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Abstract

Background: Copy number variations (CNVs) may play an important role in disease risk by
altering dosage of genes and other regulatory elements, which may have functional and, ultimately,
phenotypic consequences. Therefore, determining whether a CNV is associated or not with a given
disease might be relevant in understanding the genesis and progression of human diseases. Current
stage technology give CNV probe signal from which copy number status is inferred. Incorporating
uncertainty of CNV calling in the statistical analysis is therefore a highly important aspect. In this
paper, we present a framework for assessing association between CNVs and disease in case-
control studies where uncertainty is taken into account. We also indicate how to use the model to
analyze continuous traits and adjust for confounding covariates.

Results: Through simulation studies, we show that our method outperforms other simple methods
based on inferring the underlying CNV and assessing association using regular tests that do not
propagate call uncertainty. We apply the method to a real data set in a controlled MLPA experiment
showing good results. The methodology is also extended to illustrate how to analyze aCGH data.

Conclusion: We demonstrate that our method is robust and achieves maximal theoretical
power since it accommodates uncertainty when copy number status are inferred. We have made
R functions freely available.

Background
With the recent technological advances, various genome-
wide studies have uncovered an unprecedented number
of structural variants throughout the human genome
[1-3], mainly in the form of copy number variations
(CNVs). The considerable number of genes and other

regulatory elements that fall within these variable
regions make CNVs very likely to have functional and,
ultimately, phenotypic consequences [4,5]. In fact, recent
studies have reported a correlation between copy
number of specific genes and degree of disease predis-
position [6-8], indicating that identification of DNA
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copy number is important in understanding genesis and
progression of human diseases.

Several techniques and platforms have been developed
for genome-wide analysis of DNA copy number, such as
array-based comparative genomic hybridization (aCGH).
The goal of this approach is to identify contiguous DNA
segments where copy number changes are present. The
ability of aCGH to distinguish between different numbers
of copies is limited, so various quantitative techniques are
required for more precise, targeted analysis of genomic
regions. For known CNVs, real time PCR assays can be
used to compare the copy number status of particular loci
in cases and controls. Individuals are typically binned
into copy number categories using pre-defined thresholds
of probe signal intensity. Recently, Multiplex Ligation-
dependent Probe Amplification (MLPA) [9] has also been
used to quantify copy number classes. This method
allows the analysis of several loci at the same time in a
single assay. MLPA is usually used to identify gains or
losses in test samples with respect to controls [10], but it
can also be used in the context of association studies in a
case-control or cohort settings [11,12].

The statistical methods used in CNV-disease association
studies are currently very simple. Quantitative methods
give CNV probe signal intensity measurements for each
individual as a continuous variable, from which copy
number status is inferred, generally using pre-defined
thresholds. Differences in copy number distribution
between cases and controls are then assessed using c2,
Fisher or Mann-Whitney tests [6,13,14]. However, the
distribution of CNV probe measurements is continuous
and multimodal, meaning that signal intensity should be
considered as a mixture of curves. In many instances,
these curves overlap with various underlying distribu-
tions leading to uncertainty. Therefore, scoring copy
number by binning and then assessing the association
may lead to misclassification and unreliable results.

Ionita-Laza et al. (2009) pointed out that it is not
inmediately clear how this uncertainty of CNV calling
should be incorporated in the statistical analysis [15]. To
overcome this difficulty in assessing association between
CNVs and disease, we propose a latent class (LC) model
that incorporates possible uncertainty that appear when
CNV calling is performed. After inferring copy number
using Gaussian finite mixture distributions, or any other
calling algorithm, the model assesses the relationship
between the trait and a CNV using a mixture of
generalized linear models. Association is then tested
using a likelihood ratio procedure. We validate and
compare our method with existing methods through a
simulation study. We then illustrate how to test
association between CNVs and the trait by using two

real examples. One of them corresponds to a case-
control study using data from a MLPA experiment where
the true copy number status is known. The second
example belongs to a study where breast cancer cell lines
are analyzed using aCGH.

Methods
Inference of copy number status
Let us assume that we observe I individuals from a given
population, consisting of C mutually exclusive latent
classes c = 1, ..., C (e.g. copy number status). Instead of
observing these classes, we observe a surrogate variable, X,
corresponding to a continuous variable arising from any
quantitative method. For instance, in targeted studies using
MLPA or real-time PCR, X corresponds to peak intensities
for each CNV probe. In the context of a whole genome scan,
one may have quantitative data from aCGH or any other
platform such as Illumina or Affymetrix, where, for each
probe, the variable X corresponds to a ratio of intensities.
Figure 1 shows a number of possible distributions that
signal intensities may have. Some variants clearly show
different underlying copy number status with multimodal
signal intensities distributions (CNV2, CNV4 andCNV6). In
other cases, where the existence of different copy numbers
is not clear, inferring copy number by binning the data may
be difficult or unfeasible.

For each CNV variant, we are interested in classifying the
subjects into the C classes using the surrogate variable X.
We propose to model the unobserved latent classes using
a finite mixture model with C components of the form
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Figure 1
CNV quantitative measurements. Examples of CNV
data showing different clustering quality and copy number
status.
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where N(·|hc, s c
2 ) is the Gaussian distribution with Θ

denoting all model parameters (e.g., Θ = (hc, s c
2 ), c = 1, ...,

C ), and x is the surrogate variable that corresponds to the
quantitative measure of copy number status. For the
component weights πc it holds that

p pc
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The value of C to be used is chosen by applying Bayesian
Information Criteria (BIC) [16]. This mixture model
approach for calling is similar to some used for the analysis
of aCGH data [17,18] where correlation among probes
should be considered.When analyzingMLPAdata, it should
be pointed out that in some instances, especially when there
are individuals with 0 copies, the intensity distributions (see
CNV2 and CNV4 in Figure 1) for a null allele is meant to be
equal to 0. However, due to experimental noise it is fact that
in some cases this ratio shows values that slightly deviate
from this theoretical value. After our experience with
hundreds of home-made MLPA probes, the value for null
alleles is typically below 0.1; nevertheless, we recommend
this parameter to be determined experimentally for each of
the probes used in the MLPA experiments using the
appropriate control samples. For these cases, the procedure
used to estimate the parameters in (1) fails because the
underlying distribution of individuals with 0 copies is not
normal. In these situations we propose to fit the following
mixture model to determine the latent classes

f x N xx c c c
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where τ is given by the user, as previously indicated,
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The posterior probabilities are used to segment data by
assigning each individual to a given copy number status
corresponding to the class with maximum posterior
probability (MAP). After fitting this finite mixture model,
we can perform a goodness-of-fit test using c2 test statistic.
Finite mixture parameters can be estimated using the EM
algorithm [19,20] or Newton-type procedures [20]. Then,
the posterior probability that individual i with an observed
value x belongs to copy number class j is given by

w j x
jN x j j
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Latent class model
Discrete traits
Let us suppose that copy number status is associated with
a binary phenotype (case-control). The association is
typically assessed using a c2 test for the contingency table
(Table 1). Misclassification in the table (due to uncer-
tainty when inferring CNVs) is incorporated when we
assign each individual to a given class c using maximum
a-posteriori probability (MAP). Thus, this problem can be
seen as an association study with misclas-sification
("measurement error") [21]. It is well known that
misclassification of covariates has important implications
for parameter estimates and statistical inference [22].
Some approaches account for such error [23,24]. These
are, however, based on performing validation studies in a
subsample. In the present context, this is unfeasible
because hundreds of genes are normally analyzed at a
time, and the technology may have a different sensitivity
and specificity for each of the inspected loci. Therefore, we
propose to use the posterior probability of belonging to
each latent class to model the degree of misclassification
of copy number status. We then take this information into
account in the association model.

Conditioning on cluster c, we have that

P( | , ) ( ) ,y ci i ic
y

ic
yi iC = = − −bb m m1 1 (4)

where b = (b1, ..., bc), c = 1, ..., C is our vector of
parameters, and

logit( ) .m bic c≡

Then, equation (4) can be rewritten as

P( | , ) .y c
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i iC = =

+
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Now, we consider that copy number status ismeasuredwith
error (i.e., the latent class is not known). Therefore, we are
modeling the probability of being an affected individual as a
mixture of C binomial variables, as follows:

P P( | ) ( | , ),y w y ci ic i i

c

bb bb= =
=

∑ C
C

1

Table 1: Contingency table of disease status and copy number
category

Copy number status

Disease 1 2 ... C Total

Cases r1 r2 ... rC R
Controls s1 s2 ... sC S
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where wic is the posterior probability that individual i
belongs to copy number class c, given in (3). Therefore,
assuming conditional independence of case-control
status, given latent class, the likelihood function for
model parameters b can be written as

w y c w
eyi c
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We can then simply compute the odds ratio (OR) of
belonging to class c with respect to a given reference r as

OR c r e c r
/ .= −b b (6)

Quantitative traits
We now consider the case where our phenotype, Y, is
continuous. We assume that Y |c N(μc, s2). In this case,
conditioning on cluster c
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where
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Similar to the case of discrete traits, the likelihood
function for model parameters b is given by
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In this case we are interested in evaluating the difference
between the mean effect of individuals with c copies and
r copies. This can simply be computed as

yc r c r/ .= −b b

Covariate Adjustment
In some instances researchers are interested in assessing the
effect of CNVs after adjusting for other covariates, Z1, ..., ZK

(usually called confounding variables). In this case, the
likelihood function can be written as
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for discrete traits, and
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for quantitative traits. In both cases

y b g gic c i K iKZ Z= + + +1 1 … . (11)

Parameter estimation
In this section we address parameter estimation for the
general situation of having covariates and either discrete
or quantitative traits. For brevity, let θ ≡ (b, g, s) (notice
that for discrete traits s = 1). We consider that the
weights, �wic , are known and that they are given by the
surrogate variable X from equation (3). Therefore, they
can be used in the log-likelihood calculation, resulting in
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Here P(yi| Ci = c, Z, θ) is given by equations (9) and (10)
for discrete and quantitative traits, respectively. The
maximum likelihood estimators (MLE) of the model
parameters maximize this log-likelihood function. We
propose to use a Newton-Raphson procedure to find
parameter estimates. The k-th component of the score, S,
is given by
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The k-th element of the Hessian, H, is
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where

h w P y c Zic ic i i≡ =� ( | , , ).C q

Formulae for the derivatives of hic for covariates and for
discrete and qualitative traits are given in the Appendix.

MLE can be used to estimate, under the multiplicative
model, the OR between individuals with copy number
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status c with respect to a reference category (e.g.,
individuals with copy number status r) as

ORm c r e c r/ .= −b b�� (13)

Similarly, when analyzing continuous traits, the esti-
mated mean effect among individuals with c copies with
respect to those with r copies is

ˆ ˆ ˆ ./yc r c r= −b b (14)

The asymptotic variance-covariance matrix of maximum
likelihood estimates of θ can be estimated using the
observed information matrix, F, as

Varn( ) ( ) ( ).qq qq qq= = −− −F H1 1 ��� (15)

Therefore, we can compute a 95% confidence interval
(CI95%) for ORc/r using the expression

CI exp z Var Var Vac r c r c c r r1 2 2− ≈ − ± + −a ab b( ) ( ) ( ) ( )/ / [ , ] [ , ]ORm n nqq qq rr c r
n( ) ,[ , ]qq( )�����
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and for ˆ
/yc r

CI y z Var Var Varc r c r c c r r1 2 2− ≈ − ± + −a ab b( ) ( ) ( ) ( ) ( )/ / [ , ] [ , ]
n n nqq qq qq [[ , ] ,c r

� �� � � �
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where za/2 denotes the (1 - a/2)-th quantile of a standard
normal distribution, a is the desired type-I error, and
subindex [·, ·] denotes the position in the inverse of
Fisher's information matrix.

Hypothesis testing
We propose to use a likelihood ratio test to assess disease
association, taking the model without the copy number
variable as reference. Twice the increase in the log-
likelihood provides the asymptotic c2 statistic that tests
H0: b1 = b2 = ... = bC . In many instances, we are
interested in studying the trend in effect with respect to
copy number status (e.g., additive model). This can be
done by generalizing equation (11) in the form

y zic icm cm

m

M

D=
=

∑
1

, (18)

where D is a I × M design matrix, and ζ is a vector of
dimension M having the model parameters. M is the
total number of variables included in the model,
including copy number status and confounding vari-
ables (e.g.,M = C + K). For example, a trend test on copy
number status without covariates D would have the form

′ =
− −
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and the trend hypothesis on copy number status is tested
using a likelihood ratio test, comparing this model with
the null model. Notice that this formulation allows us to
accommodate different or common effects for each
latent class. In this case, parameter estimates are
obtained as shown above. Formulae for the derivatives
obtained in the score and Hessian, where coefficients are
not shared by each latent class, are shown in the
Appendix. R language functions for the methods
discussed in this paper are freely available at http://
www.creal.cat/jrgonzalez/software.htm [25]

Results
Simulation study
We performed computer simulation studies to empiri-
cally examine the properties of the parameter estimators
developed in the previous sections. The specific goals of
these studies were: (i) to evaluate the performance of the
proposed likelihood ratio trend test based on the latent
class model for a number of CNV measurement
distributions; (ii) to examine the effect of sample size
(I) on the distributional properties of the estimators;
(iii) to examine the bias and mean square error (MSE) of
the estimators; (iv) to assess the accuracy whether of the
variance and parameter estimates obtained using the
observed information matrix. Simulations were per-
formed as follows: To study (i), we simulated a binary
trait using 300 cases and 300 controls. The unobserved
copy number statuses (e.g. latent classes) were simulated
depending on 3 different copy number status ( C = 3),
with the proportion of individuals in each category set as
π = (0.5, 0.4, 0.1). The trend OR was set equal to 1.5. The
observed signal intensity ratio (X variable) were simu-
lated as a finite mixture of C normal distributions using
different means, h, and variances, s2, to assess whether
the separation of clusters and their variance affects
power.

To study (ii)–(iv) we simulated binary and quantitative
traits. For the binary trait, simulation was performed as
above but simulating various scenarios of sample size
(I), OR and proportion of individuals with each copy
number status, π. Again, we simulated different CNV
distributions by varying h and s2. For quantitative traits,
we used the same simulation procedure but copy
number status was simulated depending on a fixed
mean trait level for the reference copy number status and
a desired mean difference with respect to other copy
number statuses. Next, we describe the settings for the
different simulation parameters. Sample size: We chose
the values of I: I Œ {50, 300}. Although current studies
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are analyzing thousands of individuals, these values were
chosen to evaluate the performance of our proposed
method in moderately large samples. Copy number status:
Since we were interested in evaluating the performance of
the parameter estimates, we only simulated two different
copy number statuses C = {1, 2}. Odds ratio: To assess the
impact of the strength of association between the disease
and CNV, we chose two values for OR: OR Œ {1.3, 2} in
order to consider a moderate association and a strong one.
Proportion of cases with normal copy number status: To evaluate
the impact of classes with different number of individuals
we set πŒ {(0.8, 0.2), (0.5, 0.5)}. Finite mixture: To asses the
impact of distribution of intensity ratio,X, we simulated two
normal distributions with the following parameters: hŒ {1,
1.5}, which correspond to having 2 (considered as normal
copy number status) and 3 copies, respectively, and s Œ
{(0.15, 0.15), (0.15, 0.2), (0.2, 0.2)}. In this case, these
scenarios also helped us to model different situations
regarding misclassification or how latent classes were
separated.

We compared three different approaches. The first (NAIVE)
was based on assessing association between disease and
copy number status obtained using MAP from the finite
mixture model (2). That is, association was assessed using a
c2 test from Table 1. The second is the approach that has
been used predominantly to date when analyzing this kind
of data and is based on assigning CNV status using pre-
defined thresholds (THRES). Association is then assessed
using a c2 test. As mentioned previously, we simulated data
from two mixtures of normal distributions with means of 1
and 1.5. This is equivalent to simulating individuals with 2
and 3 copies, respectively. In this situation, it is considered
that individuals with intensity (or intensity-ratio) greater
than 1.33 correspond to individuals with 3 copies [10]. The

third method is the one proposed in this paper, based on
latent class (LC) using a c2 test. In order to make the results
comparable, the performance of LC based on likelihood
ratio trend test was compared with that of the two other
methods using a c2 trend test (e.g. 1 degree of freedom). To
evaluate bias and MSE of parameter estimates, c2 of
association was used for all three methods.

Simulation results for evaluating the performance of the
likelihood ratio trend test in our proposed model are
shown in Figure 2. The top figures show the power for all
methods analyzed under two scenarios (other scenarios
are given in Additional file 1).

The left panel shows the power for each method, varying
the CNV measurement distribution with regard to the
mean of each latent class, h, while the right panel gives
the same information but with fixed means and varying
variances, s2. Figure 2 also depicts the distribution of
CNV signal intensities for various scenarios. We observe
that our proposed latent class model performs better in
all cases, even when distribution of copy number status
are not very well separated (e.g. more uncertainty).

Simulation results to evaluate parameter estimates for
discrete traits are presented in Table 2 and in Table S1 and
Figures S3 and S4 (see Additional file 1). Similar results and
conclusions are obtained for a quantitative trait. Table 2 and
Figures S3 and S4 (see Additional file 1) summarize the OR
obtained by comparing individuals with 3 copies to those
with 2 copies (reference category) and give the MSE for two
different sample sizes, I, two different proportions of
individuals with 2 copies, π, and two different variances
for each component of the mixture, s. Table S1 (see
Additional file 1) compares different methods to compute

Figure 2
Empirical power for simulation studies. Empirical power for the three different approaches analyzed, varying the quality
of clustering for underlying copy number status. Left panel is for fixed variance and varying means, while the right panel is for
fixed mean and varying variances.
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the standard error of the ORs for the various scenarios
described above. The results compare asymptotic variance
based on an observed information matrix (ASYM) with
respect to empirical variance (EMP). Supplementary Table
S1 also shows coverage and power of confidence intervals
based on the threemethods analyzed. As expected, when the
sample size increased, the performance of the estimators of
the finite-dimensional parameters improved (Table 2). In
all cases, the LCmethod performs better than the others. LC
has less bias than NAIVE and THRES in all cases, and also
shows better MSE.

Regarding variance estimates, the estimation based on ASYM
showed good performance in all scenarios (see Additional
file 1, Table S1). Despite slightly overestimating of EMP, the
bias was less pronounced for I = 300, as expected.
Confidence intervals based on the LC method outperform
those obtained by other methods with regard to power.

Application to real data
MLPA example
The first data set used to analyze CNV and disease was
generated and kindly provided by one of the coauthors
of the current work. Although data is still unpublished, it

has been made available in a blinded format for
reproducing our findings using the approach presented
herein, and for other validation studies. Some candidate
genes were identified after performing a whole genome
scan analysis using aCGH, where a pool of controls and
cases were compared. In order to further investigate the
relationship between the disease and altered the genes, a
targeted study including several variants was designed
using the MLPA technique. We obtained signal inten-
sities of MLPA assays for 360 cases and 291 controls.
Figures 3 and 4 show the intensities for cases and
controls for two selected genes. In both cases, we observe
3 latent classes, corresponding to 0, 1, and 2 copies of
the gene. We found that the finite mixture model fits
very well (c2 goodness-of-fit test, P = 0.6615 and P =
0.4888). The main difference between these two cases is
that copy number status for gene 1 can be established
using a threshold method, while for the second gene this
classification seems more arbitrary. As a consequence,
misclassification should be taken into account when
analyzing gene 2. Table 3 shows the classification of
individuals as having 0, 1, 2 copies, estimated using
equation (2) and the true copy number obtained by
breakpoint cloning and assessing allele presence by PCR,
which unequivocally reports the exact number of copies.

Table 2: Simulation study

e b̂ Mean Square Error (×103)

I π eb s SIM NAIVE THRES LC NAIVE THRES LC

50 0.8 1.3 (0.15,0.15) 1.23 1.17 1.15 1.20 57 87 42
50 0.8 1.3 (0.2,0.2) 1.24 1.14 1.09 1.21 107 131 114
50 0.8 1.3 (0.15,0.2) 1.28 1.18 1.15 1.24 134 148 112
50 0.8 2 (0.15,0.15) 1.60 1.40 1.28 1.48 54 85 44
50 0.8 2 (0.2,0.2) 1.82 1.36 1.29 1.52 152 158 126
50 0.8 2 (0.15,0.2) 1.89 1.42 1.33 1.57 180 253 162
50 0.5 1.3 (0.15,0.15) 1.26 1.24 1.21 1.26 39 51 32
50 0.5 1.3 (0.2,0.2) 1.32 1.28 1.25 1.35 82 79 97
50 0.5 1.3 (0.15,0.2) 1.26 1.23 1.20 1.26 66 72 60
50 0.5 2 (0.15,0.15) 2.04 1.94 1.83 2.05 40 67 34
50 0.5 2 (0.2,0.2) 2.04 1.76 1.68 2.05 107 128 92
50 0.5 2 (0.15,0.2) 2.06 1.78 1.72 1.99 87 107 71

300 0.8 1.3 (0.15,0.15) 1.30 1.25 1.18 1.30 13 32 10
300 0.8 1.3 (0.2,0.2) 1.32 1.25 1.15 1.34 27 50 29
300 0.8 1.3 (0.15,0.2) 1.30 1.22 1.16 1.29 24 42 21
300 0.8 2 (0.15,0.15) 2.01 1.87 1.49 2.01 21 120 13
300 0.8 2 (0.2,0.2) 2.03 1.70 1.36 1.99 69 203 43
300 0.8 2 (0.15,0.2) 2.03 1.62 1.38 1.86 78 189 38
300 0.5 1.3 (0.15,0.15) 1.31 1.27 1.26 1.30 7 9 5
300 0.5 1.3 (0.2,0.2) 1.30 1.23 1.22 1.30 15 17 12
300 0.5 1.3 (0.15,0.2) 1.30 1.24 1.23 1.29 12 14 9
300 0.5 2 (0.15,0.15) 2.00 1.87 1.77 2.00 11 23 5
300 0.5 2 (0.2,0.2) 2.00 1.72 1.66 2.02 36 51 15
300 0.5 2 (0.15,0.2) 2.00 1.76 1.71 1.97 26 37 10

Odds ratio (eb) and mean square error obtained in 1,000 simulations using the three different approaches, NAIVE, THRES and LC (see text for a
description of each). Results are given for different scenarios, varying the number of individuals (I), the proportion of individuals with each copy
number status (π), the odds ratio (eb), and the variance for CNV quantitative measurements.
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From the table, we can see that the finite mixture model
gives a perfect classification for gene 1 and some
misclassification for gene 2. Goodness-of-fit test revealed
that the proposed mixture model to determine CNV
status was appropriate (p = 0.6615 and p = 0.1586).

Table 4 shows the ORs and their 95%CI for the two
genes analyzed. The first three columns show the results
obtained in the laboratory using PCR, while the other
columns show the results obtained after estimating the
copy number status using our proposed finite mixture

model and computing the ORs using a naïve approach
(e.g. assuming that there is no misclassification) and the
LC model that accounts for misclassification. As we can
see, the results are the same for gene 1, since no
misclassification is observed (see Figure 3 and Table 3).
However, for gene 2, copy number status could not be
determined as easily as for gene 1. Thus, we observe a
different OR estimation and, more importantly, a
different P-value for association. For instance, the order
of magnitude of the association between the disease and
gene 2 is better captured by the LC model than by the
NAIVE approach. Regarding the OR estimates, the
analysis using the true copy number status shows that
individuals with one copy of gene 2 have a 63% decrease
in disease risk with respect to individuals with 0 copies.
As the 95%CI shows, this difference is statistically
significant. We arrive at the same conclusion when we
compare individuals with 2 copies with respect to those
with 0 copies. Note that in both cases we observe that the
naïve approach underestimates the OR, as shown by the
simulation study.

aCGH example
The analysis of aCGH data requires additional steps to
take into account the dependency across probes. Table 5
shows four steps we recommend for the analysis of this
kind of data. First, MAP should be obtained with an
algorithm that considers probe correlation. We use, in
particular, the CGHcall R program which includes a
mixture model to infer CNV status [18]. Second, we
build blocks/regions of consecutive clones with similar
signatures. To perform this step the CGHregions R
library was used [26]. Third, the association between
the CNV status of blocks and the trait is assessed by
incorporating the uncertainty probabilities in the LC
model. And fourth, corrections for multiple comparisons
must be performed. We use the Benjamini-Hochberg
(BH) correction [27]. This is a heuristic method that is
robust against positive dependence and increasingly
conservative as correlation increases [28].
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Figure 4
Association between Gene 2 and disease. Graphical
representation of peak intensities (CNV quantitative
measurement) of individuals for Gene 2 analyzed in the
example. The various colors indicate copy number status
inferred using our proposed finite mixture model.
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Figure 3
Association between Gene 1 and disease. Graphical
representation of peak intensities (CNV quantitative
measurement) of individuals for Gene 1 analyzed in the
example. The various colors indicate copy number status
inferred using our proposed finite mixture model.

Table 3: Contingency table of estimated and true copy number
status for the two genes examined in the real data example

True copy number status

0 1 2

Gene 1
0 426 0 0
1 0 201 0
2 0 0 24

Gene 2
0 85 0 0
1 5 287 0
2 0 73 204
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We applied the methodology to the breasts cancer data
studied byNeve et al. [29], which is freely available from the
bioconductor website http://www.bioconductor.org/ [30].
The data consists on CGH arrays of 1 MB resolution [31].
The authors chose the 50 samples that could be matched to
the name tokens of caArrayDB data (June 9th 2007).

In this example the association between strogen receptor
positivity (dichotomous variable; 0: negative, 1: positive)
and CNVs was tested. We contrasted the association as
given by the LC and the NAIVE models. The original data
set contained 2621 probes which were reduced to 459
blocks after the application of CGHcall and CGHregions
functions. Table 6 shows the number of CNV blocks
associated with strogen receptor positivity for different

significance levels. We observe that incorporating classi-
fication uncertainty with the LC model substantially
increased the level of association, as compared to the
NAIVE approach. The number of positive association at
5% of significance after applying BH correction was 49
and 24 for LC and NAIVE approach, respectively.

Discussion
In this paper we have shown that the assessment of
association between CNVs and disease using analysis
methods that do no take into account uncertainty when
inferring copy number status lead to larger p-values and
underestimate the model parameters. This confounds the
need to increase statistical power, which is reduced by
the multiple comparison correction for the simultaneous
testing of several loci. False positives are typically
controlled by a dramatic reduction in the nominal
p-value, such that very low values are required to reach
statistical significance. Thus, a precise computation of
these values is essential in genetic association studies.

Here we have proposed a latent class model (LC) that
accounts for the uncertainty of assessing CNV status and
also accommodates potential confounding factors. In the
case of analyzing quantitative traits, we also provide
formulae to further propagate call uncertainty, as other
authors have proposed in another context [32]. By
analyzing quantitative traits, we have assumed that the
response variable follows a normal distribution, although
this assumption does not hold in some instances. In this
situation, one possibility is to analyze the log-trans-
formed variable, although log transformation may not be
not sufficient. The model could easily be extended to fit a
response variable that has any exponential family
distribution (e.g. normal, gamma, Poisson). However,
we have not yet implemented this option in the functions
reported here. The extension of our proposed latent-class

Table 5: Steps used to assess association between CNVs and
traits when aCGH is used

Step 1. Use any aCGH calling procedure that provides MAP
(uncertainty)
Step 2. Build blocks/regions of consecutive probes with similar
signatures
Step 3. Use the signature that occurs most in a block to perform
association unsing LC model
Step 4. Correct for multiple testing considering dependency among
signatures

Table 6: Number of CNV blocks (out of 459) associated with
estrogen receptor positivity from 50 aCGH breast cancer cell lines

Significance level

10-6 10-5 10-4 10-3 10-2

Latent class model 1 4 27 64 117
Chi-square test 0 2 10 41 93

Results are given for different levels of association and comparing our
proposed model with the naïve approach that does not consider
uncertainty.

Table 4: Association analysis of disease status and copy number category using the true copy number status and the estimated status
obtained using the finite mixture proposed

True CN Estimated CN

Co Ca OR (CI95%) Co Ca ORnaïve (CI95%) ORLC (CI95%)

Gene 1
0 210 216 1 210 216 1 1
1 75 126 1.63 (1.16,2.30) 75 126 1.63 (1.16,2.30) 1.63 (1.16,2.30)
2 6 18 2.92 (1.14,7.49) 6 18 2.92 (1.14,7.49) 2.92 (1.14,7.50)
P association 0.0027 0.0027 0.0023
P trend 5.0 × 10-4 5.0 × 10-4 5.0 × 10-4

Gene 2
0 24 66 1 22 63 1 1
1 159 201 0.46 (0.27,0.77) 129 178 0.44 (0.26,0.75) 0.47 (0.27,0.82)
2 108 93 0.31 (0.18,0.54) 140 119 0.33 (0.19,0.57) 0.31 (0.18,0.54)
P association 7.2 × 10-5 2.3 × 10-4 8.4 × 10-5

P trend 2.1 × 10-5 1.0 × 10-4 2.1 × 10-5
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model to assess survival time, possibly with right-
censored data, is not trivial but could be a very interesting
avenue for future investigation. The parameter estimation
procedure proposed here, allows the estimation of
confidence intervals. The LC model was remarkably
consistent with simulated data. In particular, we found
that the p-values obtained with the LC model were more
similar to the expected values than those obtained by the
threshold and naïve methods.

We maximize the likelihood function, assuming fixed
weights for each copy number status, which accounts for
possible misclassification. The main advantage of con-
sidering weights as known constants is that the Newton-
Raphson procedure is much simpler, faster and feasible
for obtaining the Hessian matrix analytically. We
confirmed that the proposed model captures very well
the nature of the synthetic data and variance estimates.
Interestingly, we observed that the variance estimates
using MLE were also reproduced when a bootstrap
procedure was used (see Additional file 1, Table S2). In
the interest of generalization, one can consider max-
imizing the likelihood function for both model para-
meters and weights. In that case, an EM algorithm
should be used instead. However, one should bear in
mind that EM does not allow for estimation of the
variance of the model parameters and is computationally
expensive, which may be particularly costly if this
method is used in whole genome scan settings.

Conclusion
We have shown that the LC model can incorporate
uncertainty of CNV calling in the analysis. We have also
illustrated how to analyze quantitative traits as well as how
to accomodate confounding variables. This is of particular
importance in complex diseases studies where other clinical
or biochemical factors need to be taken into account. The
formulation can also be generalized to assess survival times
or counts in longitudinal studies. The model has showed
good performance when analyzing both targeted (MLPA
data) and whole genome (aCGH data) studies.
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Appendix
To obtain parameter estimates, we maximize the log-
likelihood function
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Herein we provide formulae for the derivatives of hic for all
cases discussed in this paper. Although the following
expressions may appear complicated, they are straightfor-
ward to program and are included in the >R functions
available at http://www.creal.cat/jrgonzalez/software.htm.
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In this case, the hic function takes the form
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Binary Traits with covariates
In this case, the hic function takes the form
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Quantitative traits
Quantitative traits without covariates and shared
variance
In this case, the hic function takes the form
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Quantitative traits with covariates and shared variance
In this case, the hic function takes the form
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Trend test
In this situation we can write the linear predictor of
equation (18) as

y b bic c= + −1 1 1( ).

In other words, b1 plays the role of an intercept and b2 is
the slope. In this case, we consider that both b1 and beta2
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