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† Background Environmental conditions, such as water supply, temperature and salinity, strongly affect plant
growth and development. Extremes of these conditions (abiotic stresses) adversely affect many different mech-
anisms associated with plant responses and adaptation to stress: photosynthetic mechanisms, e.g. stomatal control
of CO2 diffusion, photosystem II repair, ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and
scavenging of reactive oxygen species (ROS), are susceptible to damage, and photosynthetic efficiency can be
greatly decreased. Responses and adaptations require differential gene expression, which is regulated by specific
transcription factors (TFs).
† Scope The role and regulation of several TFs involved in abiotic stress response pathways are considered, with
emphasis on new findings regarding expression of genes related to both stomatal and non-stomatal limitations to
CO2 photosynthetic assimilation.
† Conclusions Many TFs, belonging to different families (e.g. MYB, bZIP and DREB), have been related to
abiotic stress responses; however, only a few are known to regulate the expression of photosynthesis-related
genes in response to stress. Several TFs belonging to the MYB family play an important role in both stomatal
and non-stomatal responses by regulation of stomatal numbers and sizes, and metabolic components, respect-
ively. To obtain more insight into this area of potentially large agronomic impact, it is essential to identify
and functionally characterize new TFs that mediate the stress responses regulating the expression of genes associ-
ated with photosynthesis and related metabolism.
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salt, ABA, MYB, AP2/EREBP.

INTRODUCTION

General effects of abiotic stress on plant growth and function

Extremes of temperature, salinity and water supply, i.e. con-
ditions outside the normal range in which plants function
efficiently, are probably the most important environmental
conditions (‘abiotic stresses’) that limit growth and pro-
ductivity. These effects are caused by altered morphology
and physiology, resulting from changes to processes, such as
inhibition of cell division, and effects on metabolism, includ-
ing photosynthesis. Particular environmental conditions may
affect specific mechanisms. For example, low temperature
severely hampers reproductive development: exposure of rice
plants to chilling temperature at anthesis (floral opening
stage) leads to male sterility (Imin et al., 2006; Mamun
et al., 2006). More extreme cold stress mainly results in
disruption of membrane integrity and solute leakage, leading
to severe cellular dehydration and osmotic imbalance
(Thomashow, 1999). Drought and salinity are primarily mani-
fested as increased cellular osmotic concentrations (‘osmotic
stress’), resulting in disruption of homeostasis and ion distri-
bution in cells (Zhu, 2002).

Increased production of reactive oxygen species (ROS) is a
common consequence of exposure to drought, salinity and low
temperature. This results from excitation of the light reactions
of photosynthesis [photosystems I and II (PSI and PSII)]

inducing water splitting and electron transport: when the
latter exceeds the requirements of normal metabolism,
oxygen is reduced. Such overexcitation of the system is charac-
teristic of stress conditions. The light reactions occur in the
thylakoid membranes which are susceptible to damage
(Moller et al., 2007; Takahashi and Murata, 2008). ROS
cause peroxidation and de-esterification of membrane lipids,
and also lead to protein denaturation (Bowler et al., 1992) as
well as other forms of photo-oxidative damage.

The physiological and biochemical changes in plants under
particular stress conditions are related to altered gene
expression. Onset of a stress triggers some (mostly unknown)
initial sensors, which then activate cytoplasmic Ca2þ and
protein signalling pathways, leading to stress-responsive gene
expression and physiological changes (Bressan et al., 1998;
Xiong et al., 2002). Also, accumulation of abscisic acid
(ABA) plays an important role in abiotic stress signalling
and transduction pathways, mediating many responses
(Wasilewska et al., 2008). Regarding gene and protein
expression modulated by stress, it is well documented that
abiotic stresses in general, through regulation of both gene
expression and protein turnover, alter the abundance of many
transcripts and proteins (Seki et al., 2002; Wong et al.,
2006; Yan et al., 2006; Jiang et al., 2007), indicating that tran-
scriptional and post-transcriptional regulation play an essential
role in the adaptation of cellular functions to the environmental
changes. The transcript level (relative abundance) of some* For correspondence. E-mail saibo@itqb.unl.pt
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genes encoding proteins with antioxidant functions, such as
glutathione reductase (GR) and ascorbate peroxidase (APX),
is higher during recovery from water stress and may play a
role protecting the cellular machinery against photo-oxidation
by ROS (Ratnayaka et al., 2003).

Photosynthesis and related mechanisms affected by abiotic stress

Photosynthesis plays a central role as an energy source
for plant metabolism, and its efficiency may be drastically
reduced due to abiotic stresses. During evolution, plants have
developed many ‘strategies’ to acclimate to adverse environ-
ments. The main goal, it is supposed, is to maintain the photo-
synthetic efficiency at as high a level as possible, avoiding the
energy imbalance resulting from the abiotic stress and the
consequent photo-oxidative damage. Abiotic stress interferes
with photosynthesis at different points, e.g. CO2 diffusion,
PSII efficiency, electron transport, ROS formation,
ribulose-1,5-bisphosphate (RuBP) content (dependent on
ATP and NADPH supply), ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco) activity and photorespiration.

Drought, salinity and cold are well known to induce stoma-
tal closure (Wilkinson et al., 2001; Zhu, 2002; Chaves et al.,
2003), slowing CO2 assimilation and consequently reducing
the photosynthetic rate (Fig. 1). In addition, it has been
shown that reduced mesophyll conductance is an equally
important cause of lower CO2 diffusion under water (Flexas
et al., 2002; Warren et al., 2004) and salt (Centritto et al.,
2003) stress. Moreover, plasma membrane aquaporins have
been found to be closely related to mesophyll conductance
(Uehlein et al., 2003; Hanba et al., 2004). Therefore, the
expression and/or regulation of aquaporins can mediate the
environmental effects on CO2 diffusion. The mesophyll

conductance and relationship with CO2 diffusion, in terms of
plant response to stress, is, however, not completely under-
stood. Regarding the control of stomatal aperture, this
process is mediated by ABA and possibly by other signals gen-
erated in response to abiotic stress. The regulation of gene
expression related to guard cell movement is known to
involve both ABA-dependent and ABA-independent signal-
ling (Cominelli et al., 2005; Liang et al., 2005).

The causes of decreased photosynthetic rate under different
environmental stresses (and at different intensities) are still not
established, with substantial controversy about the main phys-
iological targets responsible for photosynthetic impairment.
Stomatal closure is considered the primary response to cold,
drought and salinity (Flexas and Medrano, 2002). However,
low temperatures, salinity and drought alter metabolism in
many ways which affect the photosynthetic rate. For
example, low temperature alters ATP/ADP and ATP/reductant
ratios (Savitch et al., 1997) probably as a consequence of
altered sucrose metabolism (Savitch et al., 2000). However,
cold stress (58C, mild stress) in Arabidopsis was not associated
with a limitation in ATP, but with an increase in the ATP/
NADPH ratio due to altered reductant metabolism (Savitch
et al., 2001). Drought can lead to a limitation in the supply
of ATP in the chloroplast as a consequence of decreased syn-
thetic capacity (Tezara et al., 1999) caused by loss of ATP
synthase (see Lawlor and Tezara, 2009). Both temperature
and drought may, for different reasons, decrease the synthesis
of RuBP, which depends on ATP and NADPH concentrations
and activity of enzymes of the Calvin cycle (Fig. 1), and thus
reduce photosynthetic CO2 assimilation rates. As Tezara et al.
(1999) showed, and as later emphasized by Flexas and
Medrano (2002), stomatal closure is the earliest response to
drought and the dominant limitation to photosynthesis at
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mild to moderate stress, but as Tezara et al. (1999) and Lawlor
(2002) concluded there is a progressive reduction in the bio-
chemical processes that becomes dominant under severe
stress, leading to reduced photosynthetic CO2 assimilation.

When plants are exposed to environmental stresses and the
availability of CO2 within the leaf (Ci) is restricted and/or
the synthesis of ATP is impaired, the activity of the Calvin
cycle is reduced, but PSII remains active. In these conditions,
the concentration of the final electron acceptor NADPþ is gen-
erally very low (Fig. 1). This leads to an excess of excitation
energy in the photosystems. High energy states may be dissi-
pated by either non-photochemical quenching (e.g. xantho-
phyll cycle) or alternative processes, such as photorespiratory
metabolism (Niyogi, 2000). If not dissipated, electrons
accumulate in the electron transport chain and are transferred
to oxygen (Mehler reaction): such processes generate ROS,
e.g. superoxide. Because of their high reactive potential,
ROS react with and damage many cellular components (e.g.
proteins, DNA and lipids), constituting oxidative stress, so
they must then be detoxified by scavenging mechanisms
such as superoxide dismutase (SOD) and the glutathione–
ascorbate cycle (Noctor and Foyer, 1998). ROS also inactivate
the photochemical reaction centre of PSII, causing photoinhi-
bition. Recently, it has been proposed that most environmental
stresses inactivate PSII by inhibiting the mechanisms for
repairing photodamage rather than by directly attacking it
(Murata et al., 2007, and references therein). ROS generated
by different stresses inhibit PSII repair by suppressing the tran-
scription and translation of psbA genes encoding D1, one of
the proteins of the PSII complex (Nishiyama et al., 2001,
2004; Allakhverdiev et al., 2002).

The stroma redox state is known to be involved in the regu-
lation of gene expression (Pfannschmidt et al., 1999). The
redox-reactive molecules (e.g. ROS, thioredoxin and reduced
glutathione) generated by environmental adverse conditions
act as signals to activate/inactivate the expression of chloro-
plast and nuclear genes. Interestingly, all genes reported as
being redox regulated are related to photosynthesis
(Pfannschmidt, 2003). Since the redox state can regulate
kinase activity, which in turn controls the activity of plastid
transcription factors (TFs; Baginsky et al., 1999), this might
be the link between redox state and regulation of gene
expression. Although no redox-sensitive TF has yet been ident-
ified in plants, in animals a TF has been found that can be acti-
vated by redox-dependent stimuli (Balogun et al., 2003).

In addition to the effects on CO2 diffusion, ATP synthesis
and reductant status, abiotic stresses can also negatively
affect the Calvin cycle by reducing the content and activity
of photosynthetic carbon reduction cycle enzymes, including
the key enzyme, Rubisco, thus limiting CO2 assimilation. It
was shown that both low and high temperature slow down
the operation of Rubisco activase, a molecular chaperone
that activates Rubisco through an ATP-dependent reaction
(Kingston-Smith et al., 1997). Very severe drought conditions
also result in limited photosynthesis; evidence that this is
related to decreased RuBP supply and not to lack of CO2

(Tezara et al., 1999; Lawlor, 2002; Lawlor and Cornic,
2002) conflicts with the view (Flexas et al., 2006) that it is
due to the lower CO2 availability in the chloroplast and conse-
quently a decline in Rubisco activity.

Given that some of the short-term and most of the long-term
effects caused by abiotic stresses to photosynthesis involve
regulation of gene expression, it is clear that TFs play an
important role in stress acclimation, modulating the expression
of stress-responsive genes. TFs are themselves regulated by
abiotic stress signals, such as ABA, the redox state and the
ATP/NADPH content. It is known that most plants share
orthologous genes involved in abiotic stress responses,
although different plants show different magnitudes of stress
tolerance. These phenotypes are mostly explained by differ-
ences in stress-responsive gene expression.

TRANSCRIPTION FACTORS INVOLVED
IN ABIOTIC STRESS RESPONSES

Responses to abiotic stress require the production of important
metabolic proteins such as those involved in synthesis of
osmoprotectants and of regulatory proteins operating in the
signal transduction pathways, such as kinases or TFs. Given
that most of these responses imply control of gene expression,
TFs play a critical role in the abiotic stress response (Chaves
and Oliveira, 2004). TFs are proteins with a DNA domain
that binds to the cis-acting elements present in the promoter
of a target gene. They induce (activators) or repress (repres-
sors) the activity of the RNA polymerase, thus regulating
gene expression. TFs can be grouped into families according
to their DNA-binding domain (Riechmann et al., 2000). A
group of genes controlled by a certain type of TF is known
as a regulon. In the plant response to abiotic stresses, at least
four different regulons can be identified (Fig. 2): (1) the
CBF/DREB regulon; (2) the NAC (NAM, ATAF and CUC)
and ZF-HD (zinc-finger homeodomain) regulon; (3) the
AREB/ABF (ABA-responsive element-binding protein/
ABA-binding factor) regulon; and (4) the MYC (myelocyto-
matosis oncogene)/MYB (myeloblastosis oncogene) regulon.
The first two regulons are ABA independent, and the last
two are ABA dependent. It is explained below how these reg-
ulons are controlled and how TFs may be involved in the regu-
lation of photosynthesis as a response to abiotic stress.

The CBF/DREB regulon

This regulon is mainly involved in cold stress response and
is probably the one that has attracted most attention. It is con-
served throughout the plant kingdom, including in plants that
do not cold-acclimate (e.g. tomato and rice) (Dubouzet
et al., 2003). In 1994, Yamaguchi-Shinozaki and Shinozaki
identified a novel cis-acting element that, in addition to the
ABA-responsive element (ABRE), is also present in the pro-
moter of the RESPONSIVE TO DEHYDRATION 29A
(RD29A), a gene induced by drought, high salinity and cold.
This new element was named C-repeat/dehydration-responsive
element (CRT/DRE) and characterized as ABA independent.
The core motif of this cis-acting element is CCGAC and the
TFs that bind to it were named CRT-binding factors or
DRE-binding proteins 1 (CBF/DREB1) (Gilmour et al.,
1998; Liu et al., 1998). CBF/DREB1 gene expression is
quickly and transiently induced by cold stress, and in turn
CBF/DREB1 TFs activate the expression of several other
genes (e.g. encoding proteins involved in production of
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osmoprotectants and antioxidants). Interestingly, it was shown
that the low temperature induction of the CBF1–CBF3 genes
is gated by the circadian clock, suggesting that the regulation
of these genes has aspects in common with the regulation of
Arabidopsis CAB genes (Fowler et al., 2005). Concerning
the DREB2 genes, they are constitutively expressed (under
normal and stress conditions), although their target genes
(e.g. RD29A, RD29B, RD17 and LEA14) are only induced
upon dehydration. This indicates that DREB2 factors are acti-
vated through post-translational modifications in order to regu-
late downstream genes (Sakuma et al., 2006).

The over-expression of CBF/DREB1 genes in Arabidopsis
resulted in plants with improved survival rates when exposed
to salt, drought and low temperatures (Jaglo-Ottosen et al.,
1998; Kasuga et al., 1999). This improved tolerance was cor-
related with both altered relative abundance of transcripts
encoding proteins associated with stress adaptation and
increased sugar contents (Gilmour et al., 2004). When CBF/
DREB1 genes from Arabidopsis were over-expressed in other
plants, the result was similar to that in Arabidopsis (Hsieh
et al., 2002a; Pellegrineschi et al., 2004), revealing a con-
served signalling and response mechanism even between
dicots and monocots. Various studies have demonstrated that
improved stress tolerance by over-expression of CBF/DREB1
genes is associated with sustained photochemical efficiency
and photosynthetic capacity as compared with wild-type
plants (Hsieh et al., 2002b; Savitch et al., 2005; Oh et al.,
2007). These plants normally show a dwarf phenotype that
can be reverted through the exogenous application of gibberel-
lins (GAs). However, the microarray expression analysis of
these plants did not reveal any gene encoding GA enzymes
affected by the over-expression of CBF/DREB1 (Fowler and
Thomashow, 2002). Instead, most genes related to carbo-
hydrate metabolism and photosynthesis were repressed and

thus contributed to reduced growth. Caution must be exercised
when evaluating abiotic stress tolerance in transgenic plants
showing a dwarf phenotype, as the improvement may be
mainly due to reduced size rather than metabolic changes
leading to intrinsic tolerance.

A TF that acts downstream of CBF3/DREB1A (Fig. 2),
STZ/ZAT10, functions as a repressor through an essential
DLN/EAR-like repression motif present in its C-terminal
region (Nakashima and Yamaguchi-Shinozaki, 2006). In
Arabidopsis, it was observed that the over-expression of STZ
represses several genes involved in photosynthesis and
related metabolism. This means that STZ factor may be
involved in growth retardation through repression of photosyn-
thesis and carbohydrate metabolism genes observed in both the
wild-type plants under abiotic stress and plants over-
expressing CBF/DREB1 genes (e.g. CBF3/DREB1A). It
would be interesting to analyse all the promoters of the
genes related to photosynthesis and carbohydrate metabolism
and search for cis-elements where STZ may bind (Sakamoto
et al., 2004). To overcome growth retardation, CBF/DREB1
genes have been expressed in transgenic plants under the
control of a stress-inducible promoter, RD29A (Kasuga
et al., 2004). These plants have also shown enhanced abiotic
stress tolerance without totally compromising the yield (Pino
et al., 2007). However, it seems that the use of the
Arabidopsis RD29A promoter is more efficient in driving the
expression of CBF/DREB1 genes in dicots rather than in
monocots, or at least in rice (Ito et al., 2006; T. Lourenço
et al., unpubl. res.).

The control of the CBF/DREB regulon is not as simple as one
might expect (Fig. 2). The Arabidopsis mutant cbf2/dreb1c has
revealed that CBF2/DREB1C is a negative regulator of CBF1/
DREB1B and CBF3/DREB1A gene expression (Novillo et al.,
2004). However, CBF2/DREB1C shares several target genes
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with ZAT12 (Vogel et al., 2005), a TF that can be in a parallel
regulon to the CBFs/DREBs. Plants over-expressing ZAT12
had a small but consistent increase in freezing tolerance, and
the induction of the CBF/DREB genes in response to cold is
reduced. This indicates that ZAT12 also plays a role in the nega-
tive regulatory circuit that leads to a decline in expression of
CBF/DREB. The CBF/DREB1 regulon is controlled upstream
by the INDUCER OF CBF EXPRESSION 1 (ICE1) protein
(Chinnusamy et al., 2003). The ICE1 protein is a MYC-type
bHLH (basic helix–loop–helix) TF that regulates the
expression of CBF3/DREB1A. The ICE1 protein is present at
normal growth temperatures but its activation requires
cold-induced post-translational modification(s) (e.g. phos-
phorylation). In addition, the ICE1 protein is negatively regu-
lated by the HIGHER EXPRESSION OF OSMOTICALLY
RESPONSIVE GENES 1 (HOS1) protein. HOS1 is a RING
E3 ligase that targets the ICE1 protein for ubiquitination and
subsequent degradation (Dong et al., 2006). Under normal con-
ditions, HOS1 is a cytoplasmic protein, but, upon low tempera-
ture, HOS1 is translocated to the nucleus where it targets ICE1
for degradation. Recently, it was found that ICE1 ubiquitination
can be blocked by SIZ1-dependent sumoylation (Miura et al.,
2007), a process that conjugates SUMO (for small ubiquitin-
related modifier) to a protein substrate. SIZ1 is a SUMO E3
ligase that mediates ICE1 sumoylation (binds SUMO to a
target protein). This modification activates and/or stabilizes
ICE1 protein, thus facilitating its activity controlling the
expression of the CBF3/DREB1A gene. The mechanism by
which ICE1 protein is activated by sumoylation through SIZ1
is still not fully understood. Another TF with a regulatory func-
tion in this process is MYB15 (Agarwal et al., 2006). MYB15 is
a negative regulator of the CBF/DREB1 genes, possibly through
interaction with their promoter regions. This TF seems to be
negatively regulated by a sumoylated ICE1 form, as a modifi-
cation affecting the sumoylation site of ICE1 leads to an
increased MYB15 transcript level and reduced CBF3/DREB1A
expression (Fig. 2). The cold response through the CBF/
DREB1 regulon is thus a strictly regulated mechanism that
may have evolved to avoid unwanted negative effects in
plants. In fact, uncontrolled expression of CBF/DREB1 in
certain environments may lead to dwarf phenotypes and
reduced yields.

The NAC and ZF-HD regulon

An ABA-independent pathway was unveiled when it was
observed that EARLY RESPONSIVE TO DEHYDRATION
STRESS 1 (ERD1) gene transcripts accumulated before any
increase of ABA in response to dehydration and high salinity,
suggesting the presence of an ABA-independent pathway
(Nakashima et al., 1997). Promoter analysis of ERD1 revealed
TFs belonging to the NAC family and zinc finger homeodo-
main (ZF-HD) as essential to the activation of the ERD1
gene (Tran et al., 2007). However, over-expression of NAC
genes in Arabidopsis enhanced drought tolerance without acti-
vation of the ERD1 gene, suggesting that other interacting
factors may be necessary to control the expression of ERD1
under stress conditions (Tran et al., 2004).

Recently, the STRESS-RESPONSIVE NAC1 (SNAC1) gene
was isolated from an upland rice variety and over-expressed

in a lowland rice (‘Nipponbare’; Hu et al., 2006). SNAC1
encodes a NAM, ATAF and CUC (NAC) TF with transactiva-
tion activity and is induced by drought, predominantly in guard
cells (Hu et al., 2006). When compared with the wild type, rice
plants over-expressing SNAC1 showed drought tolerance at
anthesis and increased drought and salt tolerance at the vege-
tative stage. The plants over-expressing SNAC1 did not show
the common, unwanted, dwarf phenotype of those over-
expressing CBF/DREB1 (Ito et al., 2006), revealing a different
stress response mechanism. The increased drought tolerance
may be in part due to the reduced transpiration rate (increased
stomatal closure) and to an increased ABA sensitivity.
Interestingly, the photosynthesis rate was not significantly
affected by the over-expression of the SNAC1 gene. It is
claimed that usually rice leaves may function with more
open stomata than necessary to have a normal photosynthetic
rate. The strong induction of SNAC1 gene expression by
drought in guard cells suggests an effect in stomatal closure
(Hu et al., 2006). Two R2R3-MYB TFs (AtMYB60 and
AtMYB61) are known to be directly involved in stomatal
dynamics in Arabidopsis (Cominelli et al., 2005; Liang
et al., 2005). In addition, the over-expression of SNAC1 upre-
gulates a rice R2R3-MYB gene (UGS5) with a NAC recog-
nition site in its promoter region (Hu et al., 2006). However,
the relationship between SNAC1 and the TFs implicated in sto-
matal closure is not known. This connection needs to be inves-
tigated further to understand the regulatory mechanisms
underlying stomatal movement under drought stress. SNAC1
also induced the expression of genes encoding proteins
related to both osmotic adjustment (such as a sorbitol transpor-
ter and exoglucanase) and stability of cell membranes, which
can be related to the stress response (Hu et al., 2006).

The AREB/ABF regulon

The over-expression of key enzymes in ABA biosynthesis
(e.g. 9-cis-epoxycarotenoid dioxygenase; NCED) or mutation
in ABA-degrading enzymes (e.g. cytochrome P450 CYP707A
family member) resulted in transgenic plants with enhanced
drought tolerance (Shinozaki and Yamaguchi-Shinozaki,
2007). The ABRE motif is a cis-acting element present in the
ABA-responsive genes. The ABFs or AREBs are bZIP (basic
leucine zipper) TFs that bind to the ABRE motif and activate
ABA-dependent gene expression (Choi et al., 2000). Some of
these TFs, such as AREB1 and AREB2, require a post-
translational modification for their maximum activation (Uno
et al., 2000). This post-translational modification is probably
an ABA-dependent phosphorylation.

A family of protein kinases, the Snf1-related kinases family,
has been implicated in the ABA signal transduction pathway.
Members of this family (SnRK2) play an important role in
controlling stomatal closure and are activated by drought, sal-
inity and ABA (Mustilli et al., 2002; Yoshida et al., 2002).
The over-expression of SRK2C caused hypersensivity to
ABA and improved drought tolerance with reduced transpira-
tion rate (Umezawa et al., 2004). These data suggest that
SnRK2-type protein kinases activate TFs influencing osmotic
stress-responsive genes. Recently, Baena-Gonzalez and co-
workers (2007) have implicated other members (KIN10 and
KIN11 from the SnRK1 group) of the Snf1-related protein
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kinase family with a pivotal role in the sensing of sugar and
energy depletion due to photosynthesis inhibition in response
to diverse stresses and conditions, such as hypoxia, herbicide
treatment and darkness. Promoter analysis of DARK
INDUCED 6 (DIN6), a KIN10-activated gene, revealed that
the G-box (CACGTG) is essential to the DIN6 activation by
KIN10. The authors screened for bZIP TFs that bind to the
G-box cis-element in Arabidopsis and found that the
co-expression of the KIN10 and the G-BOX BINDING
FACTOR 5 (GBF5) had a synergistic effect on DIN6
expression. These results indicate that this family of
Snf1-related protein kinases may play an important role in con-
trolling the activation of stress-related TFs.

The MYC/MYB regulon

Expression of the drought-inducible gene RESPONSIVE TO
DEHYDRATION 22 (RD22) from Arabidopsis was found to be
induced by ABA (Abe et al., 2003). The promoter region of
RD22 contains MYC (CANNTG) and MYB (C/TAACNA/G)
cis-element recognition sites. MYC and MYB TFs only
accumulate after accumulation of ABA. In Arabidopsis, it
was found that for activation of RD22 gene expression, both
AtMYC and AtMYB have to work co-operatively.
Over-expression of these TFs resulted in enhanced sensitivity
to ABA and drought tolerance. Microarray studies in trans-
genic plants over-expressing these TFs revealed that not only
were ABA-related stress genes differentially regulated, but
also jasmonic acid-related genes (Fig. 2), thus indicating a
cross-talk pathway between abiotic and biotic stress responses
(Abe et al., 2003).

Transcription factors with no relationship to known regulons

Although many of the TFs identified are involved in the
described regulons, some TFs are involved in other response
mechanisms. In recent years, two new genes, HIGHER
EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 9
and 10 (HOS9 and HOS10), have been associated with cold
stress response (Zhu et al., 2004, 2005). HOS9 is a homeodo-
main TF with similarity to the Arabidopsis proteins
WUSCHEL (WUS) and PRESSED FLOWER (PRS), and
HOS10 is an R2R3-type MYB protein (Van Buskirk and
Thomashow, 2006). Both mutants hos9 and hos10 show freez-
ing hypersensitivity, but, interestingly, also have enhanced
expression of the RD29A gene and other cold-responsive
genes without changes in the CBF/DREB1 regulon. It might
be expected that HOS9 and HOS10 act as negative regulators
of cold stress-responsive genes, but the increased Arabidopsis
sensitivity to cold rules out this hypothesis. The absence of the
respective transcripts in the mutants probably resulted in
expression of cold-responsive genes in order to cope with
the increased cold sensitivity. The hos10 mutant has reduced
NCED gene expression compared with the wild type and con-
sequently plants do not accumulate ABA, revealing a critical
role for this TF regarding different abiotic stresses.
Nevertheless, additional studies have to be performed in
order to clarify the function of these TFs in the abiotic stress
response.

HARDY (HRD) is an AP2-EREBP-type TF isolated from
Arabidopsis. The HRD gene is expressed mainly in the inflor-
escence tissue, most probably to protect this tissue from desic-
cation in a very important and sensitive stage of the plant life
cycle. Rice plants over-expressing HRD showed drought toler-
ance and improved water use efficiency (WUE; Karaba et al.,
2007). Interestingly, when grown under normal greenhouse
conditions, they do not show reduced growth, seed yield or
germination rate; instead they have a larger leaf canopy with
more tillers. The transgenic plants also have more root
biomass under drought stress; this is considered a drought
adaptation to absorb the scarce water in the soil. Whether
higher root biomass is associated with a faster water uptake
or with a larger volume exploited is not known. These HRD
lines showed a reduced transpiration rate (due to lower stoma-
tal conductance) and a higher than wild-type net carbon assim-
ilation rate under drought and well-irrigated conditions,
corresponding to an increased WUE. No difference was
observed for the maximum quantum efficiency of PSII (Fv/
Fm) between wild type and transgenic plants; however, the
efficiency of the PSII reaction centres (Fv

0/Fm
0) was higher

in the HRD-over-expressing plants than in the wild-type
plants. This agrees with the improved photosynthetic capacity
observed in the transgenic plants. The increased number of
bundle sheath cells in the transgenic plants can support the
improved photosynthetic assimilation.

HRD belongs to the AP2-EREBP IIIb group, while the
related CBF/DREB genes belong to the AP2-EREBP IIIc
group (Nakano et al., 2006). Microarray analysis revealed
that HRD over-expression induces genes repressed by
drought stress, suggesting a protective influence on essential
processes, such as protein biosynthesis and carbohydrate
metabolism. Despite some similarities, these transgenic
plants induce different clusters of genes when compared
with the CBF/DREB-over-expressing plants, which may
account for the differences observed (absence of stunted
growth) and the unique responses to stress of these plants.

ENVIRONMENTAL CUES REGULATE
PHOTOSYNTHESIS THROUGH THE ACTION

OF SPECIFIC TRANSCRIPTION FACTORS

Several studies have demonstrated that plants under drought,
high salt and cold stress conditions downregulate the
expression of genes involved in photosynthesis and carbo-
hydrate metabolism (Seki et al., 2002; Hannah et al., 2006;
Wong et al., 2006). Enhanced freezing tolerance in
Arabidopsis has been associated with the downregulation of
genes related to photosynthesis and upregulation of genes
related to biosynthesis of flavonoids (Hannah et al., 2006).
However, when several Arabidopsis ecotypes were studied,
the greatest downregulation of photosynthetic-related genes
in response to freezing did not correspond to the ecotype
with the highest capacity to cold-acclimate (Hannah et al.,
2006). Hence, we can conclude that photosynthesis is only
one of several different mechanisms that need to be modulated
to improve cold acclimation.

The importance of stomatal vs. non-stomatal limitations to
CO2 photosynthetic assimilation has been discussed in the
Introduction. Stomatal closure plays a major role in limiting
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carbon assimilation under mild drought stress (Cornic, 2000,
and references therein), but there is also metabolic limitation
of photosynthesis (Tezara et al., 1999). Hence, it seems that
both stomatal and non-stomatal changes limit the photosyn-
thetic rate and capacity under stress. Many expression studies
performed on plants subjected to different abiotic stresses
have shown that a large number of genes are differentially
expressed under stress, involving both stomatal and non-
stomatal photosynthesis mechanisms. Thus, it is understand-
able that TFs modulating the expression of these genes play
a critical role in plant response/adaptation to environmental
cues.

Transcription factors involved in regulation of stomatal
aperture by abiotic stresses

Until a decade ago, it was traditionally thought that control
of stomata closure/opening did not involve transcriptional
regulation (Hetherington and Quatrano, 1991). The first indi-
cation that TFs could be involved in stomata regulation
appeared when it was found that ABI3 (an ABI3/VP1
B3-type TF, also involved in controlling accumulation of
chlorophyll and anthocyanins) suppressed the effect of the
abi1 mutation on stomatal regulation (Parcy and Giraudat,
1997). While abi1 plants do not regulate their stomata cor-
rectly (leading to increased transpiration) and are less sensitive
to ABA, abi1 plants ectopically expressing ABI3 showed a
wild-type phenotype. Meanwhile, it has been reported that
modulation of transcription plays an important role in control-
ling guard cell activity. Recently two MYB-type TFs were
identified as regulators of stomatal movements (Fig. 3).

AtMYB60, a R2R3-MYB gene of Arabidopsis, was shown to
be specifically expressed in guard cells, and its expression
regulated by light conditions, ABA and water stress
(Cominelli et al., 2005). However, elevated CO2 concen-
trations, which are known to induce stomatal closure, do not
modulate AtMYB60 expression. The expression of this gene
is negatively regulated under drought, concomitantly with sto-
matal closure. Accordingly, the atmyb60-1 null mutant shows
a constitutive reduction in stomatal opening and decreased
wilting under water stress conditions. Interestingly, only a
limited number of genes is altered in the mutant and most of
them are downregulated (Cominelli et al., 2005). Many of
these genes (e.g. Aquaporin, ERD10, ERD13 and ERF) were
already described as being involved in plant response to
water stress (Cominelli et al., 2005).

A second member of the Arabidopsis thaliana family of
R2R3-MYB TFs, AtMYB61, is also specifically expressed in
guard cells in a manner consistent with its involvement in
the regulation of stomatal aperture (Liang et al., 2005).
However, it has been shown that AtMYB60 and AtMYB61
have distinct expression patterns and functions. While
AtMYB60 gene expression is induced by light, leading to an
increased stomatal aperture, AtMYB61 transcription is
repressed by light, although it has the same effect on stomatal
movement. It was demonstrated that AtMYB61 expression is
both sufficient and necessary to cause reductions in stomatal
aperture. Moreover, Liang et al. (2005) showed that
AtMYB61 gene expression was not altered in plants treated
with ABA, salt and drought, known to induce stomatal
closure. Thus, AtMYB61 seems to act via a mechanism parallel
to that responsible for closing stomata in response to water
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deficit. However, a post-transcriptional/translational regulation
of AtMYB61 cannot be ruled out. In addition, the
loss-of-function mutant atmyb61 (larger stomatal aperture)
was shown to remain responsive to increasing concentrations
of ABA (Liang et al., 2005). Given that ABA signalling
mutants, such as ost1, exhibit reduction in stomatal sensitivity
to exogenously applied ABA (Mustilli et al., 2002), it seems
that, in contrast to AtMYB60, the pathway through which
AtMYB61 regulates stomatal behaviour is indeed different
from the signalling pathway involving ABA (Fig. 3).
Altogether, reported data indicate that AtMYB61 mediates sto-
matal aperture through an ABA-independent signalling
pathway. The fact that stomatal closure can be induced by
Cd2þ in the ABA-insensitive mutant abi1-1 (Perfus-Barbeoch
et al., 2002) strengthens the hypothesis that stomatal move-
ments can be regulated through an ABA-independent
pathway, where AtMYB61 is integrated. It would be very inter-
esting to investigate whether ABA-independent stomata regu-
lation is associated with any abiotic stress response.
Nevertheless, given that AtMYB61 can also be involved in
the deposition of pectin (Penfield et al., 2001), which in
guard cell walls has been shown to be important for stomatal
movements (Jones et al., 2003), it is possible that AtMYB61
plays a second non-signalling role controlling stomatal aperture.

The control of stomata aperture may also involve the activity
of SNAC1 (a TF described in a previous section; Fig. 3).
Transgenic rice plants over-expressing SNAC1 are more sensi-
tive to ABA and lose water more slowly by closing more
stomata, leading to improvements in performance under
drought and salinity.

Does abiotic stress control the transcription factors involved
in stomatal development?

The physiological control of stomata movements by differ-
ent environmental stresses is very well documented;
however, little is known concerning the possible effects of
abiotic stresses on stomatal development. This is an important
issue that deserves thorough investigation, as the number of
stomata affects both photosynthesis and WUE (Chaerle
et al., 2005). It is essential that plants are able to sense
environmental cues, such as CO2 concentration, light and
UV-B irradiation, which have been shown to influence stoma-
tal development and density (Lake et al., 2001; Gitz et al.,
2005). Besides that, it has been shown that ABA-treated
Transdescantia virginiana plants have significantly smaller
stomata and more stomata per unit area of their lower epider-
mis (Franks and Farquhar, 2001). This suggests that ABA not
only regulates short-term CO2 assimilation and water loss, but,
through its effect on stomatal development, it may also perma-
nently alter leaf photosynthesis in the direction of improving
WUE. Given that ABA concentration increases upon osmotic
and drought stress conditions, it is expected that prolonged
abiotic stresses will have an effect on stomatal development
in new leaves. It was shown that water stress and temperature
may affect photosynthesis through alterations in stomatal
number (Xu and Zhou, 2005). Stress responses often initiate
transient physiological, biochemical and molecular alterations
that lead to stable long-term adaptations reflecting complex
developmental responses to adverse environmental conditions.

Stomata development requires a strict control over differen-
tiation and cell division so that stomata morphology, distri-
bution and behaviour respond properly to the environment,
ensuring maximum plant performance. Recent work in
Arabidopsis has substantially advanced our understanding of
how stomata are built (Barton, 2007, and references therein).
Five TFs were identified as essential for cell transitions
leading to stomatal formation (Fig. 3). Together,
SPEECHLESS (SPCH), MUTE and FAMA, all belonging to
the bHLH family of TFs, control stomatal development at
three consecutive steps: initiation, meristemoid differentiation
and guard cell morphogenesis, respectively (Pillitteri et al.,
2007). In addition, FOUR LIPS (FLP; MYB124) and
MYB88 (both R2R3 MYB-type TFs) function in generating
normal stomatal patterning (Lai et al., 2005). Recently, two
paralogous proteins, SCREAM and SCREAM2 were found
to interact directly with and specify the sequential actions of
SPCH, MUTE and FAMA (Kanaoka et al., 2008).
Surprisingly, SCREAM was found to be INDUCER OF CBF
EXPRESSION 1 (ICE1), a master regulator of freezing toler-
ance, suggesting a potential link between the transcriptional
regulation of environmental adaptation and stomatal develop-
ment (Fig. 3).

Although there is no direct evidence, besides ICE1, that TFs
controlling stomata development are under the control of
environmental cues, it is known that stomatal development is
related to environmental conditions (Chaerle et al., 2005).
The question that remains to be answered is how the regulators
of stomata formation themselves are regulated by different
environmental conditions. Mitogen-activated protein kinase
kinase (MAPKK) 4 and 5, and MAPK3 and 6 have previously
been shown to play a role in the environmental stress response,
with MAPK3 and 6 directly involved in osmotic stress
(Nakagami et al., 2005). Wang and co-workers (2007) have
recently suggested that the MKK4/MKK5–MPK3/MPK6
module is the long-sought molecular hub at which environ-
mental signals impinge on the stomatal development
pathway and influence stomatal development. Activation of
this kinase cascade causes the suppression of asymmetric
cell division, absence of meristemoid mother cell formation
and consequent lack of stomatal differentiation (Fig. 3). The
signalling events between this MAPK cascade and the down-
stream TFs controlling stomata development are still
unknown, but their elucidation will help to clarify the regulat-
ory mechanisms underlying environmental control of stomata
formation.

Transcription factors mediating the non-stomatal responses
to abiotic stress

In addition to stomatal regulation, abiotic stress conditions
reduce the photosynthetic rate by controlling the expression
of genes involved in non-stomatal processes associated with
photosynthesis and carbohydrate metabolism. Among the
genes whose expression is controlled by the environmental
cues are those that encode chlorophyll a/b-binding (CAB) pro-
teins, PSI and PSII subunits, oxygen-evolving complex and
Rubisco subunits.

Most genes associated with photosynthesis are under the
control of a transcriptional regulatory network evolved to
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control plant response to external stimuli. Transcriptional pro-
filing studies have shown that although some are upregulated,
many photosynthesis-related genes and genes for carbohydrate
metabolism are downregulated under abiotic stress conditions.
Those genes may be the target for TFs such as the Cys2/
His2-type zinc-finger proteins STZ and AZF2. These TFs
were shown to function as transcription repressors under
drought, cold and high salinity stress conditions (Sakamoto
et al., 2004). The expression of both STZ and AZF2 genes is
induced mainly in leaves under drought stress, supporting
the hypothesis that they play a role regulating photosynthesis-
related genes. Transgenic plants constitutively over-expressing
CBFs show higher induction of STZ, which may repress genes
involved in photosynthesis and carbohydrate metabolism, thus
accounting for growth retardation.

TFs acting as activators are also involved in the modulation
of photosynthesis under abiotic stress. A good example is the
regulation of the genes encoding CAB proteins of PSII. Two
MYB-like TFs from barley, HvMCB1 and HvMCB2, were
shown to bind specifically to defined regions of CAB promo-
ters derived from barley and wheat. These TFs have character-
istic features of transcriptional activators and are required for
maximal CAB gene expression, but are not necessary for
expression related to light and the circadian clock.
Interestingly, transcription of both genes HvMCB1 and
HvMCB2 is regulated by environmental factors. When barley
leaves were subjected to salt, osmotic and oxidative stress,
the transcripts of both MYB-encoding genes decreased signifi-
cantly (Churin et al., 2003). HvMCB1 and HvMCB2 contain
only one MYB repeat, while most MYB-related proteins that
have been characterized belong to the R2R3-MYB protein
family characterized by two MYB repeats (Jin and Martin,
1999). However, several MYB-related TFs with a single
MYB repeat have also been identified in plants, including
CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), a MYB-
related protein from Arabidopsis that binds to a CAB promoter
(Wang and Tobin, 1998). Whether CCA1 gene expression is
regulated by environmental stress remains to be determined.
It has been suggested that R2R3-MYB, the most abundant
MYB protein family in plants, has evolved from the
R1R2R3-MYB family (which is the norm in animals), to regu-
late plant-specific processes, including secondary metabolism,
responses to plant hormones and the identity of specific cell
types (Riechmann et al., 2000). MYB-type TFs with a single
repeat may also be implicated in the regulation of plant-
specific genes. In addition to the MYB TFs mentioned
above, GLK1 and GLK2 are MYB TFs known to regulate
chloroplast photosynthetic development (Fitter et al., 2002).
In Brassica napus it was shown that the gene expression of
both GLK1 and GLK2 is regulated by cold stress (Savitch
et al., 2005). The involvement of several MYB-type TFs in
the regulation of photosynthesis-related genes in response to
abiotic stress indicates that this TF family is highly implicated
in this process.

Other TFs, such as LONG HYPOCOTYL 5 (HY5), are
known to be involved in the regulation of CAB gene expression
by light, but may also play a role in the abiotic stress response.
HY5 is a bZIP-type TF that binds to CAB upstream factor-1,
being required for DET1 control of chlorophyll a/b-binding
protein 2 (CAB2) expression (Maxwell et al., 2003).

Additional studies suggested that HY5 also regulates the tran-
scription of other photosynthesis-related genes, such as the
ribulose bisphosphate carboxylase small subunit (RbcS1A)
(Chattopadhyay et al., 1998; Lee et al., 2007). Given that
HY5 appears to regulate the expression of several
Arabidopsis genes known to respond to abiotic stress con-
ditions [e.g. CBF1, DREB2A, RD20 and MYB59 (Lee et al.
(2007)], it is inferred that HY5 may also be involved in the
regulation of photosynthesis by adverse environmental con-
ditions. Although there is no direct evidence showing that
expression of photosynthesis-related genes is regulated by
HY5 in response to abiotic stress, it appears that extreme temp-
eratures (mainly cold, but also heat) induce HY5 gene
expression (www.genevestigator.ethz.ch).

The regulation of photosynthesis-related genes by an abiotic
stress response can also involve an indirect action of specific
TFs. For instance, it is known that over-expression of
OsMYB4 enhances compatible solute [e.g. glycine betaine
(GB)] accumulation and increases stress tolerance of
A. thaliana (Mattana et al., 2005). In addition, GB stabilizes
Rubisco conformation under high salinity stress (Sakamoto
and Murata, 2002). GB also protects the oxygen-evolving
PSII complex against heat-induced inactivation and stimulates
the repair of the PSII complex during photoinhibition.
Corroborating these data, Vannini et al. (2004) have reported
that Arabidopsis plants over-expressing OsMYB4 show
improved PSII stability and higher tolerance to photoinhibi-
tion. Thus, one can say that despite a given TF not directly reg-
ulating the expression of a photosynthesis-related gene, it can
indirectly cause an increase of the activity of the protein
involved in photosynthesis. Given that OsMYB4 gene tran-
scription is known to be regulated by abiotic stresses,
namely cold, in an ABA-independent way (Vannini et al.,
2004), it is possible that OsMYB4 plays a role in regulation
of photosynthesis by environmental cues.

It has been proposed that the expression of photosynthetic
genes in maize, a C4 plant, is at least in part controlled by
two C2C2-DOF (DNA binding with One Finger)-type TFs,
DOF1 and DOF2. Expression studies revealed that DOF1
might serve as an activator of transcription, whereas DOF2
may act as a tissue-specific repressor (Yanagisawa and Sheen,
1998). DOF1 can interact specifically with the maize C4 phos-
phoenolpyruvate carboxylase (PEPCase) gene promoter,
enhancing its activity and giving PEPCase a light-regulated
expression pattern matching DOF1 activity. It was then antici-
pated that the evolutionarily conserved DOF proteins can func-
tion as transcriptional activators or repressors of tissue-specific
and light-regulated gene expression in plants (Yanagisawa and
Sheen, 1998). Transcripts for the DOF1 TF involved in the acti-
vation of photosynthetic genes in maize were found in leaf
tissues performing both C4 and C3 photosynthesis, with the
greatest accumulation in C4 mesophyll cells, whereas the
homologous DOF2 gene was expressed neither in C4 nor in
C3 mesophyll cells (Hahnen et al., 2003). These data suggest
that C3 and C4 photosynthetic mechanism are not controlled
by the differential expression of DOF genes. A different type
of TFs may also be associated with the regulation of C4 photo-
synthetic genes. The homeobox protein ZF-HD might be
involved in the establishment of the characteristic expression
pattern of the C4 PEPCase gene (Windhovel et al., 2001).
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Little is known about the role of the DOF-type TFs in mediating
abiotic stress responses. Recently, AtDOF4;2 was shown to be
involved in the regulation of phenylpropanoid metabolism in
a cold-specific manner (Skirycz et al., 2007), indicating that
DOF-type TFs can mediate abiotic stress responses. Whether
they modulate the expression of photosynthetic-related genes
in response to stress is still not known.

Crassulacean acid metabolism (CAM), an adaptation of
photosynthetic carbon fixation to water-limited environments,
is characterized by nocturnal CO2 fixation and diurnal CO2

re-assimilation. Normally this adaptation results in improved
WUE. The primary mechanism responsible for enhanced
expression of CAM-specific genes following water deficit or
salt stress is transcriptional regulation. Transcriptional acti-
vation of CAM-specific genes by high salt stress is mediated
through multiple interactions of cis-acting DNA sequences
and trans-acting factors that increase in abundance, or in
DNA-binding affinity following salt stress. The transcription
of the Ppcl and Gapl genes encoding a CAM-specific
isozyme of PEPCase and NAD-dependent glyceraldehyde-3-
phosphate dehydrogenase, respectively, is increased by salinity
stress. The promoters of both genes include regions shown to
be essential for regulation of gene expression by salinity.
Within these regions, several common sequence motifs
resemble consensus binding sites for the MYB class of TFs
(Schaeffer et al., 1995), suggesting that the regulation of
these mentioned photosynthesis-related genes by high salinity
may be mediated by MYB-type TFs.

Another interesting point is the transcriptional regulation of
plastid-encoded photosynthesis genes by environmental
stimuli. The expression of these genes is controlled through
nuclear-encoded transcription regulators, as none of the
genes in the higher plant chloroplast encodes TFs. Most of
the chloroplast-encoded photosynthesis genes are induced at
an early stage of light-induced chloroplast development and
repressed in mature chloroplasts. However, the transcription
of genes, such as psbA and psbD encoding the PSII reaction
centre protein D1 and D2, respectively, is differentially
regulated (Christopher and Mullet, 1994). In Arabidopsis,
light-induced expression of psbD is controlled by AtSig5, a
nuclear-encoded s factor (Tsunoyama et al., 2004), while
AtSig6, another nuclear-encoded s factor, regulates early
chloroplast development (Ishizaki et al., 2005). It would be
particularly important to know how the transcription of the
chloroplast-encoded genes is regulated by abiotic stresses. In
the cyanobacterium Synechocystis sp. PCC 6803, salt stress
inhibits transcription and translation of psbA genes and
encoded proteins, thus limiting the efficiency of photosyn-
thesis through inactivation of PSII (Allakhverdiev et al.,
2002), but nothing is known concerning the TFs involved.
However, it is likely that TFs regulating chloroplast-encoded
genes mediate abiotic stress responses.

Although some TFs may mediate the photosynthetic
responses to different abiotic stresses, little is still known. In
order to understand better the effect of abiotic stress on the
regulation of the photosynthesis-related genes, it would be
essential to identify and characterize the function of novel
TFs involved. This could be achieved using yeast-one-hybrid
(Y1H) screenings and/or chromatin immunoprecipitation
(ChIP) assays, followed by TF function analysis.

OVER-EXPRESSION OF TRANSCRIPTION
FACTORS CONFERS ABIOTIC STRESS
TOLERANCE AND PHOTOSYNTHESIS

IMPROVEMENT

Tolerance of plants to abiotic stresses is well known to be a
multigenic trait. For that reason, plant improvement using
genes that play a role in the abiotic stress response is frequently
insufficient to improve stress tolerance significantly. To over-
come this, TFs that regulate several stress-responsive genes
(e.g. the AP2/EREBP family) have often been used to manip-
ulate plants in order to have a broader response. The results
obtained in terms of stress tolerance are often much better
than using a single gene encoding a non-regulatory protein
and the observed effects on photosynthesis efficiency or photo-
synthetic machinery are normally positive. Table 1 shows a list
of TFs transformed into various plants and conferring stress
tolerance improvement associated with improved photosyn-
thetic parameters. The interpretation of these results must,
however, be cautious, as only a few parameters are evaluated
and sometimes the methods are poor. In addition, abiotic
stress tolerance has mostly been evaluated in laboratory con-
ditions and little is known concerning the plant responses to
adverse conditions in the field.

CONCLUSIONS

Extremes of environmental conditions, such as drought, cold
and high salinity, induce stress in plants and decrease growth
and productivity. Photosynthesis and the related metabolism
are among the processes most strongly affected by these
abiotic stresses. Interestingly, both stomatal and non-stomatal
responses to abiotic stress involve transcriptional regulation
and consequently the involvement of many TFs. Some of
these TFs can mediate the regulation of photosynthetic-related
gene expression by the redox state. In contrast to what was pre-
viously thought, stomatal movements involve gene transcrip-
tion regulation. Several TFs have been shown to regulate
stomatal aperture and so mediate responses to adverse environ-
mental conditions. Expression of genes coding for components
regulating many aspects of photosynthetic metabolism is
affected by stress, and TFs have a substantial role in regulating
them and thus carbon metabolism. Adjustment to stress con-
ditions may be improved by modifying the TFs in plants.
However, knowledge about the TFs involved in the regulation
of photosynthesis-related genes (stomatal and non-stomatal
responses) by the different abiotic stresses is still limited.
Investigation in this area is urgently required. Many transgenic
plants over-expressing TFs show improved abiotic stress toler-
ance related to enhanced photosynthetic parameters. However,
these results must be carefully analysed, as few photosynthetic
parameters are usually evaluated and the growth /stress con-
ditions are normally different from natural field conditions.
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TABLE 1. Abiotic stress-related transcription factors constitutively expressed in different plants confer stress tolerance and improve photosynthesis

Over-expressed TF TF family
Transgenic

plant Stress tolerance Effect on photosynthesis under stress conditions Reference

NtTsi1 AP2/EREBP Tobacco High salt Lower loss of chlorophyll contents Park et al. (2001)
AtCBF1 AP2/EREBP Tomato Chilling Improved maximum quantum efficiency of PSII/chlorophyll accumulation Hsieh et al.

(2002b)
AtCBF1 AP2/EREBP Rice No cold tolerance No effect on maximum quantum efficiency of PSII Lee et al. (2004)
SHN AP2/EREBP Arabidopsis Drought tolerance and recovery Reduced stomatal density (probable reduced transpiration) Aharoni et al.

(2004)
BNCBF5 and
BNCBF17

AP2/EREBP Brassica napus Freezing Increased CO2 assimilation/increased photochemical efficiency Savitch et al.
(2005)

AtCBF3 AP2/EREBP Rice Drought/high salt/low
temperature

Improved maximum quantum efficiency of PSII Oh et al. (2005)

CaPF1 AP2/EREBP Pine Oxidative stress Lower loss of chlorophyll contents Tang et al. (2006)
TaERF1 AP2/EREBP Tobacco High salt Higher chlorophyll content Xu et al. (2007)
JcERF AP2/EREBP Arabidopsis High salt/freezing Higher chlorophyll content Tang et al. (2007)
HvCBF4 AP2/EREBP Rice Drought/high salt/ low

temperature
Improved maximum quantum efficiency of PSII Oh et al. (2007)

NtOPBP1 AP2/EREBP Tobacco High salt Lower loss of chlorophyll contents Guo et al. (2004)
AtHRD AP2/EREBP Rice Drought/highsalt Lower stomatal conductance/enhanced photosynthesis assimilation and

efficiency
Karaba et al.
(2007)

GhDREB1 AP2/EREBP Tobacco Low temperature Higher chlorophyll fluorescence/higher net photosynthetic rate Shan et al. (2007)
AtABP9 bZIP Arabidopsis Drought/heat shock Improved photosynthetic capacity Zhang et al. (2008)
SNAC1 NAC Rice Drought/high salt Loses water more slowly by closing more stomatal pores/no effect on

photosynthesis rate
Hu et al. (2006)

AtNFXL1 NF-X1 Arabidopsis Salt stress Improved maximum quantum efficiency of PSII Lisso et al. (2006)
AtNF-YB1 NF-Y (HAP) Arabidopsis Drought Higher water potential and photosynthesis rates than controls Nelson et al.

(2007)
ZmNF-YB2 NF-Y (HAP) Maize Drought Higher chlorophyll index, higher photosynthesis rate and higher stomatal

conductance
Nelson et al.
(2007)

GmSCOF-1 C2H2 zinc
finger

Tobacco Cold Faster recovery of chlorophyll content Kim et al. (2001)

OsMYB4 MYB Arabidopsis Cold/freezing Improved PSII stability. Tolerance to photoinhibition Vannini et al.
(2004)
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