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The gaseous second messenger nitric oxide (NO), which readily
diffuses in brain tissue, has been implicated in cerebellar long-term
depression (LTD), a form of synaptic plasticity thought to be
involved in cerebellar learning. Can NO diffusion facilitate cere-
bellar learning? The inferior olive (IO) cells, which provide the error
signals necessary for modifying the granule cell–Purkinje cell (PC)
synapses by LTD, fire at ultra-low firing rates in vivo, rarely more
than 2–4 spikes within a second. In this paper, we show that NO
diffusion can improve the transmission of sporadic IO error signals
to PCs within cerebellar cortical functional units, or microzones. To
relate NO diffusion to adaptive behavior, we add NO diffusion and
a ‘‘volumic’’ LTD learning rule, i.e., a learning rule that depends
both on the synaptic activity and on the NO concentration at the
synapse, to a cerebellar model for arm movement control. Our
results show that biologically plausible diffusion leads to an
increase in information transfer of the error signals to the PCs
when the IO firing rate is ultra-low. This, in turn, enhances
cerebellar learning as shown by improved performance in an
arm-reaching task.

The gaseous second messenger nitric oxide (NO), which
readily diffuses in brain tissue irrespective of cell membranes

or processes, has been implicated in cerebellar long-term de-
pression (LTD), a form of synaptic plasticity thought to be
involved in cerebellar learning. It is not clear, however, what
could be the advantage of NO diffusion for learning in general,
and cerebellar learning in particular, because it appears at first
that it should decrease synaptic specificity, the hallmark of
Hebbian learning (1).

From its anatomy, the cerebellum can be analyzed in terms of
small structural and functional units, or microcomplexes (2),
which are defined by one-to-one relationships between inferior
olive (IO) cell assemblies, groups of deep nuclear cells, and
overlying microzones (3), which are narrow longitudinal strips of
cerebellar cortex. The cerebellum has been proposed to be an
associative learning device (4, 5), where each microcomplex is an
adaptive unit associated with a unique bodily function (2). In this
learning hypothesis, the granule cells (GCs) provide a sensori-
motor context to the Purkinje cells (PCs) of the microzone,
whereas the climbing fibers—the axons of the IO neurons—
carry the error signals that modify the GC-PC synapses in a
supervised manner. This theory is supported by experiments
showing that the coactivation of GCs and climbing fiber inputs
induces LTD of the GC-PC synapses (6), which is thought to be
caused by the phosphorylation of a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors (7). Furthermore,
it has been shown that IO neurons carry teaching or error signals
that are used for the acquisition of motor skills (8–11) and for
conditioned motor behavior (12). In addition, according to
modern computational theories of cerebellar motor learning (13,
14), the IO must transmit error signals with good temporal and
spatial resolution so that individual microcomplexes can acquire
internal models of sensory motor transformation (15). The
ultra-low firing rates of IO neurons in vivo, rarely more than two
or four spikes within a second (16), is consistent with these

learning theories. Because, in these theories, the IO carries error
signals only for learning and not for on-line control, the inter-
ference of the PC responses to the IO spikes (i.e., the complex
spikes) with real-time motor control [carried by the simple spikes
generated by parallel fibers (PFs)] should be minimal (9).
However, the low firing rate challenges the assumption that the
IO output carries rich information error signals necessary to
learn complex internal models: during each movement, each PC
will receive only one or two spikes. How can such a sporadic error
signal lead to efficient cerebellar learning?

NO plays a role in cerebellar LTD (17, 18), as increased levels
of NO ultimately inhibit phosphatases, thus preventing dephos-
phorylation (7). Cerebellar NO also has been directly related to
adaptive behavior: the injection of NO synthesis inhibitors or NO
scavengers impairs eye blink conditioning (19, 20), adaptation in
a walking task (21), and adaptive changes in vestibulo-ocular
reflex (22, 23). Although NO can be produced by PF stimulation
(24–26), there is strong evidence that climbing fiber stimulation
results in a large amount of NO production (27–29). This has
been confirmed by experiments showing that a strong activation
of the IO by harmaline results in a large amount of NO release
in the cerebellar cortex (30, 31). Furthermore, electrical stimu-
lation of the climbing fiber input seems to result in larger
quantities of released NO in wider areas of the cerebellar cortex
than that that occurs with PF stimulation alone (32).

NO directly diffuses away from the site of production (33)
because it is extremely permeant, and can cross cell membranes,
irrespective of the cellular processes. Because the sphere of
influence of NO includes the synaptic terminal where it is
released as well as terminals farther away, it can influence distant
neurons. Given a diffusion coefficient of 3,800 mm2ys and a
half-life of about 4 s (33), NO can diffuse 160 mm in all directions
in 4 s (1). This sphere of NO diffusion is to be compared with
the Purkinje soma width of 35 mm. Thus, even if the diffusion
coefficient is smaller in vivo, it is highly probable that the NO
released by a PC can affect several neighboring PCs.

In this paper, we examine how NO diffusion influences
cerebellar learning. We first show that, when the mean IO firing
is low, NO diffusion can improve the transmission of sporadic IO
error signals to PCs within a microzone. Second, to investigate
the relationship between NO diffusion, LTD, and adaptive
behavior, we add NO diffusion and a ‘‘volumic’’ LTD learning
rule (34) to a biologically plausible cerebellar model for adaptive
arm movement control (35). Our simulation results show that
NO diffusion can enhance cerebellar adaptive control.

Methods
Cerebellar Neural Model. Testing whether NO diffusion can en-
hance cerebellar adaptive control requires a task that is suffi-
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ciently difficult to learn but still computationally tractable.
Learning the inverse dynamics of a six-muscle, two-joint arm has
this proper balance. Schweighofer et al. (35, 36) studied the role
of the cerebellum in adaptive movement control by inserting a
detailed cerebellar model into a basic control system model
(cerebral cortex and spinal network) that fed crude motor
commands to a six-muscle, two-joint arm. The cerebellar neural
model could learn how to compensate for interaction torques
that occur during reaching movements (37). The inputs to the
mossy fibers were kinematic variables and the IO carried feed-
back errors. After learning the inverse dynamics of the arm, the
outputs of the cerebellar neural network were the interaction
torques necessary for precise control.

We simplified the architecture of the real cerebellar cortex by
only considering a two-dimensional surface. The PC dendritic
trees were thus flattened and reduced to rectangles. Here we
slightly modified the architecture of the Schweighofer et al.
model (35) to better take into account the anatomy of the
cerebellar cortex. In the real cerebellum, microzones’ widths
range from under 500 mm to 1,500 mm and their lengths are up
to several millimeters. For computational tractability, a micro-
zone was modeled by a 315 3 630-mm surface and contained 27
PCs, each occupying a 35 3 210-mm rectangle; thus, there were
nine columns and three rows of PCs per microzone (as drawn in
the shoulder extensor microzone, left of Fig. 1). The cells were
distributed in a shifted manner such that the same set of PFs
crossed one PC dendritic tree of three along the PF beam.
Furthermore, each PC domain was divided into 216 5 3 5-mm
synaptic domains, which corresponded to GC synapses. To
reflect the cerebellar connectivity of the previous model (35),
the 27 PCs of a microzone then projected onto nine deep nuclear
cells.

We modeled four microzones (35): a flexor and an extensor
microzone for the shoulder and elbow joints. The microzones
were innervated by a group of IO cells that received signals that
reflected the errors in motor performance in joint coordinates
(13, 35). Each error signal was distributed to 27 IO cells, i.e.,
there were as many IO cell as PCs, with a one-to-one connection.
(Note that an alternative view is that different IO cells receive
different signals, appropriate to different forms of error relevant
to the task the microcomplex contributes to). Because the IO

cells fire at a very low rate, they were modeled as spiking
neurons. It has been shown by simulation that irregular, desyn-
chronized firing caused by the electrical coupling of IO cells
enhances input-output information transmission¶; in addition,
successful cerebellar learning occurs best if the IO neuron firings
are irregular (38). This hypothesis is supported by the apparently
random IO firing in behaving animals at rest (39) and during
ocular following response (9). Thus, to generate in vivo-like IO
spikes, we used stochastic Poisson spike generators whose mean
frequency was modulated by the error signals (1). The spikes
lasted for 10 ms and, unless otherwise noted, we scaled the input
signals such that the average firing rate was 0.5 spikesys.
Although this value might underestimate real IO firing rates, IO
cells recorded during simulated arm movements before learning
(see below) had maximum mean firing rates between 2 and 4
spikesys, in line with biological data (8). Cerebellar connectivity
and cellular parameters for the rest of the neural circuitry, which
notably comprised 9 3 9 mossy fibers, 54 3 54 GCs, 3 3 3 Golgi
cells, have been described (35).

NO Diffusion and Cerebellar Learning. The equation that governs
NO diffusion is the Fick’s law and is given by:

­@NO#

­t
5 D¹2@NO# 2 k@NO# 1 S , [1]

where [NO] is the NO concentration, D the diffusion coefficient,
¹2 the Laplacian operator, k the first-order kinetic decay, and S
the source term. ¹2[NO] represents the rate of diffusion intoyout
of a given location, k[NO] is the rate at which NO disappears by
reaction. We approximated the solution to this equation by
considering the stationarity hypothesis: during a short time, the
NO concentration is constant on the (very small) surface of each
PF-PC synapse. After discretizing the Fick’s law (40), we could
simulate the concentration at GC-PC synapses. Because the time
step needed to solve the NO concentration evolution equation
depends on the diffusion and absorption constants, we adjusted
the time step for NO diffusion so that the variation in NO at each

¶Schweighofer, N., Doya, K. & Kawato, M., 29th Annual Meeting of the Society of Neuro-
science, Oct. 23–28, 1999, Miami Beach, FL, abstr. 368.7.

Fig. 1. Structure of the model of the cerebellar cortex and example of NO diffusion. We modeled four microzones: a flexor and an extensor microzone for the
shoulder and the elbow joints. Each microzone contained nine columns and three rows of PCs as drawn on the left (shoulder extensor microzone). The color
picture shows an example of the spatial aspect of NO diffusion in the model (k 5 0.3 s21, D 5 3,300 mm2ys); light colors show high NO concentrations. The large
NO concentration in the most rightward microzone (elbow flexor microzone) was caused by a large error in the elbow flexor during this movement; conversely,
low concentration in the most leftward microzone (shoulder extensor microzone) was caused by a small error in the shoulder extensor.
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synapse would not be more than 20% from one time step to the
next. The time step for neural and arm dynamics was 5 ms. The
time step for NO diffusion was typically 10 or 50 times smaller.

We assumed that NO is necessary for LTD induction and that
NO arises solely from IO discharge (see below for an alterna-
tive). Because coactivation of PF and IO inputs induces LTD at
the PF-PC synapses, LTD expression has been modeled by the
negative product of the PF activity and the increment of the
climbing fiber from its mean level (13). Here, we replaced the
climbing fiber activity by the synaptic NO concentration, which
was normalized by the maximum concentration. At each time
step, the GC-PC synaptic efficacies are updated by the following
‘‘volumic’’ learning rule (34):

Dwi
ltd 5 2h PFi

@NO#i 2 ^@NO#i&

@NO#i
max , [2]

where PFi(t) is the PF activity, [NO]j is the concentration of NO
at the synapses, ^[NO]j& is the running average, and [NO]i

max is the
maximum concentration at this synapse recorded during a test
trial before learning (see below). Dividing by the maximum
concentration was necessary to compare learning results when
varying the diffusion parameters, because large amounts of NO
would artificially increase the learning rate. A subtractive nor-
malization term was included in the learning rule to keep the
sum of the weights constant for each PC. In a first approxima-
tion, we assumed that NO production is purely caused by
climbing fiber activity, i.e., when the IO discharges, S 5 1 in Eq.
1, and S 5 0 otherwise. Fig. 1 shows an example of the spatial
aspect of NO diffusion in the cerebellar cortical model (k 5 0.3
s21, D 5 3,300 mm2ys). Note the large NO concentration in the
elbow flexor microzone, which was produced by a large elbow
flexor error during this particular movement.

Finally, we considered a second learning rule for which PF also
releases NO: the learning rule was the same as Eq. 2, but NO was
produced by both IO cells and the GC synapses, in variable
proportions. We scaled the NO produced by the average firing
rates.

Task 1: Transmitting Sinusoidal Inputs at Various Frequencies. In this
first experiment, we assessed the information content of the NO
signals by computing the mutual information (41) between the
NO concentration at a particular synapse and a sinusoid input to
the IO Poisson spike generators. The results did not depend on
the cell recorded because all of the IO cells received the same
input and there was symmetry in the connections. For each
computation of the mutual information, both the NO concen-
tration and the input variable were placed in 1,000 bins, thus
creating 1,000 levels. Because of the delay between the excitation
and the NO response, the mutual information reached a maximal
value with a 20-ms delay. We then normalized this mutual
information by the entropy of the input (the ratio is 1 for
no information loss) and ran 10 series of 100 3-s trials for vari-
able IO mean firing rates and for variable sinusoidal input
frequencies.

Task 2: Learning to Control Reaching Movements. We simulated
planar reaching movements (duration 0.7 s) to eight targets on
a circle of radius 20 cm around the start position. The target to
the right of the start position was defined as the 0° direction, and
targets at successive counterclockwise positions were given in 45°
increments. At t , 0, the hand was on the 90° target. At t 5 0 s,
the target was first moved to the central position. At t 5 1.2 s (i.e.,
0.5 s after the end of the desired movement), the target was
displaced to a new position, and so on. The straight, desired
trajectories were generated by a minimum-jerk trajectory gen-
erator in extra-personal space and then converted to joint angles
by an inverse kinematics transformation (35). To assess perfor-

mance, we computed the mean square error (MSE) between the
real and the desired trajectory during a test trial in which every
target is visited once, sequentially (there were 16 movements in
a test trial: eight to the targets and eight back to the initial
position). We show the MSE after 200 movements normalized by
the MSE before learning, which was 7.63 cm2.

Results
We first varied the mean firing rate of IO cells, which all received
the same sinusoidal inputs. We then computed the mutual
information between the excitation and NO concentration at a
randomly chosen synapse with and without diffusion (D 5 3,300
mm2ys; k 5 0.3 s21 in both cases). As shown in Fig. 2A, when the
IO mean firing rate was low, like in the real cerebellum (,3
spikesys), diffusion provided better information transmission of
the error signal to the PC. When the mean firing rate was high
(.3 spikesys), the nondiffusive system was more efficient be-
cause the PCs received enough information to rebuild the whole
error message. Note that the diffusive system was more robust
regarding changes in the firing rate than the nondiffusive system,
which was very sensitive to such changes. For low firing rates, the
diffusive system transmitted more than twice as much informa-
tion as the nondiffusive system.

To investigate the performance of the NO diffusive system in
response to diverse inputs, we then varied the frequency of the
sinusoidal excitation input (Fig. 2B). When the input frequency
was less than 2 Hz, more than 60% of the information was
transmitted after 100 trials. However, the information transmit-
ted by NO decreased when the frequency of the signal was
increased, because the NO diffusion process has a low-frequency
tuning.

The most important parameters in our model were the
diffusion coefficient D, and the first-order kinetic decay k in Eq.
1. We, therefore, performed extensive simulations of the arm
movement task to find the values that gave the best learning
performance. The best learning was obtained with k 5 0.3 s21

(corresponding to a half-life of 3.33 s) and 2,000 , D , 3,300

Fig. 2. Mutual information between sinusoidal excitation and NO concen-
tration with and without diffusion. (A) As a function of IO mean firing rate.
When the mean firing rate is low, diffusion provides better information to the
learning synapses. (B) As a function of the sinusoidal input frequency. NO
diffusion process is a low-frequency pass filter and it cannot carry high-
frequency signals, so the efficiency of the error information transmission by
NO decreased when the signal frequency increased.
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mm2ys. These values are well within the biologically plausible
range, at least in vitro (33). In Fig. 3A, we plotted the MSE after
200 movements as a function of the diffusion constant D for k 5
0.3 s21; for values lower than D 5 2,000 mm2ys; NO did not
diffuse far enough and learning was poor. Conversely, for larger
values, NO was too spread out and the input signals were too
filtered for good learning.

From its release point, NO can diffuse in any direction, so one
synapse in a given microzone may receive, via diffusion, an error
signal that originally was sent to a neighboring microzone. To
evaluate the effect of these interferences in learning, we artifi-
cially separated all of the microzones (to limit the edge effects,
each microzone was wrapped around), varied the diffusion
constant, and computed the normalized MSE. The dashed curve
in Fig. 3A shows that when the diffusion constant was increased,
the separated model gave, as expected, better results than that
obtained by the regular model: the error was almost half that of
the nondiffusive system. Furthermore, the learning loss caused
by microzone interference became higher when the diffusion
constant increased.

We then computed the normalized MSE in the arm reaching
task after 200 movements as a function of the IO firing rate for
both a diffusing (D 5 3,300 mm2ys) and a nondiffusing system
(D 5 0 mm2ys). As shown in Fig. 3B, for ultra-low (0.5–2 Hz)
firing rates, diffusion dramatically enhanced learning. When the
mean firing rate was higher than 4 spikesys, however, the
performance of the diffusive system was not much better than
that of the nondiffusive system.

In the above experiments, NO was released solely from IO
activity. Because several studies have indicated that NO also can
be released through GC activity, we ran simulations to measure
the MSE after 200 training movements while varying the amount
of NO released from PF activity. We found that as long as the
percentage of NO released by each PF spike was less than 20%
of the NO released by each IO spike, then NO diffusion
enhanced learning.

Discussion
In this paper, we showed that biologically plausible NO diffusion
increases the transmission of sporadic IO error signals to PCs

within a microzone. Furthermore, the improvement takes place
only for parameter values corresponding to biological plausibil-
ity. Thus, besides the suggested role of NO diffusion in devel-
opment and memory formation (42), we propose here that NO
diffusion can enhance cerebellar learning. Although NO diffuses
to neighboring synapses, we suggest that the unit of computation
in the cerebellar cortex is still the synapse; the whole computa-
tion (here the computation of the interaction torques), however,
is not performed by a single neuron, but by an entire group of
PCs in a microzone. Because the IO cell’s firing rate is low (at
most one or two spikes will be generated during a movement),
the PCs directly receive only a poor representation of the error
signal necessary at each trial, which limits the learning process.
Given a diffusion coefficient of 3,300 mm2ys and a half-life of
3.33 s, NO can diffuse 148 mm in all directions in 3.33 s in a
two-dimensional plane or 182 mm in the three-dimensional tissue
(see equation 11.26 in ref. 1). This sphere is to be compared with
the PC soma width, 35 mm. Thus, NO released from an IO
discharge affects several neighboring PCs and distributes the
sporadic error signal to other PCs of the microzone, which
enhances learning. Note, however, that an alternative view to the
one proposed here is that different PCs could receive different
signals, appropriate to different forms of error relevant to the
task the microcomplex contributes to. Comparing the complex
spike discharges of several PCs during movements within a
microzone may shed light on this issue.

We identified three limitations of NO diffusion for cerebellar
learning: (i) decay in the high-frequency signal, (ii) interference
between microzones, and (iii) possible error independent plas-
ticity caused by NO release from PF activity. In the following, we
address these limitations in light of our results and the assump-
tions we have made.

(i) Considering the results of Fig. 2B regarding the limit
frequency for information transmission through NO diffusion,
we performed a frequency analysis of the IO inputs during the
16 test movements. This analysis showed that the input signal
energy was carried mostly by frequencies between 0 and 5 Hz.
However, Fig. 2B shows that frequencies superior to 2 Hz are not
properly transmitted. Thus, some high-frequency harmonics of
the signal error may not be carried properly by the NO diffusion
process. This result may constitute a limit to NO enhanced
learning. Higher frequencies might, however, be directly trans-
mitted via the second, NO independent, biochemical pathway
that is involved in cerebellar LTD formation. Protein kinase C
(PKC), which is activated by both calcium entry through voltage-
gated calcium channels caused by climbing fiber activation and
by diacylglycerol produced by activation of metabotropic recep-
tors at GC-PC synapses, phosphorilates a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors, and thus
depresses synaptic efficacy (7). We currently are developing a
biochemical model of LTD that includes both the NO and the
PKC pathways. From such a model it will be possible to derive
learning rules that take into account direct PF and IO activities
(by the PKC pathway) as well as NO diffusion (by the NO
pathway).

(ii) We have shown that, between contiguous microzones, NO
diffusion creates interferences that impede learning when com-
pared with an ideal cerebellum in which there is no diffusion
from one microzone to the next. However, this interference
problem might be overestimated in the model when compared
with the real cerebellum for two reasons. First, the microzones
in the model were only 315 mm wide, whereas actual biological
values are between 500 and 1,500 mm (2). Second, our model
consisted of 108 PCs only, each of 35 mm width, whereas the PC
dendritic tree in the real cerebellum is about 9 mm. Diffusive NO
is thus likely to reach many more PCs than in the model.

(iii) NO also has been considered to be produced by PF stimu-
lation (24–26). This could be a problem for our NO-enhanced

Fig. 3. MSE for an arm reaching learning task after 200 movements. (A) As
a function of the diffusion constant D for k 5 0.3 s-1 for the normal cerebellar
cortex (plain line) and an idealized cerebellar cortex in which the microzones
were artificially separated for NO diffusion (dashed line). (B) As a function of
the inferior olive mean firing rate.
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learning hypothesis, as we found that NO release from GCs
decreased the efficiency of cerebellar learning resulting from NO
diffusion. The cause of this loss in learning efficiency is that the
critical signal to be transmitted in the system is not the GC activity
but the error signal, which is of ultra-low frequency. The presence
of NO released from GCs is a noise worse than uncorrelated noise
added to the error signal, and it therefore degrades the system’s
global learning performance. This issue could be resolved by
performing precise quantitative measurements of NO release after
climbing fiber and PF stimulation. Finally, an assumption we made
in the model was that all nearby PFs carry relevant information.
However, because this is unlikely, a volumic learning rule such as
Eq. 2 would create wrong associations between the irrelevant PF
inputs and the errors carried by NO diffusing from nearby PCs. It
has been proposed that metaplasticity at the PF-PC synapses, i.e.,
plasticity of the individual learning rates, could allow the PCs to
ignore irrelevant PF inputs (43). Thus, we propose that an extended
version of our volumic learning rule that includes metaplasticity
could lead to efficient cerebellar learning even when nearby PFs
carry irrelevant information.

It is possible to test our volumic LTD learning rule by the
following experiment. Recent advances in optical imaging allow
for the study of both the temporal and the spatial extent of NO
diffusion at the surface of the cerebellar cortexi. We propose to
stimulate the PF beam and climbing fiber input with a protocol
that induces LTD while simultaneously monitoring the spread of
NO diffusion with optical recording. Then by testing for synaptic
depression in neighboring Purkinje neurons on beams that were
not excited by the IO stimulation but within the range of NO
diffusion, evidence supporting the LTD volumic learning rule
could be obtained.
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