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Terminal restriction fragment length polymorphism (TRFLP) profiling of the internally transcribed spacer
(ITS) ribosomal DNA of unknown fungal communities is currently unsupported by a broad-range enzyme-
choosing rationale. An in silico study of terminal fragment size distribution was therefore performed following
virtual digestion (by use of a set of commercially available 135 type IIP restriction endonucleases) of all
published fungal ITS sequences putatively annealing to primers ITS1 and ITS4. Different diversity measure-
ments were used to rank primer-enzyme pairs according to the richness and evenness that they showed.
Top-performing pairs were hierarchically clustered to test for data dependency. The enzyme set composed of
MaeII, BfaI, and BstNI returned much better results than randomly chosen enzyme sets in computer simu-
lations and is therefore recommended for in vitro TRFLP profiling of fungal ITSs.

Terminal restriction fragment length polymorphism (TRFLP)
profiling was originally developed as a means of genotyping
mixed DNA samples (30) and is currently being employed in
fungal community ecology studies (3, 5, 6, 7, 10, 13, 19, 22, 26,
27, 29, 33, 38), despite a number of technical and conceptual
difficulties (11). Briefly, TRFLP profiling involves amplifying
the DNA in pools of mixed genetic material with fluorescently
labeled primers, digesting the products with restriction endo-
nucleases, and sizing the labeled terminal fragments in a se-
quencer. The difference in the positions at which the different
restriction enzymes cleave DNA is thought to provide enough
variability for such DNA mixtures to be characterized and the
contributing organisms to be identified.

However, the technique is not without its problems. DNA
extraction and PCR amplification biases burden most modern
molecular techniques, including TRFLPs (18, 25). Addition-
ally, concerns exist regarding the ability of the differences be-
tween primer-enzyme pairs (PEPs) to generate sufficiently dif-
ferent fragment sizes (2), the success of enzymatic cleavage (2),
the dependency on the detection threshold of the sequencer
(4), and the accuracy of DNA sizing (1). The choice of the
primer pairs and restriction enzymes to be used has also been
a matter of concern since the appearance of TRFLP profiling.
Liu et al. (30) performed virtual digestion of all the bacterial
RNA sequences in the Ribosomal Database Project database
(release V) with 10 different enzymes and four primer pairs.
This pioneering work showed the importance of avoiding en-
zymes with highly conserved target motifs, something that later
became recognized as a major source of TRFLP bias (2, 14, 16,

32). Similar studies have been performed by Osborn et al. (36),
Dunbar et al. (12), Engebretson and Moyer (15), and Cardi-
nale et al. (8).

The first virtual TRFLP analysis involving a database of
fungal DNA sequences was performed by Edwards and Turco
(14). This consisted of virtual digestion, by use of six restriction
endonucleases, of 316 internally transcribed spacer (ITS) se-
quences belonging to a number of ectomycorrhizal genera.
Avis et al. (2) found only small differences in the diversity of
the TRFLPs produced in silico by three PEPs when using their
own fungal ITS database, although these differences increased
with sample number in iterative analysis. Recent advances
using automated resources, such as REPK software (9), have
allowed optimal enzyme selection for TRFLP profiling of pre-
viously defined communities of organisms. This software se-
lects up to four restriction endonucleases capable of discrimi-
nating a desired number of sequence groups. However, this
system relies on a priori information, which in real biological
communities may not available.

The aim of the present work was to improve selection of
restriction enzymes for use in the TRFLP profiling of the ITS
sequences of unknown fungal communities.

MATERIALS AND METHODS

Sequence acquisition and processing. The International Nucleotide Sequence
Database (INSD) was searched via the NCBI web service (http://www.ncbi.nlm
.nih.gov/) in November 2007 for ITS sequences of dicaryal fungi thought to
anneal with the ITS1-ITS4 primer pair. While these are not fungal DNA-specific
primers, many more fungal ITS sequences contain their complementary se-
quences than those of the truly fungal specific primer pair ITS1F-ITS4. The
diversity of the fragment sizes obtained with these primer pairs should be the
same as that obtained with ITS1F-ITS4 since the length of the region between
ITS1F and ITS1 is conserved (in fact, it contains the ITS5 universal primer
locus). The search strings included the following terms and their etymological
variations: (“ascomycete” [organism] AND “internal” [all fields]) and (“basidio-
mycete” [organism] AND “internal” [all fields]). These were additively em-
ployed. The FASTA format files produced were exported to a Microsoft Excel
spreadsheet and filtered for the presence of the ITS1 (5�-TCCGTAGGTGAA
CCTGCGG-3�) and ITS4 (5�-TCCTCCGCTTATTGATATGC-3�) sequences.
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Extra bases beyond the primer complementary sequence positions were de-
leted. ITS sequences only identified above the genus level were discarded, while
sequences annotated as cf. or aff. were assumed to be properly identified. The
entire database was virtually digested individually with 135 commercially avail-
able type IIP restriction endonucleases (see Table S1 in the supplemental ma-
terial), using the string-finding functions in Excel. If no target was found in an
amplicon, its length was assumed to be the size that would be recorded by the
sequence analyzer in in vitro analysis. Additionally, sequences were discarded if
they contained ambiguous nucleotides (12). Sequences identified at the genus
level were verified not to contain redundant information, i.e., no fully identified
sequences of the same genus presented the same TRFLP size (see the supple-
mental material). Finally, each set of data obtained from virtual digestion of the
entire database with each PEP was independently filtered so that, for size diver-
sity analysis purposes, a single record was obtained for each size type in each
taxon.

The influence of the filtered PEP data set size on the diversity of fragment
sizes was corrected by means of random selection of data from each PEP data set
to provide final data sets of equal size (i.e., containing the same number of data
as the smallest of all PEP data sets). This rarefaction was performed in quintu-
plet for each PEP data set. The relative abundance (pi) of each size type in each
rarefacted PEP data set was obtained using equation 1, where n represents the
number of different taxa sharing that TRFL, Sn is the number of different TRFLs
in each of these taxa, and m is the number of different TRFLs in the PEP-TRFL
data set. A final filtering step was performed to avoid analyzing fragments
outside the size range of the internal standard employed (50 to 1,200 bp) (24).
Outsiders were pooled in a single “zero” category.

pi �

��
x � 1

n
1
Sn�

m
(1)

Diversity measurements. Hill’s effective numbers of classes (20), which are
calculated from classic ecological indices (21, 23), were used to measure the
diversity of the fragments’ sizes. Hill’s indices were calculated for diversity orders
representing � values of 0, 1, 2, and � (Table 1) by using the fragment size
frequency data set obtained from each of the five rarefacted PEP data sets; the
median value was calculated for each index. The PEPs were then ordered ac-
cording to each of these four values, and the 20 top-scoring PEPs within each
diversity rank were pooled together in a top-50 group for further analysis. The
square root of Jensen-Shannon’s divergence (28) between the averages for the
five frequency data sets for each PEP pair in this pool was calculated using
equation 2, where JS� represents Jensen-Shannon’s divergence, p1 and p2 are
two probability distributions, H is Shannon’s entropy [V1,0

SM�p�], and � is the
weighting of each probability distribution (here, 0.5) (28).

JS� �p1, p2� � H��1 p1 � �2 p2� � �1H�p1� � �2H�p2� (2)

The resulting divergence matrix was subjected to multidimensional scaling in two
dimensions by using the ALSCAL and PROXSCAL routines in the SPSS 11.5
software package (with 50,000 random starting points). Tentative sorting was
performed by calculating the product of the arctangent-transformed multidimen-
sional scaling coordinates of each PEP. This transformation was intended to
standardize both coordinates in order to invest them with equal weight.

Enzyme set selection. PEPs were tested for data independence by hierarchical
clustering of the original (unfiltered) TRFLP data since some enzymes have been
reported to provide redundant data (14). Free hierarchical clustering was per-
formed using interval distance measurements, and employing the unweighted-
pair group method using average linkages for clustering. One enzyme in each of
the main clusters was selected, and the optimal number of these in a putative
optimal set was analyzed by comparing the ribotype profiles resulting from

TABLE 2. Pooled diversity for top-scoring PEPs, sorted by effective
number of classes of Renyi’s order 1 diversitya

Name Target H0 H1 H2 H�

ITS1 MaeIII /GTNAC 562 384.4 265.9 36.55
ITS1 MaeII A/CGT 544 370.9 253.8 37.74
ITS1 ApyI /CCWGG 552 364.2 237.9 33.61
ITS1 BstNI CC/WGG 543 363.1 240.0 35.22
ITS4 BstNI CC/WGG 533 361.3 213.8 24.28
ITS4 ScrFI CC/NGG 554 360.6 186.7 20.75
ITS4 ApyI /CCWGG 538 359.5 202.6 21.96
ITS4 BfaI C/TAG 532 354.8 263.8 68.59
ITS4 MaeII A/CGT 524 349.1 236.2 48.82
ITS4 StyI C/CWWGG 517 348.3 263.0 74.09
ITS4 RsaI GT/AC 505 347.4 266.4 81.04
ITS4 DraII RG/GNCCY 484 340.1 264.3 63.40
ITS1 StyI C/CWWGG 504 338.3 261.8 73.77
ITS4 BmyI GDGCH/C 496 337.4 243.0 41.39
ITS4 DdeI C/TNAG 553 336.5 181.9 27.14
ITS4 AflI G/GWCC 495 333.6 217.8 31.25
ITS4 BanII GRGCY/C 488 331.7 243.3 49.20
ITS1 AcyI GR/CGYC 511 331.6 224.4 33.15
ITS4 BstUI CG/CG 515 329.2 230.1 40.56
ITS1 DdeI C/TNAG 578 328.9 111.5 12.84
ITS1 BsiEI CGRY/CG 481 325.9 253.5 93.78
ITS1 NspBII CMG/CKG 477 325.2 252.0 80.70
ITS1 NgoMI G/CCGGC 483 323.8 255.3 93.85
ITS4 AcyI GR/CGYC 476 323.2 248.7 70.00
ITS1 BanI G/GYRCC 485 323.2 248.8 62.65
ITS1 CfrI Y/GGCCR 493 321.7 238.7 59.20
ITS1 HaeII RGCGC/Y 479 318.4 241.7 66.89
ITS1 RsaI GT/AC 526 317.6 169.1 21.06
ITS1 BstUI CG/CG 552 315.8 140.1 16.47
ITS1 AflI G/GWCC 515 314.9 127.9 14.29
ITS4 BsrFI R/CCGGY 461 313.2 239.6 75.93
ITS4 DsaI C/CRYGG 477 313.1 234.5 75.69
ITS1 ScrFI CC/NGG 546 308.7 140.9 19.66
ITS1 AhaIII TTT/AAA 461 305.9 232.9 80.02
ITS1 SfcI C/TRYAG 461 298.6 230.7 88.51
ITS1 EagI C/GGCCG 438 291.7 232.8 88.62
ITS4 MaeIII /GTNAC 527 286.8 83.6 10.91
ITS1 BfaI C/TAG 566 282.5 92.6 12.89
ITS4 KasI G/GCGCC 415 275.7 214.3 77.64
ITS4 AatI AGG/CCT 403 272.9 212.8 74.55
ITS1 PaeR7I C/TCGAG 407 272.7 217.2 85.55
ITS1 SnaBI TAC/GTA 405 268.7 213.6 82.19
ITS1 KspI CCGC/GG 403 260.0 202.5 75.60
ITS4 BsePI G/CGCGC 393 254.6 200.1 76.12
ITS1 AatII GACGT/C 387 249.7 196.3 76.36
ITS1 NlaIV GGN/NCC 515 245.6 60.6 8.680
ITS1 SspI AAT/ATT 385 243.2 190.2 75.55
ITS4 PvuII CAG/CTG 371 242.5 195.6 81.03
ITS1 BamHI G/GATCC 374 239.7 189.6 75.45
ITS4 Bsp1407I T/GTACA 366 235.2 186.7 76.55

a H1, exponential Shannon index; H0, richness; H2, reciprocal Simpson index;
H�, reciprocal Berger-Parker index; /, enzyme’s cleavage point.

TABLE 1. Hill’s effective number of classes and related
classical indices

Diversity
order Hill’s number of classesa Ecological index
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a n is the number of classes of a given distribution, pi is the frequency of the
class, and i, v� (n, p) is the efficient number of classes of order � diversity for the
given distribution.
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fingerprinting differently sized databases. The ribotype richness (the number of
different profiles), the percentage of unique ribotypes, and the ratio between
congeneric and noncongeneric shared ribotypes were calculated using optimal
enzyme sets composed of one to six enzymes. The ITS1- and ITS4-primed
TRFLP data for each enzyme were employed in this analysis.

TRAMPR simulations. The fragments produced by the selected set of enzymes
and five randomly generated sets of enzymes were compared by means of
TRAMPR software simulations (11, 17). This software allows for computer-
assisted matching of TRFLP profiles, relating them to a given molecular data-
base organized by taxonomic and ribotypic sequence similarity. Matching strin-
gency and algorithmic distance measurements can be set by the user. “Knowns”
files were generated from the databases mentioned above and used as input for
the TRAMPR program. “Sample” files with 30 replicate random communities of
10, 20, and 50 entries each were also generated and loaded. Matching was
performed with an error of 0.5 bp and by using the “maximum” distance com-
puting method. Results were exported to Excel and original taxon frequencies
calculated using equation 1, where n is the number of original taxa in each
TRAMPR grouping, Sn the number of taxa in each TRAMPR grouping, and m
the number of TRAMPR groupings in each virtual community. Finally, the
resolving power of each set was measured as the square root of Jensen-Shannon’s
divergence between the original frequency distribution (homogeneous) and the
TRAMPR-biased frequency distribution of the original taxa.

RESULTS

The INSD search of fungal ITS sequences retrieved a total
of 61,752 entries. Filtering for the presence of sequences com-
plementary to primers ITS1 and ITS4 in two subsets of ITS
sequences (totaling 11,298 and 12,716 entries, respectively)
was performed. Sufficiently identified sequences with both
complementary sequences (4,618 distinct entries) (see Table
S2 in the supplemental material) were virtually digested with
135 different endonucleases (see Table S1 in the supplemental
material), redundancy filtered, and randomly rarefacted to a
common size of 1,659 entries (presented by ITS4-ITS1 MseI)
in quintuplet. The top performers from the four different me-

dian diversity measurements (Table 1) were pooled together,
giving 48 distinct PEPs (Table 2).

As an indirect estimate of diversity, two-dimensional scaling
of Jensen-Shannon’s divergences (28) between the averaged
fragment size frequency distributions was performed, resulting
in a consistent pattern (Fig. 1) in which dimension 1 relates to
TRFLP richness (order 0 diversity) and dimension 2 represents
TRFL evenness (in the sense of the Hill series). Tentative final
scores were calculated from the rescaled coordinates (Table 3).
A putatively optimal group of enzymes formed by MaeIII,
MaeII, BfaI, BstNI, StyI, and DdeI was selected from among
the independently clustered candidates (see Fig. S1 in the

FIG. 1. Common space plot of PROXSCAL (distances as interval; 50,000 random starting points; SPSS 11.5) multidimensional scaling of the
Jensen-Shannon square root divergence matrix computed from the average frequency distributions for the top 50 PEPs. Each point represents a
different PEP.

TABLE 3. Single PEP tentative final sortinga

PEP Target MDSX MDSY Score

ITS1-ITS4 MaeIII /GTNAC 	0.7423 	0.2583 0.1614
ITS1-ITS4 MaeII A/CGT 	0.6506 	0.2471 0.1397
ITS4-ITS1 MaeII A/CGT 	0.4964 	0.2542 0.1147
ITS4-ITS1 BfaI C/TAG 	0.3415 	0.3564 0.1126
ITS1-ITS4 BstNI CC/WGG 	0.6566 	0.1642 0.0946
ITS4-ITS1 RsaI GT/AC 	0.1920 	0.3770 0.0684
ITS4-ITS1 StyI C/CWWGG 	0.2076 	0.3394 0.0669
ITS1-ITS4 ApyI /CCWGG 	0.6226 	0.1208 0.0669
ITS4-ITS1 BmyI GDGCH/C 	0.2478 	0.1201 0.0290
ITS4-ITS1 DraII RG/GNCCY 	0.0714 	0.3508 0.0240
ITS4-ITS1 BstNI CC/WGG 	0.6872 	0.0322 0.0194
ITS4-ITS1 BanII GRGCY/C 	0.1163 	0.1462 0.0168
ITS1-ITS4 StyI C/CWWGG 	0.0448 	0.3259 0.0141
ITS4-ITS1 BstUI CG/CG 	0.1410 	0.0513 0.0071
ITS1-ITS4 AcyI GR/CGYC 	0.2136 	0.0309 0.0065
ITS4-ITS1 ApyI /CCWGG 	0.7172 	0.0081 0.0050

a MDS-X and MDS-Y are the abscissa and ordinate coordinates, respectively,
obtained by multidimensional scaling. /, enzyme’s cleavage point.
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supplemental material), although MaeIII was replaced by RsaI
on the basis of cost. The group formed by the ITS1- and
ITS4-primed MaeII, BfaI, and BstNI data sets showed the
greatest increases in both the number of ribotypes and the
number of unique ribotypes (Fig. 2), indicating that the inclu-
sion of any more enzymes would be ineffective. Similarly, the
trend of the noncongeneric/congeneric shared ribotype ratio
(Fig. 2) suggests that TRFLP profiles are increasingly shared
by phylogenetically related sequences when up to three en-
zymes are used; no major changes are seen if more are in-
cluded.

The enzyme set composed of MaeII, BfaI, and BstNI (using
both ITS1 and ITS4 TRFLP data) outperformed other ran-
domly selected sets at identifying the members of model com-
munities via their TRAMPR profiles, irrespective of the num-
ber of community members. This was true despite the fact that
random enzyme sets were expected to be more data indepen-
dent, since they were formed using either ITS1 or ITS4 TRFLP
data (but not both) of six different enzymes. The enzyme set
composed of MaeII, BfaI, and BstNI was, in turn, slightly less
accurate than a single-primed six-enzyme optimal set (Table
4), in accordance with the simulations shown in Fig. 2.

DISCUSSION

An optimal, maximally cost-effective set of enzymes for
TRFLP analysis of fungal ITS, formed by MaeII, BfaI, and
BstNI, is here proposed. The results of in silico TRFLP diver-
sity measurements, hierarchical clustering, and TRAMPR sim-
ulations all support the choice of this set of enzymes. Some of
the individually top-performing enzymes were the same as
those reported in other simulations involving fungi and even
bacteria. Moyer et al. (34) reported HhaI, RsaI, and BstUI to
be the best enzymes for RFLP profiling when performed vir-
tually using a local bacterial sequence database. MspI, HhaI,
RsaI, and BstUI were reported as top performers for TRFLP
of bacterial samples by Liu et al. (30), and later, BstUI, DdeI,
Sau96I, and MspI were identified as such by Engebretson and
Moyer (15). Edwards and Turco (14), whose work involved
profiling fungal ITS sequences, identified HaeIII as the top-
performing enzyme. The same was reported by Avis et al. (2)
and Dickie and FitzJohn (11), together with HpyCH4IV. How-
ever, the most-used enzymes in real fungal TRFLP profiling
have been HinfI (3, 10, 13, 19, 26, 27, 29, 38), HaeIII (3, 5, 6,
7, 10, 13, 27), AluI (6, 7, 29, 38), TaqI (13, 19, 26, 29, 33), CfoI
(29), HhaI and MspI (31), BsuRI (29), and Hsp92II (22), among
others. While the outstanding performance of HpyCH4IV (an
isoschizomer of MaeII) is in accordance with the present re-
sults, a comparison of Tables 2 and 5 shows that most of the
other most-used enzymes cannot be considered optimal. Inter-
estingly, the present results for RsaI contrast with those ob-
tained by Edwards and Turco (14), who declared this enzyme
unsuitable for TRFLP profiling of fungal ITS sequences. This
discrepancy might be due to differences in fragment size de-

FIG. 2. Comparisons of differently sized enzyme sets. Databases of
4,618 entries (squares), 2,500 entries (triangles), and 1,000 entries
(diamonds) were constructed.
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tection range; detection thresholds can impose critical limita-
tions on measurement of diversity (4, 15).

As Marsh (32) and, later, Engebretson and Moyer (15) in-
dicated for bacterial in silico TRFLP simulations, databases
afford biased views of true diversity; not all organisms’ DNA
have received the same sequencing interest (37). Moreover,
Nilsson et al. (35) reported a worrying percentage of misiden-
tified fungal sequences in public databases, some 10 to 21% of
all those deposited. Database bias may affect the present re-
sults in a PEP evenness-dependent manner, since overestima-
tion of diversity more probably occurs in more-diverse PEP
environments.

A more realistic community would show size frequencies
dependent on abundance of local taxa, number of ITS copies
per taxon, and success of DNA extraction and amplification (4,
6, 18, 36). Assuming the frequencies derived from redundancy
filtering, a conservative estimate of the resolving power of the
TRFLPs was made.

Real biological communities are available as population sets
(PopSets) at the NCBI website, although few of them meet the
requirements for use in the current simulation. Only 10 POP
sets (search performed in December 2008) corresponding to
dicaryal fungi have a minimum of 60% of sequences (a total of
77 sequences) simultaneously showing the complementary se-
quences to the ITS1 and ITS4 primers, lack ambiguous nucle-
otides, and have been sufficiently well identified. If sufficient
POP sets could be obtained, it would be interesting to select
enzyme sets for use in identifying the organisms present in

broad ecological systems, e.g., European temperate forests or
decaying meat.

It would certainly be possible to select a different optimal
enzyme set. MaeIII was rejected on the basis of cost, but it was
in fact the best enzyme tested in the current simulation. It has
been shown that a set of enzymes selected using six one-sided
PEPs can outperform the proposed double-sided three-en-
zyme set, but this would make the method too expensive, and
the gain in accuracy would only be very small. Other factors,
such as the enzyme’s optimal buffer and working conditions,
could be interesting too. If an alternative enzyme set based on
richness was constructed, the size distribution of the fragments
produced might be uneven and data dependent, while a set
based on diversity alone might suffer the same problem. In
either case, lower diversity values would be returned and the
results would show greater variability. Some of the results of
the present work bear this out (see Tables S3 and S4 in the
supplemental material).

The proposed enzyme set is nonoptimal in two ways. First,
the entire diversity of the INSD ITS database is not fully
reproduced by the TRFLPs, and second, it is insufficiently
large to include all real diversity. As shown above, two or three
enzymes can reflect most of the variation between sequences in
this database but still cannot reflect it all, probably due to
similarities between close-relative and improperly identified
data in the INSD. Greater efficiency might be achieved by
using more enzymes (15), but broader in silico simulations
searching for more-diverse and data-independent PEPs may
lead to requirement of fewer enzymes for achievement of the
same resolving power. The number of enzymes to be used is
therefore open to discussion, but certainly there must come a
point at which too many could be used if databases are only
small (14), or too few could be used in an attempt to profile the
huge diversity of the world’s fungi (37). Thus, the number of
enzymes required in TRFLP profiling depends on the com-
bined efficiency of those selected.
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TABLE 4. Square roots of Jensen-Shannon’s divergence between original sample communities and TRAMPR-biased communities

Set PEPa

Mean square root (SD) for indicated virtual
community size

10 sequences 20 sequences 50 sequences

3E MaeII-14 MaeII-41 BfaI-14 BfaI-41 BstNI-14 BstNI-41 0.3084 (0.0622) 0.2900 (0.0448) 0.2803 (0.0411)
6E MaeII-14 BfaI-41 BstNI-14 RsaI-41 StyI-41 DdeI-14 0.2520 (0.0546) 0.2471 (0.0420) 0.2501 (0.0283)
Rand1 BssGI-41 CfoI-41 EcoNI-41 PacI-41 SwaI-41 TaqI14 0.3072 (0.0532) 0.3129 (0.0380) 0.3253 (0.0199)
Rand2 ApyI-41 BanII-41 BsiWI-14 MfeI-41 NdeI-41 NruI-14 0.4136 (0.0601) 0.4114 (0.0419) 0.4145 (0.0249)
Rand3 AlwNI-14 AspI-41 Fnu4HI-14 HpaI-41 NarI-14 SrfI-14 0.4013 (0.0480) 0.4022 (0.0322) 0.4287 (0.1024)
Rand4 AspI-41 AspHI-14 HaeII-14 Psp1406I-41 ScaI-14 SfcI-14 0.4199 (0.0604) 0.4292 (0.0379) 0.4268 (0.0212)
Rand5 BsaI-41 BspLU11I-41 CfrI-14 HpaI-41 NciI-41 NlaIII-14 0.3772 (0.0477) 0.3629 (0.0346) 0.3776 (0.0201)

a 3E, three-enzyme, double-sided PEP set; 6E, six-enzyme, single-sided PEP set; Rand1 to Rand5, randomly chosen PEP sets. “14” represents the ITS1-ITS4 primer
pair, and “41” represents the ITS4-ITS1 primer pair.

TABLE 5. Diversity values for the most-frequently used TRFLP
enzymes reported to be employed with fungi

Name
Hill’s effective no. of classes fora:

D0 D1 D2 D�

ITS1-ITS4 HinfI 350 210.1 119.6 17.37
ITS4-ITS1 HinfI 324 201.3 132.1 23.86
ITS4-ITS1 HaeIII 491 251.9 114.6 17.18
ITS1-ITS4 HaeIII 492 206.2 47.6 7.68
ITS1-ITS4 AluI 487 312.7 184.2 23.16
ITS4-ITS1 AluI 429 261.4 162.3 30.29
ITS4-ITS1 TaqI 332 194.0 119.5 22.03
ITS1-ITS4 TaqI 301 164.8 69.2 10.29
ITS4-ITS1 CfoI 376 240.1 173.5 41.59
ITS1-ITS4 CfoI 412 24.3 102.0 13.75

a D0, order 0 diversity; D1, order 1 diversity; D2, order 2 diversity; D�, order �
diversity.
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