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Ca2+/calcineurin regulation of cloned vascular
KATP channels: crosstalk with the protein
kinase A pathway
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Background and purpose: Vascular ATP-sensitive potassium (KATP) channels are activated by cyclic AMP elevating vasodilators
through protein kinase A (PKA). Direct channel phosphorylation is a critical mechanism, though the phosphatase opposing
these effects is unknown. Previously, we reported that calcineurin, a Ca2+-dependent phosphatase, inhibits KATP channels,
though neither the site nor the calcineurin isoform involved is established. Given that the type-2 regulatory (RII) subunit of PKA
is a substrate for calcineurin we considered whether calcineurin regulates channel activity through interacting with PKA.
Experimental approach: Whole-cell recordings were made in HEK-293 cells stably expressing the vascular KATP channel
(KIR6.1/SUR2B). The effect of intracellular Ca2+ and modulators of the calcineurin and PKA pathway on glibenclamide-sensitive
currents were examined.
Key results: Constitutively active calcineurin Aa but not Ab significantly attenuated KATP currents activated by low intracellular
Ca2+, whereas calcineurin inhibitors had the opposite effect. PKA inhibitors reduced basal KATP currents and responses to
calcineurin inhibitors, consistent with the notion that some calcineurin action involves inhibition of PKA. However, raising
intracellular Ca2+ (equivalent to increasing calcineurin activity), almost completely inhibited KATP channel activation induced by
the catalytic subunit of PKA, whose enzymatic activity is independent of the RII subunit. In vitro phosphorylation experiments
showed calcineurin could directly dephosphorylate a site in Kir6.1 that was previously phosphorylated by PKA.
Conclusions and implications: Calcineurin Aa regulates KIR6.1/SUR2B by inhibiting PKA-dependent phosphorylation of the
channel as well as PKA itself. Such a mechanism is likely to directly oppose the action of vasodilators on the KATP channel.
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Introduction

Vascular ATP-sensitive K+ (KATP) channels contribute to the
maintenance of resting membrane potential and local blood

flow. They modulate vascular tone because of the steep rela-
tionship between membrane potential and Ca2+ influx
through voltage-dependent Ca2+ channels (Quayle et al.,
1997). Vasoconstrictor and vasodilator hormones will influ-
ence this relationship through opposing effects on the
channel (Quayle et al., 1997; Buckley et al., 2006). The struc-
ture of the KATP channel is an octomeric complex composed of
a pore-forming subunit (KIR6.x) to which ATP binds and a
sulphonylurea receptor (SUR), the primary target for
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sulphonylureas, K+ channel opening drugs (KCOs) and nucle-
otide diphosphates (NDPs) (Seino and Miki, 2003). Based on
subunit expression, channel characteristics and gene deletion
experiments, KIR6.1/SUR2B almost certainly constitutes the
vascular KATP channel (termed KNDP) that is relatively insensi-
tive to ATP, activated by NDPs and inhibited by glibenclamide
(Chutkow et al., 2002; Cui et al., 2002; Miki et al., 2002; Li
et al., 2003). The consequence of deleting either the SUR2 or
KIR6.1 gene, is to produce coronary vasospasm, sudden death
and a markedly reduced vasodilatory response to KCOs
(Chutkow et al., 2002; Miki et al., 2002; Kane et al., 2006). In
addition, SUR2-/- mice are hypertensive while KIR6.1-/- mice
have increased mortality towards endotoxin, and do not
display the classic hypotensive response to this bacterial toxin
(Kane et al., 2006).

KATP channels represent an important target for vasodila-
tors that elevate cyclic AMP. These include hormones such as
calcitonin-gene related peptide, adenosine, prostacyclin and
vasoactive intestinal peptide, whose effects of relaxation and
hypotension are sensitive to glibenclamide (Quayle et al.,
1997; Buckley et al., 2006; Yang et al., 2008). Recently, the
mechanism of channel activation was shown to involve
direct phosphorylation by protein kinase A (PKA) of Ser and
Thr residues located on SUR2B and KIR6.1 (Quinn et al., 2004;
Shi et al., 2007; 2008a,b). While, the nature of the phos-
phatase opposing such phosphorylation is unknown, we
have shown that the Ca2+-dependent phosphatase, cal-
cineurin can regulate KATP channels both in vitro (Wilson
et al., 2000) and in vivo (Singer et al., 2005). Such a mecha-
nism allows the channel to sense changes in intracellular
Ca2+ ([Ca2+]i), being activated at resting levels and inhibited
as [Ca2+]i approaches micromolar levels (Wilson et al., 2000).
Thus, hormonal regulation of KATP channels is likely to be
influenced by calcineurin, though this has yet to be demon-
strated. Moreover, the mechanism by which this
phosphatase inhibits the channel is unknown.

Calcineurin is a highly conserved, Ca2+/calmodulin-
dependent Ser/Thr phosphatase with a catalytic subunit A
(calcineurin A or CnA) that binds calmodulin and a regula-
tory subunit B (calcineurin B or CnB) that binds Ca2+

(Rusnak and Mertz, 2000). The CnA subunit is encoded by
three separate genes, which give rise to CnAa, CnAb and
CnAg isoforms (Herzig and Neumann, 2000; Rusnak and
Mertz, 2000). While CnAa and CnAb are co-expressed in
most tissues, expression of the g isoform is restricted to the
testis and discrete regions of the brain (Herzig and
Neumann, 2000; Eastwood et al., 2005). Calcineurin is acti-
vated in response to a sustained elevation of cytoplasmic
Ca2+ and is best known for its role in the Ca2+-dependent
regulation of nuclear factor of activated T-cells (NFAT) which
controls T-cell activation (Crabtree, 2001). In addition,
this phosphatase is a major regulator of ion channel func-
tion, inhibiting or activating voltage-dependent Ca2+

channels (Schuhmann et al., 1997), Ca2+-activated Cl- chan-
nels (Greenwood et al., 2004) and a variety of K+ channels
(Czirjak and Enyedi, 2006; Loane et al., 2006; Park et al.,
2006). While several different mechanisms may underlie the
effects of calcineurin on ion channels, the type-2 regulatory
(RII) subunit of PKA is a well-known cellular substrate for
calcineurin (Perrino et al., 2002) and has been shown to

co-localize with calcineurin in cardiac cells (Santana et al.,
2002). This raises the possibility that calcineurin may oppose
PKA activation of the KATP channel through inhibiting PKA
activity. Alternatively, it may directly dephosphorylate the
channel itself. We therefore investigated Ca2+/calcineurin
and PKA regulation of KIR6.1/SUR2B channels stably
expressed in HEK-293 cells.

Methods

Stable lines were generated in human embryonic kidney 293
(HEK-293) cells containing KIR6.1 with SUR2B as described
previously (Cui et al., 2001).

Whole-cell recording
Membrane currents were recorded under voltage-clamp in
the whole-cell recording configuration of the patch-clamp
technique using an Axopatch 200B amplifier (Axon Instru-
ments, Foster City, CA). Currents were filtered at 1 kHz and
sampled at 2 kHz via a Digidata 1322A (Axon Instruments)
interface. Data were acquired and analysed using pClamp8
computer software (Axon Instruments). Patch pipettes were
made from thin walled (OD 1.5 mm) borosilicate glass cap-
illaries (Harvard Apparatus, Edenbridge, Kent), which were
pulled and fire-polished using a DMZ-Universal puller
(Zeitz-Instruments, Müchen, Germany) to give resistances of
2–4 MW. Electrode capacitance was reduced by coating tips
with a parafilm/mineral oil suspension and was compen-
sated electronically. Series resistance was compensated to
70% using the amplifier. Whole-cell bath solutions (pH 7.4)
contained the following (in mmol·L-1): 140 KCl, 5 HEPES,
1.2 MgCl2 and 2.6 CaCl2. Pipette solutions (pH 7.2) con-
tained the following (in mmol·L-1): 140 KCl, 5 HEPES, 1.2
MgCl2, 10 EGTA, 3 MgATP, 0.5 Na2GDP and 0–1.78 CaCl2.
CaCl2 was added in an amount to yield 0, 18 and
36 nmol·L-1 intracellular free Ca2+, as calculated with the
CaBuf computer program (G Droogmans, Physiology Labo-
ratory, KU Leuven, Belgium), which takes into account the
buffering capacity of ATP, NDPs and Mg2+. All measurements
of basal or drug-activated currents were made at least
10–15 min after ‘break-in’. The magnitude of KATP current
was assessed by sensitivity to 10 mmol·L-1 glibenclamide
(IGlib). Drugs were applied either through the pipette or in
the bath solutions.

Synthesis of constitutively active calcineurin
Constitutively active calcineurin isoforms were created by
introducing stop codons into the cDNA for CnA, causing the
translated CnA subunits to truncate immediate to the
C-terminal of the calmodulin-binding domain and delete the
auto-inhibitory domain. Methodologies for cDNA manipula-
tion, baculovirus screening and purification of CnA con-
structs using cultures of Sf21 cells have been described
previously (Perrino et al., 2002).

In vitro phosphorylation assay
Cloning, expression and purification of the maltose-binding
protein (MBP) and the C-terminus of KIR6.1 (MBP-KIR6.1C)
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were carried out as previously described (Quinn et al., 2003).
In vitro phosphorylation with the catalytic subunit of PKA was
carried out as previously described (Quinn et al., 2004) except
that 2 h after phosphorylation, samples were washed 3 times
with 1 mL of HEPES buffer followed by a single wash with
1 mL of calcineurin reaction buffer (50 mmol·L-1 HEPES, pH
7.4, 18 nmol·L-1 CaCl2, 100 mmol·L-1 NaCl, 6 mmol·L-1

MgCl2, 1 mmol·L-1 DTT, 1% Triton X-100, EDTA-free complete
protease inhibitor cocktail). Samples were then resuspended
in 50 mL of calcineurin reaction buffer and a 10 mL aliquot
removed for SDS analysis. Samples were subsequently centri-
fuged and all of the supernatant removed before addition of
9 mmol·L-1 calmodulin � 100 nmol·L-1 of human recombi-
nant CnAa subunit in calcineurin reaction buffer. Samples
were incubated for 1 h at 37°C and then washed 4 times with
1 mL of calcineurin reaction buffer. The protein was subse-
quently eluted with 2¥ Laemmli gel loading buffer, run on a
10% SDS-PAGE gel and subjected to autoradiography.

Statistical analysis
Data were analysed using Clampfit 8.2 programme (Axon
Instruments) and Graphpad Prism 4 (San Diego, CA). Values
are given as means � standard error of the mean (SEM) of
glibenclamide-sensitive current (Iglib) densities (pA/pF), and n
indicates the number of cells. Statistical significance was
assessed using a paired or unpaired Student’s t-test or one-way
analysis of variance (ANOVA) with correction for multiple com-
parisons between different groups of cells. P-values < 0.05
were considered to be statistically significant.

Materials
Glibenclamide, Mg2+-adenosine triphosphate, Na2 guanosine
5′ diphosphate (GDP), forskolin, levcromakalim and the
catalytic subunit of PKA (PKAcat) were obtained from Sigma
Chemical Co. (Poole, Dorset, UK). Cyclosporin A (CsA),
calcineurin auto inhibitory peptide (CAP), okadaic acid,
N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulpho-
namide·2HCl (H-89) Rp-2′-O-monobutyryl-cAMPS (Rp-
cAMPS) and human recombinant CnAa subunit were all from
Biomol (Exeter, UK). Gö6976 and calmodulin were bought
from Calbiochem (San Diego, USA). Forskolin, H-89, Gö6976,
levcromakalim and glibenclamide were dissolved in dimethyl
sulphoxide but final concentrations after dilution were less
than 0.1%, which had no effect on whole-cell currents. PKAcat

was prepared as a stock of 1 or 10 U·mL-1 of a solution contain-
ing 6 mg·mL-1 of DTT. All other stock solutions were made up
in distilled water.

Nomenclature of molecular targets, including receptors and
ion channels, is in accordance with the Guide to Receptor and
Channels (Alexander et al., 2008).

Results

Effect of Ca2+ on whole-cell KATP currents
We have previously demonstrated that increasing [Ca2+]i

inhibited KATP currents in freshly isolated vascular smooth
muscle cells (Wilson et al., 2000). We therefore wished to

establish if KIR6.1/SUR2B channels stably expressed in HEK-
293 cells were similarly regulated by [Ca2+]i. When cells were
dialysed with solutions containing 0, 18 or 36 nmol·L-1 free
Ca2+ concentrations, basal currents evoked at all potentials
were reduced as [Ca2+]i was increased (Figure 1A). Likewise, the
magnitude of glibenclamide-sensitive current (Iglib) was largest
in the 0 Ca2+ pipette solution and smallest in cells dialysed
with 36 nmol·L-1 Ca2+, as shown by the average current-
voltage (I–V) curves in Figure 1B. Thus, the magnitude of
current measured at -80 mV dropped by 33% with
18 nmol·L-1 Ca2+ (P < 0.05) and by 71% with 36 nmol·L-1 Ca2+

(P < 0.001) compared with 0 nmol·L-1 Ca2+ (Figure 1C). These
results confirm that Ca2+ regulates KIR6.1/SUR2B.

Role of calcineurin
Having confirmed that Ca2+ regulates the channel, we inves-
tigated whether this involved signalling through calcineurin.
We used two chemically unrelated inhibitors, calcineurin
auto-inhibitory peptide (CAP; 100 mmol·L-1) and the immu-
nophilin, CsA (Cyclo A; 10 mmol·L-1). Representative time-
dependent plots comparing the magnitude of currents at
-80 mV with and without 100 mmol·L-1 CAP in the pipette
solution is shown in Figure 2A. In the presence of CAP,
currents were noticeably larger, and gave rise to bigger
glibenclamide-sensitive currents (IGlib). In a series of experi-
ments, CAP completely reversed the Ca2+-dependent inhibi-
tion of the channel, doubling the magnitude of IGlib seen with
18 nmol·L-1 intracellular free Ca2+ (Figure 2B,C) and increas-
ing it ~3.5 fold in cells dialysed with 36 nmol·L-1 Ca2+

(Figure 2E,F). Likewise, IGlib in the presence of 10 mmol·L-1

Cyclo A was significantly greater (P < 0.05; Figure 2C) than
that observed in control cells.

Although our data indicated the involvement of cal-
cineurin in the Ca2+-dependent regulation of KIR6.1/SUR2B,
we wished to know whether regulation involved protein
phosphatase type 1 (PP1), whose activity can be enhanced
by calcineurin-dependent dephosphorylation of the PP1
inhibitory peptide inhibitor-1 (Perrino and Soderling, 1998;
Herzig and Neumann, 2000). Therefore, the observed effects
of CAP and CsA could in part reflect a decrease in PP1 acti-
vation. To examine this possibility, we internally applied the
PP1 inhibitor, okadaic acid (1 mmol·L-1) in cells dialysed with
18 nmol·L-1 free Ca2+. This failed to change the magnitude
of Iglib recorded at any potential (Figure 2C,D) leading us to
conclude that PP1 is neither involved in the Ca2+-dependent
regulation of KIR6.1/SUR2B nor has direct effects on the KATP

channel itself. We also investigated the possibility that Ca2+

inhibits KATP current through activation of protein kinase C
(PKC), which is known to inhibit both native and cloned
vascular KATP channels (Quayle et al., 1997; Thorneloe
et al., 2002; Quinn et al., 2003). We found that 1 mmol·L-1

Gö6976, an inhibitor of Ca2+-dependent isoforms of PKC,
had no effect on KATP current magnitude at any potential
whether cells were dialysed with 18 or 36 nmol·L-1 Ca2+

(Figure 2C–E).
To further confirm that calcineurin could indeed inhibit

KATP channels, cells were dialysed with constitutively active
recombinant isoforms of the catalytic subunit, CNAa or
CNAb (Perrino et al., 2002). These were added to the patch
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pipette at a concentration of 100 nmol·L-1 and experiments
carried out in 0 nmol·L-1 Ca2+ to ensure minimal contribution
from endogenous calcineurin. Figure 3 shows that CNAa but
not CNAb inhibited KATP current, giving rise to basal currents
(35 � 9.6 pA/pF, n = 6) of similar magnitude to that observed
in 36 nmol·L-1 Ca2+ (27.0 � 7.5 pA/pF, n = 16). These results
therefore suggest that CNAa is the isoform likely to be
involved in channel regulation.

Modulation by PKA
As PKA phosphorylation of KIR6.1/SUR2B can lead to channel
opening (Quinn et al., 2004) and calcineurin is known to
dephosphorylate and inhibit the RII subunit of PKA (Perrino
et al., 2002), we investigated whether calcineurin/Ca2+ effects
on the channel involved inhibition of the PKA pathway. As a
first step, we sought to confirm that PKA regulated basal
channel activity by using two inhibitors, H-89 (10 mmol·L-1)
and Rp-cAMPs (100 mmol·L-1). We found that both these
agents significantly attenuated the magnitude of KATP current
measured in the presence of 18 nmol·L-1 Ca2+ (Figure 4A,B) by
56% and 70% respectively. Next, we examined the combined
effect of H-89 (10 mmol·L-1) and CAP (100 mmol·L-1) included
in the same patch pipette. Using this approach, the magni-
tude of the IGlib, while greater than that observed with H-89
alone (Figure 4B), was still significantly less (P < 0.05) than
that observed if cells were dialysed with CAP alone under the
same experimental conditions (Figure 2C). These results are
consistent with the notion that a portion of calcineurin
action involved inhibition of PKA.

Likewise, the effects of the adenylate cyclase activator, for-
skolin, whose stimulatory action on KATP channels in HEK-
293 cells is completely dependent on PKA (Quinn et al.,
2004), were essentially abolished when Ca2+ was raised from
18 to 36 nmol·L-1 (Figure 5A,B). Again, this could be partially
restored (P < 0.001, n = 8) when the pipette also contained
100 mmol·L-1 CAP (Figure 5B), suggesting that suppression of
forskolin activation of the channel by Ca2+ involved cal-
cineurin either acting on PKA or on the channel itself. To
distinguish between these possibilities, two experimental
approaches were used. First, we examined channel regulation
using the constitutively active catalytic subunit of PKA
(PKAcat), whose activity can no longer be inhibited by cal-
cineurin because it lacks the RII subunit. Dialysis of cells
with PKAcat (10 U·mL-1) produced KATP currents that were 3
times larger than in control cells (Figure 5C,D). However, on
raising the intracellular free Ca2+ to 36 nmol·L-1 (equivalent
to increasing calcineurin activity), the same concentration of
PKAcat failed to have any effect on whole-cell currents. Some
activation was achieved when the concentration was raised
to 100 U·mL-1, though this failed to reach significance. These
results strongly suggest that PKA and calcineurin can
compete for the same phosphorylation sites on the KATP

channel. This contrasts with responses to the classical KATP

channel opener, levcromakalim (10 mmol·L-1) which acti-
vated currents of similar magnitude in both 18 and
36 nmol·L-1 free Ca2+ (Figure 5E). The other experimental
approach was to examine the ability of calcineurin to
dephosphorylate MBP-KIR6.1C, a C-terminal domain of
Kir6.1 that contains a serine site (S385) capable of being
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phosphorylated by PKA (Quinn et al., 2004). Figure 6A shows
a Coomassie-stained SDS-PAGE gel loaded with either MBP
or MBP-KIR6.1C in the absence or presence of PKAcat and
CnAa. In essence, the gel shows roughly equivalent loading
of MBP-KIR6.1C (doublet between 60 and 75 kD) in the
phosphorylation assay shown in Figure 6B. As described pre-
viously, MBP-KIR6.1C was a substrate for PKA-mediated phos-
phorylation, an effect that was subsequently reduced in the
presence of CnAa (Figure 6B). In contrast, PKAcat does not

phosphorylate the MBP control protein nor does CnAa have
any effect. Therefore, these results strongly suggest that the
pore of KIR6.1 can act as a direct substrate for CnAa mediated
dephosphorylation.

Discussion

Previously, we demonstrated that Ca2+ regulates basal KATP

channel activity in vascular smooth muscle cells isolated from
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rat aorta (Wilson et al., 2000). In the present study, we inves-
tigated the mechanism underlying this regulation in HEK-293
cells stably expressing KIR6.1/SUR2B, a model system where
many of the properties of native vascular KATP channels are
faithfully reconstituted (Thorneloe et al., 2002; Quinn et al.,
2003; 2004). Our data revealed that calcineurin is likely to be
the main mediator of Ca2+-dependent inhibition of KIR6.1/
SUR2B and that this phosphatase inhibited channel function
by opposing PKA-dependent phosphorylation. This conclu-
sion is based on a number of observations. First, there was
selective reversal of Ca2+-induced channel inhibition by two
chemically unrelated inhibitors of calcineurin, CsA and CAP.
The latter corresponds to a C-terminal domain (residues 457–

482) of the calmodulin-binding domain of calcineurin
making it a highly specific inhibitor with little effect on PP1,
PP2A or CaM kinase II activity. Likewise, it was concluded that
all Ca2+-dependent regulation of KV2.1 was attributable to
calcineurin activity in HEK-293 cells (Park et al., 2006).
Second, constitutively active CnAa was able to inhibit KATP

currents activated under conditions of low endogenous cal-
cineurin activity (no added Ca2+ in the pipette), confirming
our cyclosporin and CAP data. Third, PKA inhibitors substan-
tially reduced basal KATP currents and responses to calcineurin
inhibitors, suggesting crosstalk between these two signalling
pathways (Figure 7). Fourthly, raising [Ca2+]i to 36 nmol·L-1

essentially abolished the activating effects of both PKAcat and
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Mean IGlib plotted at different potentials in the absence (control, n = 19) or presence of either 100 nmol·L-1 CnAa (n = 6) or CnAb (n = 7) in
the pipette. (C) Mean IGlib evoked at -80 mV in control cells compared with cells dialysed with constitutively active CnAb or CnAa. *P < 0.05
when compared with CnAb.
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forskolin. As PKAcat is constitutively active and therefore not
subject to deactivation by calcineurin, this failure could only
result from dephosphorylation of sites normally phosphory-
lated by PKA. Lastly, consistent with direct channel effects,
CnAa dephosphorylated MBP-KIR6.1C, a C-terminal domain
of KIR6.1 which contains a serine site (S385) directly phospho-
rylated by PKA and critical for channel activation by either
forskolin or PKAcat (Quinn et al., 2004). In other studies, direct
binding of calcineurin to K+ channels has been demonstrated,
though the interaction sites are different, involving CnB
subunit for the Ca2+-activated K+ channel (Loane et al., 2006)
or the NFAT binding site on CnAa for TRESK (Czirjak and
Enyedi, 2006).

One of the significant findings in the present study was the
demonstration that CnAa but not CnAb regulated KIR6.1/
SUR2B, with only the former significantly inhibiting whole-
cell currents. Such an isoform-selective effect of CnAa has
previously been described for Ca2+-activated Cl- channels in

pulmonary artery (Greenwood et al., 2004). So far this is the
only isoform reported to regulate either Ca2+-activated K+

channels (Loane et al., 2006) or TRESK, a member of the twin
pore family of K+ channels (Czirjak and Enyedi, 2006). More-
over, CnAa has the appropriate cytosolic cellular distribution
to regulate plasmalemmal ion channels in rat aortic smooth
muscle whereas CnAb does not, being largely confined to the
perinuclear region, where it is differentially translocated into
the nucleus in response to smooth muscle mitogens (Jabr
et al., 2007). In pulmonary artery, the cellular distribution of
the two isoforms was found to be more homogeneous,
though translocation to the membrane was only observed
with CnAa, but not CnAb when [Ca2+]i was elevated to
500 nmol·L-1 (Greenwood et al., 2004). Despite an 85%
homology between CnAa and CnAb, different substrate
affinities and catalytic activities are displayed by these two
isoforms (Perrino et al., 2002), which may contribute to their
selective cellular function.
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In our study we found no evidence that either PP2A or PP1
regulated SUR2B/KIR6.1 under basal conditions. This conclu-
sion is based on no discernible effect of okadaic acid, which
blocks either phosphatase in the low to high nanomolar
range respectively (Herzig and Neumann, 2000). Lack of
involvement from PP1 was contrary to our expectation
because calcineurin is known to activate PP1 through dephos-
phorylating either PP1 and/or its endogenous inhibitors

(DARPP32, inhibitor-1), thus making its activity potentially
dependent on Ca2+/calcineurin in the intact cell (Hubbard and
Cohen, 1989; Halpain et al., 1990; Mulkey et al., 1994). Given
that HEK-293 cells do express endogenous PP1 (Morimoto
et al., 2004; Huang et al., 2005), this might suggest that either
the cellular localization of this phosphatase is not in the
vicinity of the KATP channel or that it cannot oppose PKA
phosphorylation of functional channel sites. Little is known
about the role of phosphatases in vascular smooth muscle,
though in rat mesenteric artery, PP1 and PP2A inhibitors
either had no effect or slightly increased basal KATP currents
while actually decreasing them in guinea-pig mesenteric
artery (Firth et al., 2000; Hayabuchi et al., 2001). In contrast,
PKC-mediated inhibition of KATP channels was significantly
enhanced by okadaic acid in both vascular and non-
vascular smooth muscle (Firth et al., 2000) suggesting Ca2+-
independent phosphatases may play a more prominent role
in opposing PKC signalling. In tissues expressing other KATP

channel subtypes, PP2A inhibits channel activity, promotes
rundown and opposes the effects of PKC (Kubokawa et al.,
1995; Kwak et al., 1996; Light et al., 1996), while calcineurin
appears a major regulator of skeletal muscle channels in
humans (Singer et al., 2005), but not in rat renal tubule cells
(Kubokawa et al., 1995).

We also considered the possibility that Ca2+ might inhibit
the KATP channel through activation of Ca2+-dependent iso-
forms of PKC. We think this unlikely based on lack of effect of
Gö6976, an inhibitor of conventional PKC isoforms (a,b,g)
which are activated by both Ca2+ and diacylglycerol. This
finding is also consistent with previous observations showing
angiotensin II inhibition of vascular KATP channels involves
PKCepsilon, a Ca2+-insenstive isoform of PKC (Hayabuchi
et al., 2001; Sampson et al., 2007). Moreover, the same
isoform is responsible for PKC-mediated inhibition of KIR6.1/
SUR2B induced by phorbol esters (Quinn et al., 2003).

We sought to investigate whether calcineurin could act by
modulating the degree of phosphorylation of residues
located on either the channel itself or a regulatory protein
such as PKA. Our results support a mechanism whereby cal-
cineurin and PKA can directly compete for the same residues
on the KATP channel, with the degree of channel activation
depending on the relative activities of PKA and calcineurin
(Figure 7). Based on our phosphorylation data, we would
surmise that S385 in Kir6.1 is one of the sites involved in
this reciprocal regulation. This is consistent with the corre-
sponding site in Kir6.2 (S372) being the major site of phos-
phorylation promoted by Gs-coupled receptors or direct
stimulators of PKA (Beguin et al., 1999). We believe however
that additional PKA sites (Quinn et al., 2004; Shi et al., 2007;
2008a) contribute to the action of calcineurin. We have pre-
viously shown two other sites in SUR2B (T633, S1465) to be
functionally involved in the activation of KIR6.1/SUR2B by
cyclic AMP elevating agents (Quinn et al., 2004; Shi et al.,
2007), while in other studies S1387, a site in the second
nucleotide-binding domain of SUR2B, is reported to be the
main site (Shi et al., 2007; 2008a). It is also possible other
serine sites (S1571 in SUR1) might contribute to basal
channel activation (Beguin et al., 1999). Taken together, it is
likely that multiple sites are dephosphorylated by cal-
cineurin. Indeed KV2.1 channels expressed in HEK cells are
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extensively phosphorylated at several serine sites under
basal conditions (Park et al., 2006). These sites can be vari-
ably dephosphorylated by calcineurin to give graded regula-
tion of channel activity, a mechanism which allows for the
fine tuning of neuronal action potential firing (Park et al.,
2006).

A multisite phosphorylation mechanism for PKA activa-
tion of the vascular KATP channel is not strongly supported by
the data of Shi and colleagues. Based on systematic muta-
tional analysis of all putative PKA sites, it was concluded that
the main phosphorylation site responsible for the functional
effects of forskolin or the b2-receptor agonist isoprenaline is
S1387 (Shi et al., 2007; 2008a). Moreover, on making the
exact mutations they were unable to repeat the observations
in our original paper (Quinn et al., 2004). How, therefore, do
we reconcile these seemingly conflicting data? The most
notable difference in their studies is that experiments were
performed in the presence of EGTA in the bath or pipette
solutions with no added Ca2+ (Shi et al., 2007; 2008a). Thus,
based on our results presented here, we would predict that in
0 Ca2+, more PKA sites (or the relative proportion of an indi-
vidual site) would become phosphorylated due to the low
calcineurin activity. The latter would also promote higher
basal PKA activity, due to increased phosphorylation of the
RII subunit (Figure 7). This may explain why forskolin-
induced currents relative to activation by the KATP channel
opener were smaller than we observed in the present study
in 18 nmol·L-1 Ca2+ (40% vs. 100% respectively). Thus, it is
likely that both groups are investigating contributions from
different PKA sites under the different calcium levels. Fur-
thermore, Shi and colleagues could not completely rule out a
role for S385, as mutating this site to glutamate instead of
alanine, did cause about a 30% reduction in the forskolin-
induced activation of KIR6.1/SUR2B (Shi et al., 2007). Lastly,
contributions from other unidentified sites could not be
ruled out given the moderate activation by PKAcat observed
in their S1387 mutant (Shi et al., 2007).

What might be the functional significance of calcineurin
regulation of the KATP channel? We postulate that under con-
ditions where Ca2+ levels are elevated, for example, in the
presence of a vasoconstrictor, this would promote channel
closure. Indeed angiotensin II inhibits KATP channels in part
through inhibiting basal PKA activity (Hayabuchi et al.,
2001), which we would argue results from calcineurin oppos-
ing PKA phosphorylation. The other consequence might be to
limit and/or impair channel opening by vasodilator agents
known to activate PKA. Interestingly, KATP channels do not
contribute to forskolin-induced relaxation of phenylephrine
contractions unless tissues are first incubated with endotoxin
(Wilson and Clapp, 2002). In this context, opening may result
from prolonged NO production and/or superoxide generation
inhibiting calcineurin activity (Sommer et al., 2002). The net
effect would be to promote hyperphosphorylation of the KATP

channel even at relatively high Ca2+ levels. A parallel might be
drawn in patients on cyclosporin therapy who develop life-
threatening hyperkalemia (raised plasma K+ levels), which
can successfully be treated with glibenclamide (Singer
et al., 2005). Thus low calcineurin activity is likely to drive
channel opening under physiological and pathophysiological
conditions.

In conclusion, this study reveals that calcineurin Aa is the
main mediator of the inhibitory action of Ca2+ on KIR6.1/
SUR2B and that the mechanism involves dephosphorylation
of PKA-phosphorylated sites on the channel. Such a mecha-
nism may oppose the action of vasodilator hormones known
to signal though PKA.
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