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Abstract
Kaposi sarcoma (KS) occurs as a result of Kaposi sarcoma-associated virus (KSHV) infection,
typically in the context of one of several immunodeficient states. In the United States, patients with
KS may either be co-infected with human immunodeficiency virus (HIV) or on immunosuppressant
therapy following solid-organ transplantation. Systemic treatment of KS traditionally involved one
of several chemotherapeutic agents either in combination or as single agents, which typically provides
reasonable response rates and short term control. However recurrence is common and progression
free intervals are under one year. For these reasons, new therapies have been sought and with the
elucidation of novel pathogenic mechanisms of KS, rationale targets identified. These include KSHV
replication, restoration of immune competence, and signal transduction pathways utilized by KSHV
in the propagation of KS.
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Introduction
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8)
is the causal agent of Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and many
cases of multicentric Castleman disease (MCD).(1-3) Since its discovery in 1996, much has
been learned about KSHV interactions with its infected host which lead to these conditions.
Though infection is not sufficient for tumor development, it is clear that KSHV has developed
various ways to manipulate host cell signal transduction, and thereby lead to the activation of
numerous pro-growth and anti-apoptotic pathways. As several of these mechanisms of
oncogenesis have been elucidated, potential therapeutic targets have been identified and
inhibitors of these targets have been developed. Since KS is currently the most common KSHV-
associated neoplasm, the majority of clinical investigation and research effort has been devoted
to this low-grade vascular neoplasm. This review will focus on KS with a description of
important clinicopathological characteristics, oncogenesis, and highlight “targeted”
therapeutic interventions.
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Major Clinical Characteristics
KS is a multifocal angioproliferative neoplasm that occurs in several clinical-epidemiologic
settings. It is the most common tumor in HIV-infected patients and is a leading cause of
mortality and morbidity in acquired immune deficiency syndrome (AIDS).(4) Tumorigenesis
is driven by KSHV infection, predominantly in those who are immunosuppressed. This
includes (i) Classic KS, a disease that mainly affects elderly Mediterranean men, (ii) iatrogenic
KS, which develops in patients taking immunomodulatory agents in the context of solid-organ
transplantation, and (iii) AIDS-related KS.(5-7) African-KS is endemic to Africa and unrelated
to HIV infection. KSHV infection and an ineffective host immune response towards this
gamma herpes virus are common to all of the aforementioned KS clinical subtypes. Reversal
of immune suppression, either with highly active antiretroviral therapy (HAART) or by
decreasing the levels of immunomodulatory agents in transplant recipients, has been associated
with regression of lesions.(8, 9) In addition, the incidence of KS has decreased over 6-fold with
the advent of widespread use of HAART in treated HIV-infected individuals. (10)

Despite its decrease in incidence, KS remains a disease with a wide spectrum of severity. This
ranges from single skin or mucosal lesions to rapidly progressing, extensive cutaneous, and/
or visceral disease. For patients with advanced disease, systemic therapy is indicated and three
FDA-approved agents are available. These include the liposomal anthracyclines (pegylated
liposomal doxorubicin and liposomal daunorubicin) and the taxane paclitaxel. Pegylated
liposomal doxorubicin use is associated with response rates ranging from 46% and 59% and
median duration of response ranges from three to five months.(11, 12) Liposomal daunorubicin
has shown a response rate of 25%, disease stability in an additional 62% with a median duration
of response of 175 days and median time to progression of 115 days.(13) Both liposomal
anthracyclines have been associated with limited toxicity and were better tolerated than the
comparative treatment of adriamycin-bleomycin-vincristine in two trials and bleomycin-
vincristine in another study. Paclitaxel received FDA-approval based upon the results of a
phase II trial of 28 patients with significant immunosuppression (mean CD4 cell count 15 cells/
microliter) in whom 20 had a major response.(14) Mean progression free survival was 6.3
months and median duration of response 7.4 months; grade 3 and 4 toxicity were reported to
be rare. Despite the effectiveness of these agents, most patients afflicted with KS progress
within six to seven months of treatment and require additional therapy. Although patients may
initially benefit from further cycles of chemotherapy, durable chemotherapy-free remissions
tend to be shorter with each successive treatment regimen. Clearly, novel therapeutic strategies
are needed.

Key Pathologic Findings
KS lesions of all epidemiologic forms are similarly comprised of KSHV positive (LNA-1
immunoreactive) spindled shaped tumor cells, vessels and chronic inflammatory cells (Figure
1). KS lesions evolve from early patch, to plaque, and later tumor nodules. Early patch lesions
are characterized by a proliferation of irregular, thin-walled vascular channels. As the
cellularity of the lesion increases a palpable plaque forms. Continued proliferation of spindle
cells eventually results in a nodular tumor. KS regression can rarely occur spontaneously, but
as alluded to above is seen most often following appropriate therapy or after removal of
immunosuppressive therapy.(15) KS flare (or exacerbation) can occur with either the immune
reconstitution inflammatory syndrome (IRIS) following HAART, after corticosteroids, and
with rituximab therapy.(16) Unique staging systems available for Classic and AIDS-associated
KS (e.g. AIDS Clinical Trials Group staging classification) are used mainly for patients on
trials.
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Targeting KSHV
Like all herpesviruses, the KSHV lifecycle includes a latent and lytic phase. Gene expression
in the latent phase is limited, even though these gene products play an important role in
oncogenesis.(17) The lytic phase is characterized by the expression of many genes that
culminate in viral replication followed by cell lysis and the release of viral replicants. It is
during this lytic phase that KSHV is susceptible to the effects of anti-viral agents.(18) Notably,
in KS lesions only a small percentage of cells are infected with KSHV in the lytic phase, as
the great majority harbor KSHV in the latent phase.(19) In KSHV-related MCD, by
comparison, a much greater degree of KSHV lytic gene expression is seen in lesional tissue.
(20)

Given its causal role in KS, there has been great optimism that therapy aimed directly against
KSHV may provide benefit in the treatment of KS. Several antiviral agents including
ganciclovir, foscarnet, and cidofovir have been shown to inhibit KSHV replication in vitro,
and a randomized controlled trial has recently established the efficacy of valganciclovir in
reducing KSHV replication.(21, 22) In addition, a trend towards a lower incidence of KS in
CMV infected patients with concomitant HIV who received ganciclovir and foscarnet, but not
acyclovir which has little in vitro activity against KSHV, has been reported.(23) As of yet,
however, this has not translated into the successful therapeutic use of these antiviral agents in
KS.

Specifically, cidofovir was shown to be ineffective in the treatment of patients with KS.(24,
25) This is in contrast to reports of improvement of patients with MCD treated with ganciclovir.
(26) Also, cases of prolonged survival in persons with PEL treated adjunctively with
ganciclovir or cidofovir have been reported.(27, 28) The reason for this variable activity of
antiviral therapy for each of the KSHV-associated diseases is unclear, but likely lies in the
relative proportion of lytic-phase virus present in each disease.(18)

Histone deacetylase (HDAC) inhibitors are agents capable of inducing lytic replication in
latently infected cells.(29) The HDAC inhibitor valproic acid was initially shown to induce
lytic replication of KSHV in cultured PEL cells.(30) This was followed by a pilot clinical trial
of valproic acid in patients with AIDS-associated KS on HAART.(31) Although only 6% (1/18
patients) showed a partial response after short-course treatment, none of the patients in this
study had KS progression. This pilot study supports further research of more potent HDAC
inhibitors over longer treatment courses in patients with KS.

Targeting KSHV-directed immunity
The regression of KS with the reduction of immunosuppressive treatment following solid organ
transplant, and the clinical improvement of KS in subjects with immune reconstitution
following HAART, is evidence that the immune system plays a critical role in the control of
KS. The exact mechanisms have not been elucidated to fully describe the immune system's
interaction with KSHV infected cells, nor its overseeing of the above mentioned clinical
regression. What is clear is that diminished immune status is a critical contributing factor to
KS development, and its improvement is an important therapeutic goal.

Highlighting this approach is the effectiveness of antiretroviral regimens in treating AIDS-
related KS. This strategy is so important that it is considered standard practice for all patients
with AIDS-associated KS to receive HAART when availible.(8) This is based on the fact that
HAART is associated with both a reduction in the incidence of AIDS-related KS and regression
in size and number of existing lesions.(32, 33) It is difficult to know exactly at what rate KS
responds to HAART alone, since in many patients with advanced KS, cytotoxic chemotherapy
was administered concurrently. While there is minimal data comparing the efficacy of various
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HAART regimens in the treatment of KS, the use protease-inhibitor-containing regimens have
a theoretical advantage based on experimental models and anecdotal data. (34) Discontinuation
of chemotherapy without subsequent KS recurrence can be achieved in certain individuals with
more advanced KS once their HIV infection is successfully suppressed with effective HAART.

In patients with iatrogenic (transplant-associated) KS, reduction of immunosuppression, while
not always feasible, is desired.(9) In patients where such reductions would incur undue risk
(e.g. graft rejection), changes in the immunomodulatory regimen may be warranted. For
example, a series of patients had notable regression of KS when the cyclosporine-based
regimens on which they developed KS where changed to one that included rapamycin.(35)
While the degree of immunosuppression was likely unaltered based upon the absence of graft
rejection in these patients, the improvement documented was more likely the result of inhibiting
constitutively active KSHV-mediated signal transduction. The use of rapamycin and its analogs
is discussed below.

Targeting KSHV-mediated signaling
Through intricate and varied utilization of critical signal transduction pathways, KSHV gene
products drive the transformation of KSHV-infected cells into KS lesions. Some of these virally
encoded proteins are cellular homologues of oncogenes which play critical roles in cell cycle
regulation and apoptosis. Others are homologues of cytokines, chemokines, or chemokine
receptors which promote cellular growth and transformation when abnormally regulated. The
ramification of activating these proteins and oncogenic pathways include abnormal regulation
of the cell cycle, promotion of angiogenesis, and the propagation of an anti-apoptotic signal.
Recent advances made in our understanding of the KSHV genome and the many sequential
and parallel signaling pathways it activates has identified several drugable targets.(36)

Perhaps the most promising therapeutic targets in KS are the downstream signaling pathways
upregulated by a viral G-protein coupled receptor (vGPCR).(37) Encoded by KSHV in the
lytic phase of replication, vGPCR shares significant homology with the high-affinity
interleukin (IL)-8 receptor, and its dysregulated expression contributes to oncogenesis.(38)
The consequence of its activation is best highlighted by the fact that transgenic mice expressing
vGPCR develop angioproliferative tumors resembling KS in multiple organs. These
tumorigenic effects are potentially mediated through numerous cellular proliferation,
transformation, pro-angiogenic and anti-apoptotic signaling pathways, the most important of
which appears to be the phosphatidylinositol 3-kinase (PI3K) pathway.(37-41)

PI3K is a lipid kinase that activates Akt, a serine-threonine kinase that has multiple targets
including the mammalian target of rapamycin (mTOR), a kinase that plays a crucial role in cell
proliferation and survival in KS.(41, 42) The activation of this pathway and the implications
of its inhibition have been well described in vGPCR-transfected cells and in AIDS-related KS
samples. In vitro, cells expressing constitutively active vGPCR have high levels of activated
Akt, inactivated TSC2 (a tumor suppressor which is inactivated by Akt), and activated mTOR.
(43, 44) This has been reversed with either a PI3K inhibitor (LY 294002) or an mTOR inhibitor
(rapamycin) in vitro and in vivo murine models; the latter also associated with decreased tumor
growth.(44) As mentioned previously, all 15 patients described with iatrogenic KS who
developed lesions on cyclosporine-based immunosuppression regimens had complete clinical
and histological regression of KS in response to discontinuing cyclosporine and commencing
rapamycin.(35) Additionally, intense staining of mTOR pathway mediators including
expression of phosphorylated Akt, vascular endothelial growth factor (VEGF), VEGF receptor
2 (VEGFR1), and phophorylated p70S6 kinase was seen in the KS lesions compared with
comparative normal skin biopsies.(35) A clinical trial is underway to determine the safety and
efficacy of rapamycin in AIDS-related KS.
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Activation of mTOR has numerous effects including the enhancement of a pro-angiogenic
signal through increased expression of vascular endothelial growth factor (VEGF).(45) In KS,
VEGF as well as VEGF receptor 2 (VEGFR2) and VEGFR3 expression are seen and deemed
important for its development.(46-50) Furthermore, the expression of vGPCR in HUVEC
(human umbilical vein endothelial cells) leads to immortalization which occurs with
concomitant expression of VEGFR2 (KDR).(51) This further activates PI3K/Akt/mTOR and
leads to the increased secretion of VEGF, which enhances VEGFR2 activation. This autocrine
loop enhances survival of these cells and is thought to be a major transforming mechanism.
(51) Inhibition of VEGF, either through monoclonal antibodies (bevacizumab) or with small
molecule tyrosine kinase inhibitors (sorafenib, sunitinib), has proven clinical efficacy in many
solid tumors including breast cancer, renal cell carcinoma, lung cancer, and colon cancer.
Currently, the use of VEGF inhibitors is an area of active investigation for patients with KS,
and NCI-sponsored clinical trials are ongoing with bevacizumab, sunitinib, and sorafenib.

Targeting downstream effectors of the vGPCR in the treatment of KS, including PI3K, mTOR,
or VEGF, offers considerable rationale and promise, however downmodulation of the receptor
activation itself may provide a more direct and effective strategy. Interleukin-12 (IL-12) is a
proinflammatory cytokine which promotes expression of the type I immune response, at least
in part through stimulation of interferon gamma production and is known to mediate an
antiangiogenic signal.(52) In addition, IL-12 upregulates interferon-induced-protein-10
(IP-10) which is a known negative regulator of vGPCR and IL-12 may thus inhibit vGPCR
signal transduction through this mechanism.(53, 54) Given these properties, it is not surprising
that IL-12 has been investigated as a potential treatment for KS. In a phase I exploratory study
of patients with AIDS-related KS, 17 of 24 (70 %) patients treated at higher doses near or above
the MTD of 500 ng/kg experienced a partial or complete response.(55) Following this, IL-12
was combined with pegalated liposomal doxorubicin (PLD) in a phase two study. In this trial
patients received both IL-12 and PLD for up to six cycles and then received IL-12 maintenance
for up to three years.(56) 30 of the 36 (83 %) patients enrolled had a major clinical response
and the median progression free survival had not been reached with a median follow up of over
four years.

While targeting mTOR and VEGF are promising therapeutic strategies, the inhibition of other
upregulated pathways in KS have been the focus of recently completed clinical trials. Based
on the pathologic findings of increased expression of the platelet derived growth factor receptor
(PDGFR) and the receptor tyrosine kinase c-kit in KS, a pilot study with imatinib was
performed.(57-61) Imatinib is a small molecule inhibitor of multiple tyrosine kinases including
bcr-abl, PDGFR, and c-kit. A total of ten patients with AIDS-related KS were treated with
imatinib, and clinical and histological response was seen in four patients.(62)

Finally, another promising therapeutic strategy for KS is the inhibition of matrix
metalloproteinases (MMPs). MMPs are endopeptidases that assist in angiogenesis via
degradation of extracellular matrix. While they play a role in normal angiogenesis and wound
healing, several MMPs such as MMP2 and MMP9 are associated with malignancy and are
both expressed in KS.(63, 64) COL3, a tetracycline, is a known MMP inhibitor which showed
promising activity in a phase I trial of advanced malignancies.(65) Based on MMP expression
in KS, a phase I trial was performed and was well tolerated and showed anti-tumor activity in
patients with AIDS-related KS. A subsequent phase II trial confirmed the antitumor activity
of COL3 in treating KS.(66)

Conclusions
Over the past 10-15 years, the ability to molecularly target intricate pathways in cancer has
been transformed from a hopeful idea to a definitive reality. This has revolutionized the way

Sullivan et al. Page 5

BioDrugs. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cancer is being treated, and AIDS-related malignancies are no exception. In particular, Kaposi
Sarcoma is an ideal example of a disease whose clinical characteristics inspired elegant bench
research which has translated into improved clinical decision making. Its association with
immunodeficiency and certain regions stimulated investigators to search out a culprit infectious
agent. Once discovered, elegant research on KSHV has elucidated intricate sequential and
parallel signaling pathways that can be inhibited by small molecule tyrosine kinase inhibitors
and antibodies to key cell surface receptors. In total, this has translated to a multifaceted
therapeutic approach which includes targeting the causal agent (KSHV), the deficient immune
system (ie. HAART in AIDS-related KS), and the molecular pathways which fuel tumor growth
and new blood vessel formation. Continued efforts remain essential in determining the optimal
treatment for KS which will minimize toxicity and enhance patient's quality and quantity of
life. In seems clear that the application of state-of-the art bench and clinical research tools will
help us achieve this, now, attainable goal.
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