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† Background and Aims While invasive species may escape from natural enemies in the new range, the establish-
ment of novel biotic interactions with species native to the invaded range can determine their success. Biological
control of plant populations can be achieved by manipulation of a species’ enemies in the invaded range.
Interactions were therefore investigated between a native parasitic plant and an invasive legume in
Mediterranean-type woodlands of South Australia.
† Methods The effects of the native stem parasite, Cassytha pubescens, on the introduced host, Cytisus scoparius,
and a co-occurring native host, Leptospermum myrsinoides, were compared. The hypothesis that the parasitic
plant would have a greater impact on the introduced host than the native host was tested. In a field study, photo-
synthesis, growth and survival of hosts and parasite were examined.
† Key Results As predicted, Cassytha had greater impacts on the introduced host than the native host. Dead
Cytisus were associated with dense Cassytha infections but mortality of Leptospermum was not correlated
with parasite infection. Cassytha infection reduced the photosynthetic rates of both hosts. Infected Cytisus
showed slower recovery of photosystem II efficiency, lower transpiration rates and reduced photosynthetic
biomass in comparison with uninfected plants. Parasite photosynthetic rates and growth rates were higher
when growing on the introduced host Cytisus, than on Leptospermum.
† Conclusions Infection by a native parasitic plant had strong negative effects on the physiology and above-
ground biomass allocation of an introduced species and was correlated with increased plant mortality. The
greater impact of the parasite on the introduced host may be due to either the greater resources that this host pro-
vides or increased resistance to infection by the native host. This disparity of effects between introduced host and
native host indicates the potential for Cassytha to be exploited as a control tool.

Key words: Biological control, Cassytha pubescens, Cytisus scoparius, Leptospermum myrsinoides, parasitic
plant, plant interactions, plant invasion, Scotch broom.

INTRODUCTION

Invasive species become a management problem in natural
ecosystems when an increase in their distribution and abun-
dance results in disruption to ecological processes and the
emergent properties of these systems. The ability of an
invader to increase into a new range depends upon the oppor-
tunities the invaded community provides for the invader and
the characteristics of the invading species (Shea and
Chesson, 2002). The role of biotic interactions in the invasion
process has long been considered important (see, for example,
Darwin, 1859; Elton, 1958) but has less frequently been
addressed in empirical research.

Two hypotheses have been proposed to explain how biotic
interactions influence the invasive process. The enemy
release hypothesis (ERH) proposes that plants invading a
new range are able to spread and increase in abundance as
they escape from population regulation by their co-evolved
natural enemies that occur in their native range (Maron and
Vila, 2001; Keane and Crawley, 2002; Parker and Hay,
2005). In contrast, the biotic resistance hypothesis (BRH)
suggests that strong biotic interactions with native competitors,

pathogens and/or herbivores in the invaded community can
prevent invading species from establishing (Elton, 1958;
Maron and Vila, 2001; Parker and Hay, 2005). The ERH pre-
dicts that generalist enemies in the new range will prefer native
over introduced plants, and there will be no specialist enemies
of the introduced plant present, thereby conferring a competi-
tive advantage to the invading species. However, there is little
empirical support for this (Maron and Vila, 2001; Agrawal and
Kotanen, 2003; Colautti et al., 2004; Parker and Hay, 2005;
Parker et al., 2006; Parker and Gilbert, 2007), as generalist
enemies can have similar or greater effects on introduced
species than on native species (but see Nunez et al., 2008).
In the case of invertebrate herbivores of plants, however,
there is evidence supporting both the ERH and BRH hypoth-
eses. Specialist herbivores can regulate plant populations in
their native range, whilst in the invaded range specialist herbi-
vores tend to be absent (ERH); however, generalist herbivores
provide resistance to invasion (BRH) (Strong et al., 1984; Liu
and Stiling, 2006). Similar patterns have been observed for
plant pathogens, with invasive and native species being
equally or less susceptible to generalist pathogens (Agrawal
et al., 2005; Parker and Gilbert, 2007), and some evidence
of escape by introduced species from specialist pathogens of
their native range (Mitchell and Power, 2003).* For correspondence: E-mail jane.prider@adelaide.edu.au
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Classical biological control of invasive species exploits the
ERH by introducing specialist enemies into the invaded range.
Effective biological control agents have high host specificity
and cause direct damage to the target species through continu-
ous and prolonged attack (Myers and Bazely, 2003); however,
the ecological drawbacks to this control method include the
introduction of further exotic species into new ranges. If intro-
duced species are more susceptible to native enemies than
native species, then the introduction of native enemies into
new populations of invading species may provide a viable
control strategy (Colautti et al., 2004). This strategy would
have an advantage if native plants have more resistance to
the native enemy than the invading species, as predicted by
the BRH.

Cytisus scoparius (Scotch broom; hereafter Cytisus) is a
leguminous shrub native to Europe that is invasive in
Australia, New Zealand and North America (Syrett et al.,
1999). Population densities of Cytisus are higher in Australia
than in the native range, although population longevity and
plant size do not differ between the introduced and native
ranges (Paynter et al., 2003). Phytophagous insects signifi-
cantly inhibit the growth of Cytisus in its native range
(Waloff and Richards, 1977). Similar herbivores, however,
have little impact on introduced populations in the United
States (Bossard and Rejmánek, 1994), New Zealand or
Australia, despite the fact that generalist phytophagous
insects are common on Cytisus in Australia and New
Zealand (Memmott et al., 2000). The introduction of specialist
insects from the species native range has also met with only
limited success to date in invasive populations (Bossard and
Rejmánek, 1994; Syrett et al., 1999). The species may encoun-
ter little biotic resistance in the communities it invades, at least
in Australia and New Zealand, where it is a superior resource
competitor with at least some of the native shrubs with which
it co-occurs (Bellingham, 1998; Fogarty and Facelli, 1999).

A new potential enemy of Cytisus in the temperate wood-
lands of southern Australia has recently been observed. The
native parasitic vine, Cassytha pubescens (Dodder laurel; here-
after Cassytha), occurs at high densities on Cytisus and obser-
vations suggest that infection by the parasite results in damage
to this host. Parasitic plants can affect host productivity by
extracting water, nutrients and organic compounds from the
host’s vascular system and also by impacting on host physi-
ology and thus impairing the host’s ability to acquire resources
(Press et al., 1999). The extent to which this impacts on host
performance depends upon the degree of autotrophy of the
parasite, the relative ability of host and parasite sinks to
attract resources (Graves, 1995; Press et al., 1999) and the tol-
erance or resistance to infection of the host species (Koskela
et al., 2001, 2002; Rispail et al., 2007).

Cassytha is a stem hemi-parasite with a broad host range,
although it is mostly confined to woody shrubs (McLuckie,
1924). Host–parasite associations can range from highly
host-specific, to generalist, where a parasite may infect many
species across taxonomic and functional groups. Most para-
sites display some host preference, where performance is
poorer on non-preferred species and parasite density is dispro-
portional to host availability (Kelly et al., 1988; Horning,
1995; Musselman and Press, 1995). Variation in the observed
effects of a parasite on its host may be due to the combined

influence of the virulence of the parasite and the susceptibility
of the host (Keith et al., 2004). Typically, increasing negative
effects of a parasite on its host are observed on host plants
upon which parasites can achieve the highest biomass (Atsatt
and Strong, 1970; Kelly et al., 1988; Graves, 1995; Marvier,
1998; Cameron et al., 2008). Hosts with a high nutrient
content such as legumes are preferred hosts for several para-
sitic species (Matthies, 1996; Pate and Bell, 2000; Pennings
and Callaway, 2002; Suetsugu et al., 2008; but see Marvier,
1998). Parasite growth is often greater on nitrogen-fixing
hosts (Press et al., 1993; Seel and Press, 1993) but the
impacts on the host are also greater (Jeschke et al., 1994;
Matthies, 1996; Jeschke and Hilpert, 1997).

In this study, the impacts of infection by the native parasitic
plant, Cassytha pubescens, on a co-occurring native species,
Leptospermum myrsinoides (hereafter Leptospermum), and a
novel host, the introduced species, Cytisus scoparius, are
examined. The hypothesis is tested that the parasite, as a
native generalist, will have a greater impact on the novel
host Cytisus than the native host Leptospermum, with which
it has co-existed, and possibly co-evolved. It is predicted that
the parasite will be able to achieve higher growth rates on
the introduced species and will consequently have greater
impacts on the physiology and growth of this species than its
native host.

MATERIALS AND METHODS

Study site

The study was undertaken in the Mount Lofty Ranges of South
Australia (138.698N, 35.038E). The study area is secondary
Eucalyptus obliqua woodland with an overstorey of scattered
E. obliqua trees and an understorey dominated by sclerophyl-
lous shrubs. Cytisus forms dense stands in places, particularly
under remnant E. obliqua and occurs scattered throughout
regenerating native shrubs. The perennial ground layer com-
prises sedges, grasses and low sclerophyllous shrubs.

The climate at the study site is Mediterranean-type, with
cool, wet winters and hot, dry summers. Soils are sandy
loams to sandy clays with low nitrogen and phosphorous
content and a pH of 5–6 (H. T. Tsang, University of
Adelaide, unpubl res.).

Study species

Cassytha pubescens R.Br. (Lauraceae) is a stem-twining,
parasitic vine. The plant is free-living following emergence
from the seed but after approx. 6 weeks is completely depen-
dent on a host plant for growth, survival and reproduction
(McLuckie, 1924). The leaves are reduced to small scales
and the photosynthetic tissue of the plant occurs in the stem.
The stems branch extensively and may twine around each
other or over one to several host plants. The habit and mor-
phology of Cassytha are similar to the widespread parasitic
genus Cuscuta (Convolvulaceae).

Cytisus scoparius (L.) Link (Leguminosae) is a tall, woody,
short-lived shrub native to the Mediterranean region. From a
supposed initial introduction to Australia in about 1800
(Waterhouse, 1988), by the mid-1800s the plant had been
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introduced to most of the south-east of Australia as either an
ornamental or hedging plant (Hosking et al., 1996). The
plant is invasive in the Mount Lofty Ranges where it occurs
in disturbed woodlands in the higher rainfall areas. In these
woodland systems, Cytisus has high rates of growth and photo-
synthesis in the spring months but during summer the plants
lose their leaves, although the stems remain photosynthetic
(Fogarty and Facelli, 1999).

Leptospermum myrsinoides Schltdl. (Myrtaceae) is a
medium to tall woody, sclerophyllous shrub that occurs natu-
rally throughout south-eastern Australia. It occurs sparsely
throughout the Mount Lofty Ranges but can become dominant
in more open areas of heath vegetation, particularly on sandy
soils (Specht and Rundel, 1990). Leptospermum was selected
as a native host for this study as Cassytha grows at high
density on this species, this species occurs at similar densities
as Cytisus at the study site (see Results), and the species has a
similar growth habit to Cytisus. Although it would have been
preferable to compare Cassytha impacts on a native legume
with the introduced legume Cytisus, the parasite did not
grow vigorously or at high densities on native legumes at the
study site.

Field survey

An area of natural vegetation was surveyed to compare the
vigour of Cassytha on the two target host species and to
qualify the condition of infected host plants. In June 2007,
24 2 � 2 m quadrats were sampled located randomly through-
out the study site in the disturbed woodland. Within these
areas, data were collected from all shrubs taller than 10 cm
(only the data for Cytisus and Leptospermum are presented
here). The height of each shrub and the width of the shrub at
the widest point and perpendicular to this were measured to
calculate the approximate volume of each shrub. The vigour
of each shrub was scored qualitatively as dead, mostly dead,
partly alive, or all alive. Mostly dead shrubs had .50 % of
their stems or leaves dead or discoloured. Partly alive shrubs
had some dead or discoloured biomass but this was not
.50 % of the biomass. Cassytha was scored as present on
the shrub only when haustorial attachments were observed
on the target shrub. Cassytha cover was scored visually as
low, moderate or high density. Low-density infections
covered ,10 % of the host shrub and Cassytha was usually
present as a few stems. Moderate density infections covered
up to 30 % of the host shrub and high density infections
covered .30 % of the shrub with the Cassytha growing in
dense coiling mats. The vigour of Cassytha on each shrub
was scored as dead, vigorous (actively growing, green
stems), or low vigour (stems yellowish and no active growth
visible).

Cassytha pubescens growth

At the same study site, the growth of Cassytha was
measured, as stem elongation, on 20 individuals of the two
host species selected as described below. The parasite stems
were marked by a small paint mark, 30 mm from the stem
tip. At least ten Cassytha shoots were marked on each host
where actively growing stem tips could be located. The

stems were marked in winter (late June 2007) and measured
in early spring (September 2007). New actively growing
Cassytha stems on each host were marked in the same way
and growth of newly marked stems remeasured in mid-spring
(October 2007) and again in summer (December 2007). It
was noted whether stems were coiled around the host or self-
coiled (coiled around each other).

Above-ground biomass

The above-ground biomass of 20 uninfected and 20 infected
host plants of each species and Cassytha on infected plants
was harvested. It was ensured that the Cassytha on the infected
plant was not attached to other hosts and occurred at moderate
to high densities. This restricted plant choice and prevented
all plants being selected of approximately equal size.
Uninfected plants were selected to match the range of
sizes of infected plants. The plants were harvested in
December 2007 and January 2008. The biomass was oven-
dried at 70 8C and separated into stem, leaf and parasite stem
components before weighing. Cytisus stem biomass was
further subdivided into woody stems and photosynthetic stems.

Photosynthesis

Eight Cytisus infected by Cassytha and eight non-infected
plants and six each of Leptospermum were selected for phys-
iological measurements. All host plants were mature with
moderate to high intensity infections of Cassytha and situated
in open areas that were unshaded for at least half of the day.
Measurements of net assimilation rates and transpiration
were made on plants during October 2007 (spring) using a
CIRAS-2 infra-red gas analyser (PP Systems, Amesbury,
MA, USA). For Cytisus, the first fully expanded leaf was
measured from the top of the plant on the northern side of
the shrub. Leptospermum leaves grow in small, erect clusters
so measurements were made on the first fully expanded
cluster of leaves on the uppermost, northern side of the
shrub. For Cassytha measurements, two green portions of
stem were selected that were located below the young, soft
growing tips. Leaf area was determined by tracing leaves on
graph paper before insertion into the leaf chamber. A standar-
dized stem area was used for Cassytha, as stems are of similar
diameter. Measurements were made on well-watered plants
(natural rainfall) under saturating irradiance, with photon
flux density greater than 1400 mmol m22 s21. Measurements
were made between 0830 and 1030 h, on plants that had
been in unshaded conditions for at least 30 min.

To determine whether plants infected with Cassytha became
stressed, photosystem II (PSII) efficiency was measured during
the afternoon and recovery assessed after a short period in the
dark. PSII efficiency was measured on the same set of plants as
above, after plants had been exposed to full sun for at least the
previous 4 h. Measurements were made with a Mini-PAM
Portable Chlorophyll Fluorometer fitted with a 2030-B leaf-
clip holder (Heinz Walz GmbH, Effeltrich, Germany).
A single measurement of yield was made between 1400 and
1500 h under ambient light conditions. The leaves or stems
were then covered in aluminium foil. After 30 min the foil
was removed and yield was remeasured. The measurements
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were repeated pre-dawn to determine the maximum quantum
yield after an extended recovery period overnight. Plants
were sampled at three separate times in October and
November 2007.

Statistical analyses

The categorical survey data were analysed using nominal
logistic models. For host biomass data, ANCOVA was used
to compare photosynthetic tissue allocation between infected
and uninfected plants, using woody stem biomass as a covari-
ate. For Cytisus, allocation to leaves between infected and
uninfected plants was also compared with photosynthetic
stem biomass as the covariate. ANCOVA was also used to
compare Cassytha biomass on the two host species, with
total host above-ground biomass as the covariate. Analysis of
variance was used to compare transpiration rates and
maximum photosynthetic rates between infected and unin-
fected plants, testing each species separately. Repeated
measures ANOVA (MANOVA) was used to compare yield
measures for uninfected control plants, host plants infected
by Cassytha and the parasite. Matched pair t-tests were used
to assess short-term recovery in each treatment category,
testing a one-tailed probability that yield increased after the
recovery period. The statistical package JMP Ver. 4.0.3
(SAS Institute Inc., 2000) was used for analyses.

RESULTS

Survey

Cytisus scoparius occurred more frequently within the sur-
veyed plots than Leptospermum, due mainly to an abundance
of Cytisus seedlings. However, the volume of both target
host plants per unit area was similar (Cytisus volume
mean+ s.e., 0.61+ 0.14 m3 m22, n ¼ 603; Leptospermum,
0.49+ 0.10 m3 m22, n ¼ 133). Cassytha occurred in 65 %
of sampled plots. On a biomass basis, the availability of the
two species as hosts for Cassytha was similar; however, on
an individual plant basis, Cytisus was a more available host
than Leptospermum. Cassytha utilized Leptospermum as a
host at higher proportions than its availability in each plot.
Leptospermum comprised 13 % of the individuals sampled
and was host to 22 % of the Cassytha sampled. Conversely,
Cytisus comprised 61 % of all shrubs sampled and was host
to 65 % of the parasite sampled. Cassytha preferentially
infected taller plants of both species [likelihood ratio (LR)
x2 ¼ 91.73, d.f. ¼ 1, P , 0.0001] with a height (mean+
s.e.) of infected plants of 0.97+ 0.03 m and uninfected
plants 0.61+ 0.02 m.

There was no significant difference in the density of
Cassytha on the two host species (LR x2 ¼ 1.81, d.f. ¼ 4,
P ¼ 0.40). Approximately half of the infected plants had
infections of Cassytha classified as moderate to high intensity
(Fig. 1A). Cassytha vigour varied with host species (LR x2 ¼
66.36, d.f. ¼ 4, P , 0.0001). A high proportion of the
Cassytha growing on Cytisus hosts was vigorous whereas
Leptospermum had higher proportions of non-vigorous
Cassytha (Fig. 1B).

Host condition varied with the density of Cassytha (Cytisus
LR x2 ¼ 100.45, d.f. ¼ 9, P , 0.0001; Leptospermum LR
x2 ¼ 49.73, d.f. ¼ 9, P , 0.0001). The highest proportion of
dead Cytisus occurred where Cassytha density was high
(Fig. 2A). All Leptospermum plants with high density
infections of Cassytha had at least some dead biomass but
mortality was not associated with the presence of the parasite
(Fig. 2B).
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Cassytha growth

Cassytha stem growth rates were significantly higher on
Cytisus hosts than on Leptospermum hosts over the three
periods when measurements were made (Fig. 3A). Although
Cassytha growth rates continued to increase on Cytisus hosts
across the three measurement periods, on Leptospermum
hosts growth rate did not increase from October to
December (MANOVA time � species interaction, numerator
d.f. ¼ 2, denominator d.f. ¼ 19, exact F ¼ 27.96, P ,
0.0001). New growth of Cassytha on Cytisus hosts coiled
around host stems early in the growing season, whilst new
growth of Cassytha stems coiled around Leptospermum
stems later in the season (Fig. 3B). Most of the new growth
on Cytisus later in the season was self-coiling, with the
stems growing upright and self-coiling.

Host and parasite biomass

Leaves comprise a very small proportion of the total
biomass of Cytisus with most of the photosynthetic biomass
occurring in the stems. Infected plants had significantly less
photosynthetic biomass than uninfected plants (ANCOVA,
F ¼ 2.27, d.f. ¼ 1, P , 0.03; Fig. 4A). For infected plants,
leaves contributed significantly less to the photosynthetic
biomass than in uninfected plants (ANCOVA, F ¼ 19.97,
d.f. ¼ 1, P , 0.0013; Fig. 4B). Infected Leptospermum had
lower leaf biomass than uninfected plants but this difference
was not significant (ANCOVA, F ¼ 3.68, P ¼ 0.063; Fig. 4C).

There was significantly less Cassytha biomass on
Leptospermum than Cytisus (ANCOVA, d.f. ¼ 1, F ¼ 9.537,
P ¼ 0.004). The biomass of Cassytha increased linearly with
Cytisus individual biomass but there was no significant
linear relationship between Cassytha and Leptospermum

biomass (Fig. 5). Cassytha comprised 35+ 7 % (mean+
s.e.) of the total above-ground biomass of the Cytisus host–
parasite association. For many infected Cytisus plants, the
biomass of the parasite was greater than the photosynthetic
biomass (stems and leaves) of the host plant (mean+ s.e.,
104+ 31 %). The proportion of Cassytha biomass in relation
to Leptospermum hosts was lower than that for Cytisus, com-
prising 11+ 2 % (mean+ s.e.) of the total above-ground
biomass and 73+ 23 % of the leaf biomass.

Photosynthesis

For both host species, plants infected by the parasite had
significantly lower photosynthetic rates than uninfected
plants (Table 1 and Fig. 6A). Infected Cytisus had significantly
lower transpiration rates per unit leaf area than uninfected
plants, although this difference was not observed between
infected and uninfected Leptospermum (Fig. 6B).

Cassytha growing on Cytisus had significantly lower photo-
synthetic rates than either infected or uninfected Cytisus
(Fig. 6A). In contrast, photosynthetic rates of parasites
growing on Leptospermum were similar to those of infected
plants, but significantly lower than those of uninfected
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Leptospermum. On both host species, the transpiration rate of
Cassytha was significantly higher than the infected host
(Fig. 6B).

Photosynthetic efficiency

Cassytha had significantly lower pre-dawn yield than either
of the host species on which it was growing (Fig. 7A, B).
Mid-afternoon yield of Cassytha was lower than
Leptospermum hosts but not Cytisus hosts (Fig. 7A, B).
Short-term recovery of Cassytha PSII efficiency occurred on
both host species with measured yield significantly greater
after a short recovery period.

There was no difference in the mid-afternoon or pre-dawn
yield of Cytisus plants that were infected by Cassytha and
uninfected plants. However, the short-term recovery of
Cytisus was faster in uninfected plants than in infected
plants as infected plants showed no significant increase in
yield after a short recovery period (Table 2).
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Infected 7 0.283
Parasite 7 0.031
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TABLE 1. Results of ANOVA testing for differences in
physiological parameters between the parasite Cassytha

pubescens, host infected by the parasite and uninfected plants

Host species Parameter d.f. F-statistic P value

Cytisus scoparius Net assimilation 2 42.20 ,0.0001
Transpiration 2 3.38 0.053

Leptospermum myrsinoides Net assimilation 2 7.16 0.007
Transpiration 2 8.17 0.031

Prider et al. — Impacts of a parasitic plant112



There was no difference in the mid-afternoon or pre-dawn
yield of Leptospermum plants that were infected by Cassytha
and uninfected plants. Both infected and uninfected
Leptospermum showed some short-term recovery in photosyn-
thetic efficiency with significantly higher yields after a short
recovery period (Table 2).

DISCUSSION

The present results show that the native generalist parasite
Cassytha has a greater effect on the physiology and vigour
of a novel host, Cytisus, than on a co-occurring, native host,
Leptospermum. Although the parasite shows a slight prefer-
ence for the native host it grows to high densities on both
host species. However, host susceptibility to infection and
the virulence of the parasite was greater on the introduced
host than the native host. Although tolerance and resistance
to infection may explain the reduced impacts of Cassytha on
the native host, the higher impacts on the introduced host
could also be the result of the higher resources that this host
provides. When these resources support improved parasite
growth, this can lead to a decline in host performance.

It was found that the assimilation rates of Cassytha were
similar to its native host Leptospermum although lower than
the introduced host, Cytisus. Parasite assimilation rates
recorded during this study were much higher than those pre-
viously published for the South African species Cassytha cilio-
lata and C. filiformis (De La Harpe et al., 1981) and the
morphologically similar genus Cuscuta (Stewart and Press,
1990). These authors considered that the autonomous carbon
gain of Cassytha and Cuscuta was barely sufficient to
replace respiratory losses. Despite the capacity for Cassytha
to assimilate carbon, the parasite may still obtain a proportion
of carbon from its host, other studies showing that from 28 %
to 99 % of hemi-parasite carbon may be host derived (Graves
et al., 1989, 1990; Marshall and Ehleringer, 1990).

Cassytha performance, in terms of net assimilation rates,
growth rates and accumulated biomass, were poorer on the
native host than on the introduced host. The parasite may
have greater access to the resources that Cytisus provides due
to either the higher nutrient status of this species or the
reduced resistance to transfer of resources across the haustor-
ium. Experimental manipulations of host nutrient status have
demonstrated that holo-parasite performance increases with
increases in host nitrogen (Marshall et al., 1994; Jeschke and
Hilpert, 1997; Pennings and Simpson, 2008). However,
where a parasite and its host have co-evolved, such as is poten-
tially the case of the Cassytha–Leptospermum association, the
development of host resistance mechanisms, particularly those
that result in the degeneration or obstruction of haustorial
tissue may have greater effects on nutrient transfer and
hence parasite performance (Jiang et al., 2008). Chemical
defences produced by the host may also have detrimental
effects on parasite metabolism, particularly when they inter-
fere with photosynthetic performance (Cameron et al., 2008).

Although both host species were affected by Cassytha infec-
tion, Leptospermum appeared to be less susceptible than
Cytisus. Transpiration, allocation to leaf biomass and survival
were not significantly reduced in infected Leptospermum rela-
tive to uninfected plants. In addition, infected plants rapidly

recovered PSII efficiency. Cytisus was more negatively
impacted by Cassytha. Photosynthesis, transpiration, allocation
to photosynthetic biomass and survival were significantly
reduced in infected plants.

Significant decreases in the photosynthesis of infected
Cytisus and Leptospermum were measured. Parasites can
reduce host carbon fixation by lowering host stomatal conduc-
tance, impacting host photosynthetic metabolism or changing
host biomass, biomass allocation or architecture (Graves,
1995; Press et al., 1999; Watling and Press, 2001). The
present results suggest there could be some stomatal limitation
to photosynthesis as infected plants had lower transpiration
rates than uninfected plants. However, other direct impacts
of the parasite on photosynthetic metabolism through
reductions in carboxylation efficiency and thylakoid capacity
(e.g. Watling and Press, 2000; Cameron et al., 2008) require
further examination. The slower rates of recovery of PSII effi-
ciency in infected Cytisus indicate irradiance stress. The
reduced photosynthetic rate in infected plants can increase
the likelihood of photoinhibition (Watling and Press, 2001)
but there were no long-term photoinhibitory effects as PSII
efficiency recovered overnight. In addition, changes in the pro-
portion of photosynthetic biomass, particularly in Cytisus,
could have large impacts at the whole plant level. Heavy infes-
tations can also create a shading effect, reducing the light
available for photosynthesis. This ‘strangling’ effect has
been observed in the parasite Cuscuta (Jeschke and Hilpert,
1997), which has a similar growth habit to Cassytha.

Suppression of photosynthesis can result in lower growth
rates and biomass accumulation by the host but resource
extraction by the parasite may also have the same effects. As
parasite biomass increases in relation to host biomass, resource
extraction may become more important (Graves et al., 1989).
For Cytisus, parasite biomass frequently exceeded host photo-
synthetic biomass, therefore resource extraction in heavily
infected plants could significantly increase mortality rates.
Although Cassytha reached high densities on both host
species, the present results suggest these infections develop
at different rates. Cassytha stems coiled around Cytisus early
in the growing season and around Leptospermum late in the
growing season. The extraction of resources from Cytisus
therefore commences earlier enabling the parasite to grow
beyond the host plant, resulting in high parasite loads relative
to host biomass. Conversely parasitic biomass on
Leptospermum was typically confined to the host plant
stems. Slow growth rates of Cassytha on Leptospermum may
enable the host species to persist, with the high intensity infec-
tions developing over several years. High intensity infections
of Cassytha were associated with mortality of Cytisus but
not Leptospermum. In this dynamic process, Cassytha
growth on Cytisus is rapid and the survey results show that
these high parasite densities are correlated with host mortality.

Conclusions

Significant differences were found in the impacts of a para-
sitic plant on the growth and physiology of two host species
under field conditions. There is evidence that declines in
host condition may be the result of suppression of photosyn-
thesis by the parasite but resource extraction by the parasite
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could also have significant impacts. In addition, the less
affected native host, Leptospermum, may have evolved some
resistance mechanisms to Cassytha infection. These mechan-
isms can operate at different stages of the infection process
and result in degeneration or obstruction of the haustoria,
chemical and physical barriers to haustorial penetration and/
or abortion of parasitic tissues (Bringmann et al., 1999;
Bouwmeester et al., 2003; Cameron et al., 2006; Rispail
et al., 2007; Rümer et al., 2007).

The ERH predicts that invasive species will thrive in
invaded communities when they are released from the control-
ling effects of their native enemies. Cytisus has encountered a
new parasite, Cassytha, in its invaded range which has stronger
impacts on this species than another co-occurring native
species. However, Cytisus continues to spread in native veg-
etation which suggests that other factors favour its perform-
ance. The acquired native enemy, Cassytha may not be
abundant enough to resist initial invasion by Cytisus. In this
system biotic resistance is unlikely to prevent invasions, but
this process may be an effective regulator of populations of
invading species (Levine et al., 2004). It may be feasible for
introduced species to be maintained at population levels
where they have reduced detrimental effects on the invaded
community. A native enemy, such as the parasitic plant
Cassytha could be an effective natural biocontrol agent for
Cytisus, with the advantage of having no lethal impact on
native species. Further research is required to examine the
interaction between the parasite and native and introduced
hosts to evaluate the potential for introduction of the parasite
into native vegetation invaded by Cytisus.
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