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OSBPL10, a novel candidate gene for high triglyceride trait
in dyslipidemic Finnish subjects, regulates cellular
lipid metabolism
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Abstract Analysis of variants in three genes encoding
oxysterol-binding protein (OSBP) homologues (OSBPL2,
OSBPL9, OSBPL10) in Finnish families with familial low
high-density lipoprotein (HDL) levels (N=426) or familial

combined hyperlipidemia (N=684) revealed suggestive
linkage of OSBPL10 single-nucleotide polymorphisms
(SNPs) with extreme end high triglyceride (TG; >90th
percentile) trait. Prompted by this initial finding, we carried
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out association analysis in a metabolic syndrome subcohort
(Genmets) of Health2000 examination survey (N=2,138),
revealing association of multiple OSBPL10 SNPs with high
serum TG levels (>95th percentile). To investigate whether
OSBPL10 could be the gene underlying the observed linkage
and association, we carried out functional experiments in the
human hepatoma cell line Huh7. Silencing of OSBPL10
increased the incorporation of [3H]acetate into cholesterol
and both [3H]acetate and [3H]oleate into triglycerides and
enhanced the accumulation of secreted apolipoprotein B100
in growth medium, suggesting that the encoded protein
ORP10 suppresses hepatic lipogenesis and very-low-density
lipoprotein production. ORP10 was shown to associate
dynamically with microtubules, consistent with its involve-
ment in intracellular transport or organelle positioning. The
data introduces OSBPL10 as a gene whose variation may
contribute to high triglyceride levels in dyslipidemic Finnish
subjects and provides evidence for ORP10 as a regulator of
cellular lipid metabolism.
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Introduction

Families of proteins with homology to the carboxy-terminal
ligand binding domain of oxysterol binding protein (OSBP)
are suggested to function in various cellular processes such
as lipid metabolism, intracellular lipid transport, membrane
trafficking, and cell signaling [1, 2]. In humans, the gene
family consists of 12 members, which are denoted OSBP-
like genes (OSBPL), while the encoded proteins are called
either OSBP-like (OSBPL) or OSBP-related proteins (ORP)
[3, 4].

OSBP is the most extensively studied member of the
mammalian ORP protein family. OSBP acts as a sterol
sensor that integrates the cellular sterol status with
sphingomyelin metabolism [5] and controls the dephos-
phorylation and hence the activity of extracellular signal-
regulated kinases, ERK [6]. We recently showed that OSBP
overexpression in mouse liver impacts serum very-low-
density lipoprotein triglyceride (TG) levels and hepatic TG
synthesis through up-regulation of the expression and
activity of sterol regulatory element binding protein 1c
(SREBP-1c) [7], a major insulin-responsive regulator of
hepatic and adipose tissue lipogenesis. Over-expression of
human ORP1L in mouse macrophages resulted in impaired
cholesterol efflux and increased size of atherosclerotic
lesions in low-density lipoprotein (LDL)-receptor deficient
mice [8]. Furthermore, our latest data demonstrates a role of
the OSBP homologue ORP8 as factor that suppresses, most
likely via an indirect mechanism, the expression of ATP-
binding cassette transporter A1 (ABCA1) [9], a key
mediator of high-density lipoprotein (HDL) biogenesis.
Moreover, ORP2, ORP4S, and ORP9 have been implicated
in cellular sterol or neutral lipid metabolism [10–12],
lending further support to the view that ORP family
members play important roles in cellular lipid metabolism.

In the present study, we assessed whether allelic diversity of
the OSBPL2, OSBPL9, or OSBPL10 genes contributes to
extreme serum lipid levels in Finnish families ascertained for
low HDL-cholesterol or familial combined hyperlipidemia
(FCHL, common dyslipidemias associated with increased
risk of premature coronary heart disease [13–16]. Variants of
OSBPL10 displayed suggestive linkage with high triglyceride
levels in the families, and association analysis in a metabolic
syndrome study sample (N=2,138) strengthened the notion
that variation in OSBPL10 may influence serum TG levels in
Finnish dyslipidemic subjects. RNA interference experiments
in cultured human hepatoma cells suggested that the encoded

Trait Males Females Total

Low-HDL N 327 338 665

Agea (years) 45.30±22.08 45.61±20.5 45.47±21.2

BMI (kg/m2) 25.47±4.25 24.76±4.66 25.09±4.5

TC (mmol/l) 5,40±1.16 5,47±1.07 5,44±1.11

HDL (mmol/l) 1.02±0.3 1.35±0.38 1.20±0.38

TG (mmol/l) 1.59±0.8 1.45±0.79 1.51±0.8

FCHL N 687 632 1,319

Age (years) 37.60±20.44 37.91±20.35 37.7±20.4

BMI (kg/m2) 25.56±4.46 24.90±5.29 25.22±5.02

TC (mmol/l) 5.84±1.43 5.85±1.32 5.84±1.37

HDL (mmol/l) 1.15±0.36 1.39±0.41 1.27±0.41

TG (mmol/l) 2.11±1.88 1.59±1.27 1.85±1.6

Table 1 Phenotypic
characteristics of the low-HDL
and FCHL study samples

The data represent mean ± SD

BMI body mass index, TC total
cholesterol, HDL high-density
lipoprotein cholesterol, TG
triglycerides
a Subjects under the age of
20 years were excluded
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protein, ORP10, acts as a regulator of cellular lipid
biosyntheses and apolipoprotein B-100 (apoB100) secretion,
lending functional support to the genetic findings.

Materials and methods

Dyslipidemic cohorts and genotyping strategy

The FCHL families (53 families, 684 subjects) were
recruited through the Helsinki, Turku, and Kuopio Univer-
sity Central Hospitals and the inclusion/exclusion criteria
for the probands have been described [17]. The low-HDL
families (39 families, 426 subjects) were collected in the
Helsinki and Turku University Hospitals, and probands were
required to have HDL-cholesterol (HDL-C) levels <10th age-
and sex-specific percentile of the Finnish population and

angiographically verified coronary heart disease and are more
fully described in [18]. Phenotypic information on the study
subjects and the distributions of their serum HDL-C and TG
concentrations are displayed in Table 1 and in Electronic
Supplementary Materials Fig. 1, respectively. DNA extrac-
tion, single-nucleotide polymorphism (SNP) genotyping, and
data analysis were carried out as described in Electronic
Supplementary Materials method descriptions. Detailed
information on the SNPs analyzed is displayed in Electronic
Supplementary Materials Table 1 and in Fig. 1.

The Genmets sample is subset of 2,212 individuals of
the Health2000 study (http://www.terveys2000.fi/doc/
methodologyrep.pdf) collected as metabolic syndrome
cases and their matched controls. A total of 2,173 of these
individuals have been genotyped on Illumina 610K arrays.
In this study, 102 SNPs located in OSBPL10 or its flanking
regions were analyzed. For the association analysis,
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Fig. 1 Location and linkage disequilibrium (LD) relationships of the
investigated SNPs in OSBPL10. Exons 1–13 as well as introns 2 and 5
are indicated. The SNPs analyzed in the low-HDL and FCHL family
materials are shown below the gene structure; those with the highest
LOD scores (>2.0) for linkage with high-TG trait are indicated in red.

The LD relationships between the SNPs are depicted at the bottom;
Numbers represent r2, the top one for FCHL and the bottom one for
low-HDL families. The SNPs showing strongest association (p<0.01)
with high TG in the Genmets data set are displayed (in red) above the
gene structure
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individuals with the TG levels above the 95th population,
sex, and age-specific percentile (>3.4 mmol/l) were coded
as cases and the rest as controls. The same coding was done
for the individuals with the high-density lipoprotein
cholesterol values below the 5th percentile (<0.8 mmol/l).
For these two dichotomous phenotypes, logistic regression
was applied with age and sex as covariates (for details, see
Electronic Supplementary Materials method descriptions).

The study materials were collected according to the
Helsinki declaration, and the ethics committees of the
participating centers approved the study design.

Generation of a rabbit antibody against ORP10

A cDNA fragment encoding amino acid residues 1–80 of
the full-length ORP10 protein (NM_017784) was inserted
in pGEX1λT (GE Healthcare, Uppsala, Sweden) for
production of a glutathione-S-transferase fusion protein in
Escherichia coli BL21. The protein was purified on
Glutathione-Sepharose 4B (GE Healthcare) and used for
subcutaneous immunization of New Zealand white rabbits
by a standard procedure.

Cell culture

The human hepatoma cell line Huh7 was cultured in Eagle’s
minimal essential medium with Earle’s salts (EMEM, Sigma-

Aldrich, St. Louis, MO, USA), 20 mM Hepes, pH7.4, 10%
fetal bovine serum (FBS; Gibco/Invitrogen, Grand Island, NY,
USA), 100 U/ml penicillin, and 100μg/ml streptomycin. The
pancreatic adenocarcinoma cell line PANC-1 was cultured in
RPMI 1640 (BioWhittaker, Walkersville, MD, USA), 10%
FBS, and the above antibiotics. Caco-2 cells were cultured in
EMEM supplemented with 10% FBS, non-essential amino
acids, and the above antibiotics.

RNA interference

Huh7 cells were transfected with ORP10-specific
(siORP10.1, sense strand CCACAGCCUCAAUCUUGUA
dTdT; siORP10.2, GAGAAUUUCCUGUGGAU-UAdTdT)
or nontargeting control siRNA (siNT, sense strand UAGC
GACUAAACACAUCAAdTdT) using INTERFERin (Poly-
plus, Illkirch, France) or HiPerFect (Qiagen, Valencia, CA,
USA) according to the manufacturers’ instructions. After 48 h
transfection, the cells were either subjected to total RNA
isolation by using the RNeasy Mini kit (Qiagen) or used for
analysis of cholesterol and triglyceride biosynthesis.

Analysis of cholesterol and triglyceride biosynthesis

Huh7 cells treated with ORP10-specific or nontargeting
control siRNAs were labeled with [3H]acetic acid or [3H]
oleic acid, and incorporation of the radioactive tracers into

Table 2 Linkage and association results for the dichotomized HDL-cholesterol and TG traits in the low-HDL and FCHL families

Low-HDL FCHL Combined

SNP (OSBPL10) <10th %a HDL >90th % TG <10th % HDL >90th % TG <10th % HDL >90th % TG

rs9878129 0.02 (1)b 0.00 (0.07) 0.25 (1) 0.78c(0.53) 0.26 (0.24) 0.71 (0.77)

rs9847800 0.43 (0.22) 0.15 (0.53) 0.06 (0.54) 1.36 (0.23) 0.80 (0.21) 2.07 (0.50)

rs9853939 0.66 (0.19) 0.00 (0.89) 0.09 (0.49) 1.79 (0.82) 0.98 (0.21) 2.40 (1)

rs7644177 0.01 (0.42) 0.18 (0.0005) 0.01 (0.74) 0.12 (0.64) 0.23 (0.84) 0.16 (0.03)

rs6807471 0.40 (0.92) 0.00 (0.69) 0.54 (0.26) 0.01 (0.14) 0.34 (0.44) 0.00 (0.39)

rs9880436 0.00 (0.67) 0.36 (0.60) 0.59 (0.07) 0.50 (0.03) 0.46 (0.33) 0.80 (0.14)

rs11709187 0.16 (0.17) 0.00 (0.56) 0.08 (0.84) 0.28 (0.03) 0.23 (0.32) 0.22 (0.08)

rs2219250 0.55 (1) 0.08 (0.75) 0.74 (0.79) 0.20 (0.88) 0.94 (0.84) 0.41 (1)

rs2045298 0.04 (0.14) 0.00 (0.55) 0.04 (0.79) 0.51 (0.03) 0.09 (0.47) 0.38 (0.07)

rs2290531 0.13 (0.6) 0.02 (0.63) 0.00 (0.69) 0.65 (0.84) 0.00 (0.75) 1.22 (0.92)

rs6803685 0.49 (0.32) 0.77 (0.04) 0.03 (0.34) 0.01 (0.72) 0.52 (0.20) 0.10 (0.25)

rs1869849 0.72 (1) 0.35 (0.29) 0.04 (0.76) 0.10 (0.11) 0.52 (0.77) 0.12 (0.75)

rs2013777 0.65 (0.53) 0.00 (0.92) 0.01 (0.09) 0.01 (0.48) 0.03 (0.21) 0.05 (0.37)

rs3749405 0.91 (0.54) 0.00 (0.92) 0.01 (0.14) 0.01 (0.37) 0.00 (0.19) 0.004 (0.36)

rs11058 0.00 (0.14) 0.00 (0.58) 0.00 (0.78) 0.45 (0.15) 0.00 (0.57) 0.12 (0.13)

N Affected 167 46 255 205 422 251

a The percentiles used to diagnose represent age- and sex-specific population cut-off values
b The first value represents the LOD score, the number in parentheses represents p value for association, given linkage
c LOD scores >0.7 and p values <0.05 are indicated in bold
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cholesterol or TG was carried out, as specified in Electronic
Supplementary Materials method descriptions.

Assays for apoA-I and apoB100 secretion by Huh7 cells

Huh7 cells treated for 48 h with nontargeting or ORP10-
specific siRNAs as specified above were washed with
phosphate-buffered saline and transferred into serum-free
culture medium. The medium and the cells were harvested
at 6, 12, and 24 h. The apoA-I [19] and apoB100 (Mabtech,
Nacka Strand, Sweden) concentrations in the medium were
determined with specific sandwich enzyme-linked immu-
nosorbent assay (ELISA) assays and normalized for total
cell protein.

mRNA quantification

Total RNA was isolated from Huh7 cells treated with
ORP10 or control siRNAs, and quantitative real-time
polymerase chain reaction (PCR) analysis of specific
mRNAs was carried out using SYBR-green (Applied
Biosystems) as described in Electronic Supplementary
Materials method descriptions. The primers used
are specified in Electronic Supplementary Materials
Table 2.

Assay for 3-hydroxy-3-methylglutaryl coenzyme
A reductase activity

Huh7 cells treated with ORP10-specific or control siRNAs
as specified above were harvested, and 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase activity
in total membranes of the cells was assayed as detailed in
Electronic Supplementary Materials method descriptions.

Analysis of the subcellular localization of ORP10

The human ORP10 open reading frame (NM_017784) was
subcloned into the pEGFP-C (BD Biosciences Clontech, Palo
Alto, CA, USA) or pcDNA4HisMax (Invitrogen) vectors for
mammalian cell expression. Huh7, PANC-1, or Caco-2 cells
cultured in normal serum-containing growth medium were
transfected for 24 h using Lipofectamine 2000 (Invitrogen),
fixed with paraformaldehyde and processed for immunoflu-
orescence microscopy essentially as described previously
[20]. The immunofluorescence double stainings carried out,
and pretreatments of the cells are described in Electronic
Supplementary Materials method descriptions. Fluorescence
recovery after photobleaching (FRAP) in Huh7 cells trans-
fected with EGFP-ORP10 was carried out as detailed in
Electronic Supplementary Materials method descriptions.

SNP Position, bp Effect allele Effect all. frequency Odds ratio P-value

rs11716163 31782580 T 0.2633 1.771 0.000179

rs7653447 31814139 A 0.3383 0.5882 0.001484

rs2168422 31779846 T 0.2921 0.5827 0.002511

rs9851048 31806124 T 0.3324 0.6091 0.003025

rs7643025 31814246 A 0.2527 0.5911 0.004931

rs12171283 31797341 G 0.2659 0.6077 0.00621

rs9310978 31801771 T 0.2656 0.6085 0.006334

rs3792551 31681904 T 0.09962 0.4152 0.007563

rs12632849 31767922 T 0.3582 1.464 0.00786

Table 3 Genmets study
material: OSBPL10 SNPs
associated with high TG (>95th
percentile), p<0.01

TG >95% HDL <5%
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Results

Single-nucleotide polymorphisms in OSBPL10 show
suggestive linkage with serum triglyceride levels

We used carefully phenotyped Finnish families ascertained
for low HDL or FCHL to investigate the contribution of
variation in OSBPL genes to extreme ends of lipid traits.
Phenotypic information on the study subjects is summa-
rized in Table 1, and the distributions of HDL and TG

measurements used as traits in the genetic analyses are
depicted in Electronic Supplementary Materials Fig. 1.
Genotyping of tag SNPs of OSBPL2, -9, and -10 in 39
families (N=426 genotyped individuals) with low-HDL and
53 Finnish FCHL families (N=684 genotyped individuals)
revealed indications of linkage between multiple SNPs in
OSBPL10 and the status for high TG, which was treated as
an affection status and defined as exceeding the population
sex- and age-specific 90th percentile (Table 2). The
indications of linkage emerged mostly in the FCHL families.
No evidence for linkage or association could be observed for
SNPs ofOSBPL2 and -9, so they were excluded from further
studies (data not shown). Combining the study materials (92
pedigrees, N=1,110 individuals) increased the linkage
logarithm of the odds (LOD) scores for a number of SNP
variants with the high-TG trait (Table 2). The strongest
evidence for linkage with the high TG trait was observed for
SNP variants rs9853939 (LOD 2.40) and rs9847800 (LOD
2.07), located in intron 2 of OSBPL10 (Fig. 1).

We next studied whether the SNP alleles with the best
evidence for linkage with the extreme end of TG concentration
show correlation with the OSBPL10 mRNA expression level
in fat biopsies withdrawn from 47 individuals belonging to
the low-HDL and FCHL families, using transcriptome data
acquired with Affymetrix U133 Plus 2.0 microarrays. No
significant correlation was detected (data not shown),
suggesting that rather than affecting the OSBPL10 mRNA
levels, the SNPs may be in linkage disequilibrium (LD) with
a yet unidentified functional variant.

Prompted by the suggestive linkage observation, we
moved on to analyze the extreme ends of the HDL and TG
distribution in a subcohort (Genmets) of the Health2000
population cohort, consisting of subjects with metabolic
syndrome and matched healthy controls. Similar to the
analysis done in the family sample, in this data set
(N=2,138) individuals with the TG above the 95th
percentile were coded as cases and the rest as controls. A
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corresponding dichotomous division was made using HDL
cholesterol <5th percentile as the cut-off. The analysis
revealed association of multiple SNPs (21 SNPs with p<0.05,
nine SNPs with p<0.01) in OSBPL10 or its flanking regions
with high TG levels (Fig. 2a, Table 3). Also, a tendency of
association with low HDL was observed, but this failed to
reach statistical significance after multiple testing correction
(Fig. 2b). The SNPs showing strongest association with high
TG in the Genmets data set were, with the exception of one,
located in OSBPL10 intron 5 and contained within a single
LD block (Fig. 1).

ORP10 modulates hepatocellular lipogenesis

We employed siRNA-mediated silencing of ORP10 expres-
sion in a human hepatoma cell line Huh7 to investigate the
role of ORP10 in hepatocellular lipid biosyntheses. Trans-
fection of the two independent siRNAs used, siORP10.1
and siORP10.2, resulted in approximately 90% reduction of
the endogenous Huh7 cell ORP10 protein (Fig. 3a). To
assess the role of ORP10 in hepatocellular cholesterol
biosynthesis, we determined the incorporation of [3H]acetic
acid into cholesterol in cells transfected with scrambled
control or ORP10-specific siRNAs. Silencing of ORP10
resulted in a significant, 40–50% increase of [3H]free
cholesterol and a mild elevation of [3H]cholesterol esters,
suggesting enhancement of cholesterol biosynthetic activity
(Fig. 3b). We also quantified from the same experiments the
[3H]radioactivity incorporated into TG, revealing a signif-
icant elevation of [3H]TG in cells treated with the ORP10
siRNAs (Fig. 3b).

To investigate whether the elevation of [3H]cholesterol
biosynthesis in Huh7 cells subjected to ORP10 silencing
reflects a change in the activity of the rate-limiting enzyme 3-

hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reduc-
tase, we determined in vitro the activity of this enzyme in
membranes isolated from cells treated with ORP10-specific or
control siRNAs. Incorporation of [14C]HMG-CoA into
mevalonate was significantly (siORP10.1, 29%; siORP10.2,
21%) enhanced in cells subjected to ORP10 silencing as
compared to those treated with the nontargeting control
siRNA (Fig. 3c). Furthermore, to test if the effect of
OSBPL10 silencing on TG biosynthesis occurs at the level
of fatty acid biosynthesis or at the level of their activation or
incorporation into TG, we assessed TG synthesis using [3H]
oleic acid as the radioactive precursor. The results revealed
enhancement in its incorporation into TG in cells subjected
to ORP10 silencing, similar in its extent to the effect
observed upon [3H]acetic acid labeling (Fig. 3d).

To investigate whether ORP10 might impact lipoprotein
secretion by hepatic cells, we transferred Huh7 cells
subjected to ORP10 silencing into serum-free medium and
quantified, using specific ELISA assays, the secretion of
apoA-I and apoB100. During a time course of up to 24 h,
reduction of the cellular ORP10 induced a significant increase
in the amount of apoB100 that accumulated in the growth
medium, while no effect was detected on the accumulation of
apoA-I (Fig. 4a, b). At 12 h, the increase in apoB100 was
22% (siORP10.1) or 40% (siORP10.2) as compared to siNT-
transfected cells; At 24 h, the corresponding numbers were
59% and 85%. Western analysis of the growth media was
consistent with this finding (Fig. 4c; Electronic Supplemen-
tary Materials Fig. 2).

To obtain clues of the mechanism by which ORP10
impacts cellular lipid metabolism, we analyzed by quanti-
tative real-time RT-PCR the mRNAs for LXRα, LXRβ,
ABCA1, ABCG1, ABCG5, SREBP-1a, SREBP-1c,
SREBP-2, HMG-CoA reductase, LDL-receptor, fatty acyl

6hr
6hr

12hr
12hr

24hr
24hr

siNT siORP10.1

A

C

BFig. 4 Silencing of ORP10
increases the accumulation of
apoB100 in the growth medium.
Accumulation of apoA-I (a) and
apoB100 (b) into the growth
medium of Huh7 cells treated
with nontargeting (siNT) or
ORP10-specific (siORP10.1,
siORP10.2) siRNAs during a
24-h time course was quantified
with specific sandwich ELISA
assays. The data represents a
mean ± s.e.m. (a N=3, b N=5;
*p<0.05, **p<0.01, t test). c
Analysis of apoB100 accumula-
tion into growth medium at the
indicated time points by Western
blotting. An experiment repre-
sentative of three independent
analyses with similar results is
shown
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synthetase, stearoyl-CoA desaturase 1, Insig-1, and Insig-2.
No significant change consistent with both ORP10-specific
siRNAs was observed in these mRNAs upon silencing of
OSBPL10 (Fig. 5).

ORP10 localizes on microtubules

To obtain clues of ORP10 function, we determined its
intracellular localization. We transfected the human cell
lines Huh7 (hepatoma), Caco-2 (colon carcinoma), and
PANC-1 (pancreatic carcinoma) with EGFP- or Xpress
epitope-tagged cDNA constructs and visualized the
expressed proteins by confocal microscopy. The expressed
ORP10 distributed between a cytosolic-appearing pool and
fibril-like structures (Huh7, Fig. 6a; Caco-2, Fig. 6b;
PANC-1, Fig. 6c). Especially in cells expressing the protein
at high levels, the fibrils often showed a cable-like,
undulating morphology. The ORP10 fluorescence co-
localized extensively with β-tubulin, identifying the filaments
as microtubules. Localization of ORP10 on cable-like
microtubule elements and the morphologic change induced
by excess ORP10 were especially prominent in the human
pancreatic carcinoma cell line PANC-1 (Fig. 6d–f; note the
normal microtubule morphology in untransfected cells).
However, ORP10 silencing using siRNA did not signifi-
cantly affect the overall morphology of the microtubule
cytoskeleton (data not shown). The identity of the ORP10
fibrils was further confirmed by treatment of transfected
cells with the microtubule depolymerizing agent demecol-
cine, resulting in a dispersed, cytosolic distribution of
ORP10 (Fig. 6g). To investigate further the microtubule
association of ORP10, PANC-1 cells expressing ORP10
were treated with vinblastine, which binds to α- and β-
tubulin, prevents their polymerization, and allows forma-
tion of paracrystals consisting of both tubulins. ORP10 was

found to decorate tubulin crystals in the vinblastine-treated
cells, suggesting an intimate association with tubulin
(Fig. 6h, i). No colocalization of ORP10 with vimentin
(Fig. 6j) or cytokeratin (data not shown) intermediate
filaments was observed. Identical results were obtained
with the EGFP- and Xpress-epitope-tagged (Fig. 6k) con-
structs. To investigate whether manipulation of the cellular
lipid status affects the localization of ORP10, we incubated
Huh7 cells expressing EGFP-ORP10 for 48 h in
lipoprotein-deficient medium. For some specimens, 50μM
lovastatin was added for 24 h to potentiate the lipid/sterol
depletion. For a comparison, cells were also incubated for
48 h with 100μg/ml of human LDL to increase the cellular
lipid/sterol content or treated for 4 h with 5μM 25-
hydroxycholesterol. Fluorescence microscopy analysis of

Fig. 6 ORP10 localizes on microtubules. Huh7, Caco-2, and PANC-1
cells transfected with EGFP-ORP10 were visualized by confocal
fluorescence microscopy. a Transfected Huh7 cells. b A transfected
Caco-2 cell. c A transfected PANC-1 cell. d–f A transfected PANC-1 cell
(arrow) surrounded by untransfected ones (arrowheads), costained with
an antibody against β-tubulin. Note the aberrant bundled morphology of
the EGFP-ORP10-positive microtubules in the transfected cell as
compared to the normal microtubule cytoskeleton in the untransfected
cells. g A transfected PANC-1 cell treated for 1 h with demecolcine
(10μg/ml) to disrupt microtubules. h, i A transfected PANC-1 cell after
2 h treatment with vinblastine (10μg/ml), an agent that binds to α- and
β-tubulin, prevents their polymerization and allows formation of tubulin
paracrystals (indicated with arrows). j Channel merge image of a Huh7
cell expressing EGFP-ORP10 (green), stained for vimentin (red). k Huh7
cells transfected with ORP10/pcDNA4HisMaxC encoding ORP10
devoid of the EGFP fusion partner (staining with Xpress™ antibody).
Bars 10μm. l. Huh7 cells transfected with EGFP-ORP10 were subjected
to fluorescence recovery after photobleaching analysis using a live cell
confocal microscopy setup. The recovery curve representing microtubule
associated fluorescence in a bleached 6×6μm area as a function of time
is displayed. The data represents a mean (N=8 cells) ± s.e.m.; R2 of the
fit=0.9993. Recovery half times for the two kinetic components are 4.5±
0.94 s and 64.3±11.6 s
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Fig. 5 OSBPL10 silencing has no significant effect on the mRNAs
for key factors involved in lipid metabolism. Huh7 cells were
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(siORP10.1, black bars; siORP10.2, gray bars), followed by total
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tase, LDLR low-density lipoprotein receptor, ABC ATP-binding
cassette transporter, Insig insulin-induced gene, FAS fatty acyl
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mRNA levels in ORP10 siRNA-treated cells relative to those in cells
transfected with the scrambled control siRNA (siNT) and represents a
mean ± s.e.m. (N=4–5)
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EGFP-ORP10 revealed no significant effect of the lipid
manipulations on the steady-state subcellular distribution of
the protein (data not shown).

To investigate the dynamic parameters of EGFP-ORP10
microtubule association, transfected Huh7 cells were sub-
jected to fluorescence recovery after photobleaching analysis
using a confocal microscope set up for live cell analysis. After

photobleaching the microtubule-associated EGFP-ORP10,
fluorescence recovered to approximately 70% of the starting
value during the 6-min analysis period (Fig. 6l; Electronic
Supplementary Materials: Time lapse video). The recovery
followed a kinetics which curve-fitting suggested to arise
from two components. The t1/2 for the fast component was
4.5±0.94 s, and that for the slow one was 64.3±11.6 s.
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Discussion

In the present study, we investigated a putative function of
OSBP-related proteins in the regulation of serum lipids and
lipoproteins in humans. Genotyping of OSBPL gene SNPs
in a dyslipidemic family material was initially used to
evaluate the contribution of OSBPL genes to extreme lipid
levels predisposing to cardiovascular disease, high trigly-
cerides, and low HDL. Although recent genome-wide
association studies [21–23] have initially identified com-
mon variants affecting lipid concentrations at the popula-
tion level, data are also emerging for the impact of multiple
rare variants influencing the extreme lipid levels [24]. Here,
we wanted to study such potential loci by testing the
involvement of select OSBPL genes in carefully pheno-
typed Finnish families ascertained for dyslipidemias, low
HDL, or FCHL. The FCHL study set revealed suggestive
linkage of several SNPs in OSBPL10 to the high TG trait,
and analysis of the combined material strengthened the
evidence. Importantly, association analysis using an inde-
pendent study sample consisting of subjects with metabolic
syndrome and matched healthy controls provided substan-
tial proof for association of OSBPL10 SNPs with the
extreme end (>95th percentile) high-TG trait.

The genetic analyses suggest that variation within the
chromosome 3p23 region containing OSBPL10 may contrib-
ute to the high TG levels in Finnish dyslipidemic subjects.
The present data do not allow us to firmly conclude that the
underlying gene is OSBPL10, but they prompted us to
investigate in more detail the function of the encoded
protein, ORP10, in cultured cell models. The metabolic
studies in cultured cells subjected to ORP10 silencing
identify the protein as a novel regulator of hepatocellular
lipid metabolism and apoB100 secretion, consistent with the
notion that OSBPL10 may be the gene underlying the
genetic findings. The likelihood of this is further increased
by the lack of other genes plausibly connected with lipid
metabolism within the chromosome region (10 Mb interval).

Hepatoma cells subjected to ORP10 silencing displayed
a significant increase in the incorporation of [3H]acetate
into cholesterol and of [3H]acetate and [3H]oleic acid into
TG, suggesting that the intrinsic function of ORP10
involves suppression of hepatocellular lipid biosyntheses.
Consistent with this observation, the cells showed increased
HMG-CoA reductase activity, demonstrating an effect
already at an early stage of the pathway, on conversion of
HMG-CoA to mevalonic acid. An independent, systematic
esiRNA silencing screen of all ORP family members
carried out in HeLa cells supported a role of ORP10 in
the regulation of cholesterol biosynthesis (data not shown).
Labeling with [3H]oleic acid suggested that the impact of
ORP10 on TG biosynthesis occurs at the levels of fatty acid
activation or acyl transfer to glycerol. Importantly, we also

found that ORP10 silencing enhances the accumulation of
apoB100 in the hepatoma cell growth medium. One can
envision that ORP10 could affect the synthesis of TG and
cholesterol as well as the assembly of TG-rich lipoproteins
in the intestine and the liver, both tissues in which
OSBPL10 mRNA is expressed abundantly [4].

ORP10 was found to distribute between a cytosolic
localization and microtubules, a major apparatus determin-
ing the spatial distribution of organelles and forming tracks
for intracellular transport events [25]. FRAP analysis of live
Huh7 cells with EGFP-ORP10 on microtubules revealed a
recovery with two kinetic components. We find it likely
that the fast component (t1/2=4.5 s) reflects the diffusion of
EGFP-ORP10 in the cytosolic compartment, while the slow
component (t1/2=64.3 s) could represent the actual micro-
tubule association of the protein. The latter half-time is in
the same range as the life-times determined for transport
carriers moving along microtubules from the endoplasmic
reticulum (ER) to the Golgi complex [26] and from the
trans-Golgi network to the plasma membrane [27, 28]. The
data are thus consistent with the notion that ORP10 could
be involved in microtubule-dependent membrane trafficking
or organelle motility.

Microtubule-dependent membrane trafficking is inti-
mately connected with the control of lipid metabolism.
Importantly, the membrane compartments that play key
roles in the cellular metabolism of cholesterol and trigly-
cerides, the ER and cytoplasmic lipid droplets, are
connected to microtubules, which determine the spatial
organization of the ER [29] and control the distribution and
motility of lipid droplets [30, 31]. Pertinent to serum
lipoproteins, also the Golgi complex playing a central role
in lipoprotein secretion is organized by microtubules [32].
One can therefore envision that a protein associated with
microtubules, such as ORP10, is in the position to modulate
cellular lipid metabolism and lipoprotein secretion.
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