axonal development, and myelination.126–129 Accordingly, these cells become prominent in
the forebrain at 16–22 weeks of gestation,130–133 and reach a peak abundance in cerebral
white matter in the third trimester.133 Microglia seem to be key effectors of cellular injury
with both ischaemia and inflammation.8 These cells generate free radicals, secrete injurious
cytokines, and enhance excitotoxicity.117–121,131,134–136 Because microglia are
particularly abundant in normal cerebral white matter, they are in the right place at the right
time in large numbers to lead to injury to white matter constituents (ie, pre-OLs), but also to
axons and subplate neurons.133 Not surprisingly, many activated microglia are present
diffusely in cerebral white matter in association with preOL injury in PVL.19
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Axons
Axonal development is remarkably exuberant in the developing cerebrum over the last
trimester of gestation and in the early postnatal period (figure 3). Haynes and colleauges126
used an immunocytochemical approach, with staining for growth-associated protein-43, which
is expressed on growing axons, to show pronounced expression in the cerebral white matter to
the region of the subplate at 20 weeks, to the subplate and cortex at 27 weeks, and abundantly
within the cortex at 37 weeks. These striking findings are consistent with detailed studies by
Kostovic and coworkers137–140 of the axonal connections to and from the subplate during
the last half of gestation (panel 1).

Subplate neurons
This crucial transient population of neurons reaches its peak size and maximum developmental
impact at 24–32 weeks of gestation, the peak period for occurrence of PVL (figure 3).137–
141 These neurons are largely glutamatergic, originating in the dorsal telencephalic ventricular
zone, and fewer are GABAergic, originating in the ventral telencephalic GE. Development of
the subplate is inter-twined closely with the cerebral cortex, subcortical structures (especially
thalamus), and axons (projection, commissural, and association; panel 1). The crucial main
roles of subplate neurons are to serve as sites of synaptic contacts for so-called “waiting”
thalamocortical and commissural/association cortico-cortical afferents before differentiation
of the cortical plate, to serve as a functional link between these waiting afferents and their
cortical targets, to provide axonal guidance into the cerebral cortex for the ascending afferents,
to facilitate cerebral cortical organisation and synaptic development, and to provide pioneering
axonal guidance for projections from the cortex to subcortical targets (eg, the thalamus).8,
137,142–149

SVZ (and cortical GABAergic neurons)
The SVZ is derived mainly from radial progenitors (radial glial cells) and consists of so-called
intermediate progenitors (figure 3, panel 2).141 Although some studies had suggested that the
SVZ gives rise primarily to glia, recent studies show that early SVZ progenitors are largely
neurogenic.141,150–153 These early intermediate precursors produce neurons, particularly for
deeper cortical layers. These cells reach the cortex by radial migration before the premature
period. Moreover, the previous notion that the SVZ is gliogenic after the early phases of
neuronal proliferation is not accurate for the more complex brains of primates.141 Indeed, after
the 20th gestational week and extending into at least weeks 25–27, the SVZ actively generates
neurons, mainly GABAergic interneurons for the upper cortical layers, the hallmark of the
human cortex. Bystron and colleagues thus concluded that the SVZ becomes the main source
of cortical neurons in the expanded human cerebrum.141 These later arriving neurons are
generated largely (65%) from the dorsal telencephalic SVZ and migrate radially, although
approximately 35% are generated from the ventral GE and migrate first tangentially, parallel
to the cortical plate, to the region of the dorsal SVZ, from which they migrate radially to the
cortex (figure 3).141,152,154 The origin of 65% of cortical GABAergic interneurons from the
dorsal telencephalic SVZ is characteristic of the human brain (unlike the rodent brain), and
seems to be critical for the development of the expanded upper cortical layers. When the
generation of GABAergic neurons in the SVZ ceases after 27 weeks is unknown, but the SVZ
per se is clearly a prominent structure during the entire premature period.155

Thalamus
The thalamus receives its initial neurons early in the second trimester from the diencephalic
ventricular zone.141 However, recent data show that there is a second, later wave of neurons
that are generated in the ventral telencephalic GE and migrate to the dorsal thalamus (figure
3).141,154,156 These neurons are mainly GABAergic and migrate by homotypic–neurophilic
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interactions. In the primate brain, approximately 30% of the neurons in every thalamic nucleus
are GABAergic.157,158 This population of telencephalon-derived dorsal thalamic neurons are
unique to the human brain, and might lead to a specific increase in the population of GABAergic
neurons in the large association nuclei (ie, the mediodorsal and pulvinar nuclei).141 As
mentioned previously, the mediodorsal nucleus in particular shows neuronal loss and gliosis
in premature infants with PVL. In human beings, these unique telencephalon-derived neurons
are probably linked to the expansion of the thalamic association nuclei, which are in turn
anatomically related to the enlargement of association cortices involved in multiple higher
cognitive functions.156 The timing of this critical later development of the thalamus is not
entirely known, but probably occurs during a long period from 15 weeks to approximately 34
weeks of gestation.141,156

Panel 1: Development of human subplate and cerebral axons

<20 weeks
• Subplate layer apparent at approximately 10 weeks
• Invasion of subplate by thalamic afferents (waiting afferents)
• Increase in size of subplate from 10 to 20 weeks

20–24 weeks
• Thalamic afferents abundant in subplate, with glutamatergic and GABAergic

synapses on subplate neurons
• Axons (projection, commissural, and association) grow actively, especially in

periventricular regions

24–32 weeks
• Thalamocortical afferents enter cortex
• Callosal (commissural) and association (cortico-cortical) axons enter subplate
• Subplate reaches maximum size (4–5 times thicker than cortical plate at 27–30

weeks)

32–36 weeks
• Callosal and cortico-cortical fibres enter cortex
• Subplate layer gradually decreases

Data based primarily on studies of Kostovic and co-workers.137–140

Panel 2: Human SVZ—recent concepts
• SVZ previously thought to appear late in gestation and to produce mainly glia
• SVZ in human beings appears early in gestation and early SVZ is mainly

neurogenic
• Early SVZ progenitors give rise to neurons of deeper cortical layers
• Later SVZ progenitors give rise to neurons (especially GABAergic interneurons)

of the expanded upper cortical layers, a hallmark of human cortex
• SVZ is still proliferating at 25–27 weeks’ gestation (and probably later)
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Summary from Bystron and co-workers.141 SVZ=subventricular zone.

Cerebral cortex
Most, but not all, of the neurons of the cerebral cortex have migrated from the proliferative
dorsal telencephalic ventricular/subventricular zones before 24 weeks of gestation.8,141
Subsequent events include development of regional, laminar, and cytological complexity.
During weeks 24–32 of gestation, synapses become apparent in the deep cortical plate as
thalamocortical axons exit the subplate and enter the cortex (panel 1).139 The permanent
sensory-driven circuitry of specific cortical areas also begins to evolve at this time.139,140
Parallel acceleration of dendritic differentiation becomes prominent. Indeed, this dendritic
development and the extensive elaboration in the cortex of afferent axonal terminals from
thalamic, associative, and commissural fibres that enter the cortex after synapsing on subplate
neurons leads to the striking four-times increase in cerebral cortical volume documented from
28 to 40 weeks’ post-conceptional age by volumetric MRI.137,159,160 Thus, this critical phase
of cortical development occurs simultaneously with the premature period.

A crucial feature of this development is the disproportionate increase in thickness of upper
cortical layers.141 This thickening results because of later-arriving GABAergic interneurons
from the dorsal SVZ and the ventral GE, as described above (figure 3). The time of termination
of this process of GABAergic cortical neuronal proliferation and migration is unknown, but
probably extends well into the third trimester, as noted above with regard to the SVZ.141,
152 In association with the expansion of the superficial cortical layers, the increase in cortical
surface area and rapid gyral development documented by MRI become apparent.8

Cerebellum
The cerebellum develops especially rapidly in the last half of human gestation. This
fundamental finding was emphasised particularly by the work of Dobbing and co-workers.
109,161 Volumetric MRI study of premature infants has documented an approximately three-
times increase in cerebellar volume from 28 to 40 weeks’ gestation.95 Indeed, the rate of overall
growth during this period exceeds that of the cerebral cortex, and both neuronal proliferation
and migration are prominent (figure 4).162,163

Major developmental events in the period before 24 weeks of gestation include establishment
of the two proliferative zones, the ventrally located ventricular zone and the more dorsal
rhombic lip.162,164 Analogous to the ventral and dorsal telencephalic proliferative zones, the
former gives rise to GABAergic neurons and the latter to glutamatergic neurons. The
GABAergic neurons originating in the ventricular zone migrate radially to form the roof nuclei,
the Purkinje-cell layer, and the molecular layer. Of note, the late-migrating GABAergic
neurons, destined to be basket and satellite cells of the molecular layer, also proliferate in
cerebellar white matter during their migration, probably well into the premature period.164
The glutamatergic neurons originating in the rhombic lip largely migrate tangentially along
the cerebellar surface to form the granule precursor cells of the external granule cell layer
(figure 4; some rhombic lip neurons also migrate to the roof nuclei and to the pontine and
olivary nuclei).

By 25 weeks, a prominent external granule cell layer is apparent (figure 4).162,163 The layer
contains two discrete zones: inner and outer. The outer zone, contiguous with the subarachnoid
space and cerebrospinal fluid (CSF), actively proliferates during the premature period, whereas
the inner zone contains post-mitotic cells that will migrate inwards to form the internal granule
cell layer. These neurons migrate radially along the processes of the Bergmann glia of the
Purkinje-cell layer. The proliferative activity of the outer zone of the external granule cell layer
is under the control of sonic hedgehog homologue, which is secreted by Purkinje cells.164
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These events are remarkably active during the entire premature period. After 40 weeks, the
external granule cell layer becomes less prominent, neuronal differentiation is active, and
axonal outflow from the roof nuclei develops rapidly. Thus, the most dramatic events during
the 25–40-week period occur at the surface of the cerebellum, especially the establishment of
the external granule-cell layer by tangential migration and enlargement of this cell layer by
proliferation, culminating finally in the inward (radial) migration of these neurons to form the
densely packed internal granule cell layer (figure 4).

Combination of destructive and developmental disturbances
The ultimate degree of brain abnormality in survivors of premature birth is likely to depend
on a combination of destructive and impaired trophic/maturational mechanisms. The relative
importance of these two mechanisms and the nature and extent of their interactions are central
issues. The trophic/maturational mechanisms include cell–cell interactions that can involve
intercellular trophic support, retrograde effects, and anterograde effects (eg, Wallerian
degeneration, trans-synaptic degeneration), among others.

For the discussion of these processes, I will focus on PVL and its accompanying neuronal/
axonal abnormalities (ie, the encephalopathy of prematurity). The emphasis will first be on the
supratentorial abnormalities. The cerebellar disturbance, an important component of the
encephalopathy and also most common with PVL, is then discussed.

PVL and neuronal/axonal disease: encephalopathy of prematurity
In PVL, the primary event is most likely to be a destructive process (injury) and the subsequent
trophic/maturational (ie, developmental) disturbances are secondary. The following discussion
will focus on the quantitatively more prominent diffuse component of PVL. The focal com
ponent of modern PVL consists of microscopic areas of necrosis. These areas of necrosis
involve all cellular elements, and thus focal loss of pre-OLs, axons, and perhaps late-migrating
interneurons are to be expected. The consequences will be similar to, but quantitatively less
than, the wider cellular effects of diffuse PVL. On the basis of available data, five potential
scenarios concerning the primary and secondary events in supratentorial structures in diffuse
PVL seem most likely (figure 5). Of these, the first is best supported by available data.
However, because rigorous studies in human infants of the other four scenarios are relatively
sparse, it is quite possible that all scenarios are operative and that the degree to which one or
the other predominates in a given infant varies substantially.

pre-OL injury—The pre-OL seems to be the main cellular target in the diffuse component of
PVL (figure 5 and figure 6). This vulnerability of pre-OLs has been shown not only in human
PVL,19–21 but also in many excellent animal models.8,20,165–168 Injury of pre-OLs consists
of cell loss or process loss (with intact soma).22 The cell loss mainly relates to activation of
calcium-permeable AMPA receptors on the cell soma,71,169–179 and the process loss, with
intact soma, to activation of NMDA receptors on pre-OL processes.8,124,180–183 The
ultimate result of either event would be a deficit of mature oligodendroglia, and a consequential
impairment of myelination, the hallmark of PVL (figure 5).

However, pre-OL injury could also lead to failure of axonal development and ultimately axonal
degeneration. The critical trophic role of oligodendrodrocytes for axonal development,
survival, and function is well established in experimental models.62,184–194 The remarkable
exuberance of axonal growth during the premature period suggests a particular need for trophic
support at this time. Impaired axonal development and axonal degeneration would be consistent
with diffusion-based MRI studies of cerebral white matter in premature infants that show
abnormalities consistent with axonal deficiency.33,39,49–55 The consequences of axonal
deficiency would be diminished cerebral cortical and thalamic/basal ganglia volumes
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secondary to retrograde and anterograde (trans-synaptic) effects (ie, projection fibres to and
from the cortex, the thalamus, and the basal ganglia; figure 5 and figure 6).

Axonal injury—Axonal injury has been recognised for many years to be a feature of the focal
necrotic component of PVL. Perhaps more important quantitatively, axonal degeneration,
detected by the apoptotic marker fractin, has been recently found to be a feature of the diffuse
component of human PVL.48 Axonal injury has been described in experimental models of
hypoxic–ischaemic injury analogous to PVL.195–198 Whether the axonal degeneration
observed in diffuse PVL is a primary injury or a secondary effect remains unclear. However,
if primary axonal injury did occur, the expected results would be hypomyelination (via failure
of axonal–oligodendroglial interactions) and decreased cortical and thalamic/basal ganglia
volumes (figure 5 and figure 6). The active axonal development in cerebral white matter in
premature infants could make these fibres particularly vulnerable.

Thalamic injury—The recent observations that neuronal loss and gliosis are more common
in the thalamus than in other brain regions in human PVL is consistent with either primary
injury or secondary anterograde and retrograde trophic effects.73,74 If primary neuronal injury
occurs, the secondary effects would involve white matter axons, with subsequent
hypomyelination and impaired development of cerebral cortex and thalamus/basal ganglia
(figure 5 and figure 6). To date, no experimental studies have investigated the possibility of
primary injury. However, human neuropathological data are of particular interest.

Subplate neuronal injury—The pivotal role of subplate neurons in the development of the
cerebral cortex and deep nuclei in the human premature brain suggests that injury to these key
transient cells could have far-reaching secondary trophic/maturational effects. As noted earlier,
initial data show increased apoptosis in the subplate of infants with PVL.21 If this were a
primary destructive event, secondary retrograde effects on afferent white matter axons and
their originating neurons in the cerebral cortex and thalamus and anterograde efferent effects
on developing cerebral cortical neurons could be substantial (figure 5 and figure 6). These
suggestions are supported by abundant experimental data.8,137,142–149 The axonal
degeneration would be accompanied by subsequent hypomyelination, as discussed for pre-OLs
and axonal injury. In a neonatal rat model of hypoxic–ischaemic injury and PVL, selective
subplate neuronal death was identified.72

SVZ and late-migrating neurons—Although it is possible that the dorsal telencephalic
SVZ is affected in PVL, supporting data in human infants are lacking. Experimental studies
suggest that progenitors in the dorsal telencephalic SVZ are vulnerable to major hypoxia–
ischaemia,199 but in models of selective white matter injury similar to PVL, the SVZ responds
by generating oligodendroglial progenitors after the insult.23,24

Although it seems unlikely that the SVZ is injured in PVL, one report suggests that late-
migrating GABAergic neurons are affected (figure 5 and figure 6).21 This small
neuropathological study of human premature infants with PVL showed a blunting of the normal
increase in GABAergic neurons in the cerebral white matter after 28 weeks postconception
and an overall diminution of white matter GABAergic neurons.21 Whether this phenomenon
indicates decreased generation in the SVZ or injury during the neurons’ late migration is
unknown (figure 5 and figure 6), although the latter seems to be more likely. Because these
GABAergic interneurons contribute particularly to the thickness of upper cortical layers, a
blunting or diminution of this migration could have important structural and functional
consequences.

Cerebellum—The prominent disturbance in cerebellar growth in premature infants, which
occurs particularly in association with PVL, is another vivid example in the human brain of a
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rapidly developing process that shows vulnerability. This vulnerability of the cerebellum
during its phase of rapid growth was documented several decades ago in experimental models
of undernutrition, x-irradiation, and glucocorticoid exposure.108,109,200,201 Diminished
DNA content was the main outcome. More recent work has shown a similar vulnerability of
the cerebellum in fetal sheep and neonatal rats subjected to hypoxia–ischaemia.202,203
Apoptosis of neuronal elements was the main outcome.

The fundamental nature of the cerebellar disturbance in premature infants is unclear. Except
for the minority of infants who have cerebellar haemorrhage, overt tissue destruction is absent.
A strong relation of the cerebellar growth failure with supratentorial white matter lesions,
especially PVL, suggests that trophic interactions between the cerebrum and cerebellum might
be operative. The excitatory interaction between the cerebellum and cerebral cortex via
corticopontine tracts and then pontocerebellar connections might be crucial for cerebellar
development.93 Of note, the brainstem cerebellar relay nuclei (pontine and inferior olivary
nuclei) show gliosis in 90–100% of premature infants with PVL.73 In addition, trophic
interactions between the cerebellum and cerebrum, presumably via cerebello–rubro–thalamo–
cortical connect ions, can also be shown in premature infants.93 Because of the prominent
thalamic disease in infants with PVL, negative retrograde effects on cerebellar growth might
occur.

The occurrence of marked cerebellar growth failure in premature infants has been almost
completely confined to infants of less than 32 weeks’ gestation and most commonly of 24–28
weeks’ gestation. The most striking developmental event in the cerebellum at this time, the
proliferation and inward radial migration of external granule cells (figure 4), is centred on the
surface of the cerebellum. Indeed, the outermost portion of the external granule layer contains
the proliferating cells. Exposure of these cells to noxious compounds in the CSF (eg, free
radicals,204 blood products [non-haem iron, haemosiderin],94,205–207 and proinflammatory
cytokines208) could be deleterious.

Thus, the negative effects on cerebellar growth in the small premature infant could relate to
direct effects on the cerebellum and to effects on cerebellar connections. Concerning the latter,
the negative effects could relate both to loss of positive afferent effects from the cerebrum and
brainstem cerebellar relay nuclei, and to development of negative retrograde effects from loss
of efferent connections to the thalamus and cerebrum. The direct effects could be multiple, but
a disturbance in the proliferation of granule precursor cells in the external granule-cell layer
seems most likely.

GMH-IVH with PHI
This severe form of GMH-IVH, associated with PHI, is unilateral or grossly asymmetric and
accounts for most of the neurological disability related to the entire spectrum of GMH-IVH.
8 Although this type of lesion occurs in only 4–5% of all premature infants with VLBW, the
incidence in the most immature infants is markedly higher at 20–30% in those born at 24–26
weeks’ gestation or below 750 g birthweight.14,209,210 With rapidly increasing survival for
these immature infants, the problem of GMH-IVH with PHI has increased markedly.8 The
haemorrhage originates and destroys the germinal matrix, referred to earlier as the ventral
telencephalic GE (figure 7 and figure 8). The associated venous infarction (the PHI) destroys
the dorsal telencephalic SVZ and the overlying cerebral white matter, including preOLs and
axons (figure 7 and figure 8). The consequences of this constellation are a combination of
primary destructive and secondary maturational disturbances. The destruction of cerebral white
matter axons and pre-OLs results in a large area of tissue loss (ie, a porencephalic cyst).
Thalamocortical fibres are inter rupted,55 and overlying cortical development is impaired.81
Other effects are likely to include disturbance of the late GABAergic neuronal proliferation
and migration from the SVZ and the GE to upper layers of the cerebral cortex and from the
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GE to the thalamus (figure 7 and figure 8). Some neuropathological data in human infants
support the former contention.211

Conclusions
Brain abnormality in the premature infant is unlikely to consist of a straightforward addition
of destructive non-haemorrhagic and haemorrhagic lesions, such as PVL and, less commonly,
GMH-IVH with PHI. Recent insights into the full spectrum of the encephalopathy of
prematurity and into the remarkable series of developmental events that occur in the brain
during this period indicate a complex amalgam of destructive and developmental mechanisms.
Although further clarification of this amalgam is needed, the general principle that in the
premature period brain abnormality involves destructive and developmental mechanisms
seems established.

Search strategy and selection criteria

References for this Review were obtained from personal reprint files, supplemented by
PubMed searches, with varying search periods (from 1980 to November, 2008). PubMed
searches were initiated with all the topical areas covered in the Review. The full list of
search terms is available from the author on request and included "periventricular
leukomalacia", "cerebral white matter injury", "subplate neurons", "cerebral cortex",
"axonal development", "oligodendroglial development", "neuronal development", "glial–
neuronal interactions", "glial–axonal interactions", "GABAergic neurons", and
"subventricular zone" ("prematurity" and "human brain" were frequent modifiers). The
bibliographies of the most recent articles were also screened to find other previously
unidentified articles. Only English language articles were included.
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Figure 1. Cystic and non-cystic periventricular leukomalacia (PVL) and germinal matrix
haemorrhage–intraventricular haemorrhage (GMH-IVH) and GMH-IVH with periventricular
haemorrhagic infarction (PHI)
Coronal sections from the brain of a 28-week-old premature infant. The dorsal cerebral
subventricular zone (SVZ), the ventral germinative epithelium of the ganglionic eminence
(GE), thalamus (T), and putamen (P)/globus pallidus (GP) are shown. (A) The focal necrotic
lesions in cystic PVL (small circles) are macroscopic in size and evolve to cysts. The focal
necrotic lesions in non-cystic PVL (black dots) are microscopic in size and evolve to glial scars.
The diffuse component of both cystic and non-cystic PVL (pink) is characterised by the cellular
changes, as described in the text. (B) Haemorrhage (red) into the GE results in GMH, which
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could burst through the ependyma to cause an IVH (left). When the GHM-IVH is large, PHI
might result (right).
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Figure 2. Main neuronal/axonal structures affected in premature infants with periventricular
leukomalacia
Coronal sections of the cerebrum, pons, cerebellum, and medulla (inferior olivary nuclei) are
shown. The frequency of gliosis by neuropathological study and the major abnormalities
detected by advanced MRI (volumetric and diffusion-based MRI) are shown. See text for
details. BP=basis pontis. C=caudate. CC=corpus callosum. CCx=cerebellar cortex.
De=dentate. GP=globus pallidus. ION=inferior olivary nuclei. P=putamen. T=thalamus.
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Figure 3. Cerebrum in coronal section at 28 weeks’ gestation showing critical events in cortical
development
(A) The axons (green) emanate from the thalamus (T; projection fibres), corpus callosum (CC;
commissural fibres), and cortex (association fibres), which synapse initially on subplate
neurons (SPNs). SPNs send axons to the cortex and promote cortical development before the
thalamo-cortical and cortico-cortical fibres enter the cortex. From the cortex, axons (blue)
descend to the thalamus, basal ganglia, and corticospinal (and corticopontine) tracts.
Premyelinating oligodendrocytes (pre-OLs; yellow) enstheath axons before full differentiation
to mature myelin-producing oligodendrocytes. (B) The proliferation and migration of
GABAergic interneurons from the subventricular zone (SVZ) and ventral germinative
epithelium of the ganglionic eminence (GE) are shown. Neurons from the SVZ (blue) migrate
radially to the cortex and from the GE (green), tangentially and then radially, to the cortex.
The migrating stream of interneurons from the GE to the dorsal thalamus is also shown.
GP=globus pallidus. MN=migrating neurons. P=putamen.
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Figure 4. The developing cerebellar cortex at four major time periods from 9 weeks’ gestation to
7 weeks into the postnatal period
The two proliferative zones are the ventricular zone (VZ) and the external granule cell layer
(EGL) derived from the rhombic lip. The VZ gives rise to the Purkinje cells and the deep nuclei
(dentate nucleus [De]). The granule precursor cells of the EGL migrate over the surface of the
cerebellum. Proliferation in the EGL is activated by sonic hedgehog homologue (SHH),
secreted by Purkinje cells (P-cells). The proliferating cells are concentrated in the outer half
of the EGL. When post-mitotic, these cells migrate radially inwards (guided by Bergman glia
[not shown]) to form the internal granule cell layer (IGL). Note the markedly active
proliferation and migration of the granule precursor cells of the EGL during the premature
period. ep=ependyma. ML=molecular layer. IZ=intermediate zone. pn=postnatal. WM=white
matter. Adapted from ten-Donkelaar et al, 162 with permission from Springer.
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Figure 5. Potential sequences of events leading to major brain sequelae observed with
periventricular leukomalacia
Potential events are hypomyelination, and impaired cortical and thalamic development (eg,
seen on advanced MRI analysis by decreased volume). For each sequence, the initiating
primary injury is shown, and the subsequent secondary effects are postulated to occur because
of maturational/trophic disturbances, as described in the text. Pre-OL=premyelinating
oligodendrocyte. SPN=subplate neuron.
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Figure 6. Anatomical relationships between the major developmental events and the topography
of non-cystic periventricular leukomalacia (PVL)
For purposes of clarity, the developmental events are separated. CC=corpus callosum.
GE=ganglionic eminence. GP=globus pallidus. MN=migrating neurons. P=putamen. Pre-
OL=premyelinating oligodendrocytes. SPN=subplate neurons. SVZ=subventricular zone.
T=thalamus.
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Figure 7. Likely sequence of events leading to the major neuropathological sequelae observed with
germinal matrix haemorrhage (GMH)–intraventricular haemorrhage (IVH) with periventricular
haemorrhagic infarction (PHI)
The primary destructive events involve the GMH-IVH with PHI and the associated destruction
of premyelinating oligodendrocytes (pre-OLs) and axons. The secondary consequence of the
former is hypomyelination, and that of the latter is impaired thalamic and cortical development.
In addition, because of destruction of the dorsal subventricular zone (SVZ) and ventral
germinative epithelium of the ganglionic eminence (GE), impaired proliferation and late
migration of GABAergic interneurons to upper cortical layers and the thalamus could
contribute to defective cortical and thalamic development.
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Figure 8. The anatomical relationships between the major developmental events and the
topography of germinal matrix haemorrhage (GMH)–intraventricular haemorrhage (IVH) with
periventricular haemorrhagic infarction (PHI)
For purposes of clarity, the developmental events are separated. CC=corpus callosum.
GE=ganglionic eminence. GP=globus pallidus. MN=migrating neurons. P=putamen. Pre-
OL=premyelinating oligodendrocytes. SPN=subplate neurons. SVZ=subventricular zone.
T=thalamus.
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