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Rapid and effective differentiation between normal and cancer
cells is an important challenge for the diagnosis and treatment of
tumors. Here, we describe an array-based system for identification
of normal and cancer cells based on a ‘‘chemical nose/tongue’’
approach that exploits subtle changes in the physicochemical
nature of different cell surfaces. Their differential interactions with
functionalized nanoparticles are transduced through displacement
of a multivalent polymer fluorophore that is quenched when
bound to the particle and fluorescent after release. Using this
sensing strategy we can rapidly (minutes/seconds) and effectively
distinguish (i) different cell types; (ii) normal, cancerous and met-
astatic human breast cells; and (iii) isogenic normal, cancerous and
metastatic murine epithelial cell lines.

fluorescence � gold nanoparticle � sensor � conjugated polymer

Each cell type has unique molecular signatures that distinguish
between healthy and diseased tissues (1). In the case of

cancers, the distinctions between normal vs. tumor and benign
vs. metastatic cells are often subtle. The identification of cellular
signatures for early cancer cell detection is a major hurdle for
cancer therapy; the earlier these signatures can be established,
the more effectively they can be treated (2). Cancerous cells are
differentiated from noncancerous ones on the basis of intracel-
lular or extracellular (cell surface) biomarkers. Detection meth-
ods based on specific recognition of intracellular biomarkers
(e.g., DNA/RNA/Proteins) require previous knowledge of spe-
cific mutations in DNA/RNA (3) or changes in the regulation of
protein expression inside the cells. Similarly, detection methods
based on specific recognition of extracellular (cell surface)
biomarkers such as histopathology (4), bioimaging (5), antibody
arrays require prior knowledge of biomarkers on cell surfaces.
Observation of overexpressed antigens (6) on tumor cells using
antibody-based platforms have been explored using ELISA (7),
surface plasmon resonance (8, 9), nanoparticles (10–13), micro-
cantilevers (14), carbon nanotubes (15, 16), and expression
microarrays (17). Antibody arrays provide an effective but
complex approach for cancer detection, diagnosis and prognosis
(18), however, there is no single marker or a combination of
biomarkers that has sufficient sensitivity and specificity to
differentiate between normal, cancerous, and metastatic cell
types (19). Here, we describe a detection system that is based on
selective noncovalent interactions between cell surface compo-
nents and nanoparticle-based sensor elements that does not
require any previous knowledge of intracellular or extracellular
biomarkers.

The cell membrane surface consists primarily of a thin layer
of amphipathic phospholipids, carbohydrates and many integral
membrane proteins. The amount and types of which differ
between species and according to function of cells (20, 21). This
results into distinct cell membrane composition in different cell
types. Therefore, one can predict, however, that there will be
physicochemical (i.e., charge, hydrophobicity etc.) differences

between cell types and between healthy and cancerous cells.
Such physicochemical differences could potentially be detected
by an array-based ‘‘chemical nose’’ approach that relies on
selective interactions between multiple reporter elements and
the target cell.

In the chemical nose approach, an array of different sensors
is used where every element in the sensor array responds to a
number of different chemicals or analytes (22). A distinct pattern
of responses produced from a set of sensors in the array provide
a fingerprint that allows classification and identification of the
analyte (23). The collection of sensors should contain chemical
diversity to respond to largest possible cross-section of analytes.
The specific interactions involved between the reporter elements
and the analyte are noncovalent and reversible. This approach
provides an alternative to ‘‘lock–key’’ specific recognition (24)
and has been used to detect metal ions (25), volatile agents (26),
aromatic amines (27), amino acids (28, 29), and carbohydrates
(25). In recent research we have demonstrated that the displace-
ment of fluorescent polymers from differentially functionalized
gold nanoparticles with concomitant restoration of fluorescence
provides an effective array-based method for the identification
of proteins (30). More recently, we have shown that this meth-
odology can be used to differentiate between bacterial species
and even between different strains of the same species (31). We
report here a particle-polymer array that distinguishes between
healthy, cancerous and metastatic human breast cells, and
differentiates isogenic healthy and transformed cells.

Results and Discussion
Our detection system is based on conjugates between 3 struc-
turally related cationic gold nanoparticles (NP1–NP3, Fig. 1A
and Fig. S1) and the poly(para-phenyleneethynylene) (PPE)
polymer PPE-CO2 featuring charge multivalency (32) and mo-
lecular wire properties (33) (Fig. 1 A). In these noncovalent
conjugates, the nanoparticle quenches the fluorescence of the
polymer. The interactions between nanoparticles and anionic
polymers are noncovalent, and predominantly electrostatic.
When mammalian cells were incubated with these nanoparticle-
polymer complexes, there is competitive binding between nano-
particle-polymer complexes and cell types (Fig. 1B). Because of
their cationic surface, nanoparticles are expected to interact with
phospholipids, membrane proteins and carbohydrates of the cell
surface through both electrostatic and hydrophobic interactions.
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These interactions are responsible for displacement of the
fluorophore polymer from the nanoparticle-polymer complexes
generating a fluorescence response. The nanoparticles are ex-
pected to possess different affinities for dissimilar cell surfaces
depending on cell membrane composition and surface of nano-
particles. Selective displacement of the polymer from the particle
by the cell surface regenerates fluorescence, transducing the
binding event in a ‘‘turn on’’ fashion.

The complex stability constants (KS) and association stoichio-
metries (n) for the nparticle-polymer dyads were obtained
through nonlinear least-squares curve-fitting analysis (34). Com-
plex stabilities vary within 1 order of magnitude (��G � 4.5
kJ�mol�1), and the binding stoichiometry ranges from 2.5 for
NP2 to 0.9 for NP3 (Fig. S2). After determining the saturation
point for fluorescence quenching (Fig. S3), the appropriate
stoichiometries of particle and polymer were mixed in 5 mM
phosphate buffer (pH � 7.4) to yield nanoparticle-PPECO2
complexes with a final concentration of polymer of 100 nM and
of nanoparticles 10–40 nM. The complexes of PPECO2 and
NP1-3 were then incubated with different cell types to determine
changes in fluorescence intensities. We observed increases and
decreases in fluorescence intensities depending on the cell type
and the nature of nanoparticle-polymer complexes. Increased
fluorescence intensities are due to the displacement of the
PPECO2 polymer from the NP-PPECO2 complexes by cell
surfaces (Fig. 1B), whereas decreases in the fluorescence inten-
sities are due to the quenching of the residual PPECO2 f luores-
cence by the cell surfaces. These differences in the fluorescence
patterns depend on the cell type and are reproducible. We have
performed array-based s sensing using 9 gold nanoparticles that
possess different head groups and interact differently with
polymers (Fig. S3a). We studied their interactions with the
different cell types listed in Table 1, focusing on which particle
set can best differentiate between different particles. (see be-
low). From studies, we have observed the maximum differenti-
ation grouping using 3 nanoparticles NP1-NP3, as established
through jackknifed analysis (Fig. S3b).

Detection of Differences in Cell Types. As an initial test of our
method we used 4 different types of human cancer cells: HeLa

(Cervical), HepG2 (Liver), NT2 (Testis) and MCF-7 (Breast).
Fig. 2A presents the change in the fluorescence response for the
nanoparticle-polymer supramolecular complexes upon addition
of the different cancer cell types. Linear Discriminant Analysis
(LDA) was used to statistically characterize the fluorescence
changes. This analysis reduced the size of the training matrix (3
nanoparticles � 4 cell types � 6 replicates) and transformed
them into canonical factors that are linear combinations of the
response patterns (3 factors � 4 cell types � 6 replicates). The
2 canonical factors contain 96.6% and 3.3% of the variation,

Fig. 1. Molecular structures of nanoparticles and polymers, and schematic of
fluorophore displacement cell detection array. (A) Molecular structures of the
cationic gold nanoparticles (NP1-NP3) and the fluorescent polymer (PPECO2).
(B) Displacement of quenched fluorescent polymer (dark green strips, fluo-
rescence off; light green strips, fluorescence on) by cell (in blue) with concom-
itant restoration of fluorescence.

Table 1. Origin and nature of the normal, cancerous and
metastatic cell lines used in this study.

Cell line Liver HepG2 Cancerous

Human Cervix HeLa Cancerous
Testis NT2 Cancerous
Breast MCF10A Normal immortalized

MCF-7 Cancerous
MDA-MB-231 Metastatic

Mouse BALB/c mice (breast) CDBgeo Normal immortalized
TD Cancerous
V14 Metastatic

Fig. 2. Detection of human cancerous cell lines. (A) Change in fluorescence
intensities (F � F0) for 4 different cancer cell lines HeLa (Cervical), MCF7
(Breast), HepG2 (Liver) and NT2 (Testes) using nanoparticle-polymer supramo-
lecular complexes. Each value is average of 6 parallel measurements. (B)
Canonical score plot for the two factors of simplified fluorescence response
patterns obtained with NP–PPECO2 assembly arrays against different mam-
malian cell types. The canonical scores were calculated by LDA for the iden-
tification of 4 cell lines.
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respectively as shown in Fig. 2B. In this plot, each point
represents the response pattern for a single cell type to the
NP-PPECO2 sensor array. In the canonical f luorescence re-
sponse patterns, the different cell types are clustered into 4
nonoverlapping groups (95% level confidence ellipses) (Fig. 2B)
with standard deviation of �5%. These initial results validate
our ability to differentiate cancer cell types phenotypically based
on their surface properties.

Detection of Normal/Cancerous and Metastatic Cells. An important
issue in cancer therapy is assessing whether tissue/cells are
healthy, or either benign or metastatic tumors. We chose 3
different human breast cell lines to test our sensor array in this
application: MCF10A a normal breast cell line, MCF7 a can-
cerous but nonmetastatic cell line, whereas MDA-MB-231 is a
metastatic cancer cell line. The 3 cell lines show differential
f luorescence patterns (Fig. 3A); LDA of their response indicates
a 100% accuracy of detection (Fig. 3B).

Detection of Isogenic Cell Types. The above studies suggest that we
can differentiate normal, cancerous and metastatic cell types
with our sensor array. Each of the 3 cell lines, however, came
from different individuals. To provide a test bed where individ-
ual-to-individual variation is not present, we used 3 isogenic cell
lines, CDBgeo, TD, and V14 cells. Due to their high genetic
similarity, isogenic cells are expected to present a particularly

stringent test for detection assays. Each of these isogenic cells
was developed from BALB/c mice, and therefore possesses the
same genotypic background. CDBgeo cells were prepared by
retroviral infection with a marker gene encoding the fusion of
�-galactosidase and neomycin resistance. These cells exhibit
normal outgrowths when transplanted into mammary fat pads
(35). The TD cells were prepared by treating CDBgeo-cells
with 10 ng/mL TGF-� for 14 days. Withdrawal for 5 passages
resulted in a persistent epithelial to mesenchymal transforma-
tion: Tumorogenic growth resulted when transplanted. The
V14 cell line was established from a primary mammary tumor
arising in BALB/c-Trp-53�/� mice. The cells lack p53 protein
and form aggressive tumors that are locally invasive in mice
(36). Fig. 4A presents the change in f luorescence intensities of
3 isogenic cell types toward nanoparticle-polymer complexes.
The differential response indicates that these supramolecular
complexes can effectively differentiate isogenic cell types.
LDA classifies the cell types into 3 distinct clusters with 2
canonical factors containing 83.0% and 17.0% of the variation, with
100% identification accuracy among these isogenic cell types (Fig.
4B). Taken together, these studies indicate that our method rapidly
and effectively differentiates cell lines based on cell type and disease
state.

The efficacy of our approach indicates that there are distinct
phenotypic differences in the physicochemical properties of
cells. One question that arises is whether there is a response that
is generally indicative of whether a cell is normal or cancerous.

Fig. 3. Detection of normal, cancerous and metastatic human breast cells.
(A) Change in fluorescence intensities (F � F0) for 3 breast cell lines of different
nature MCF10A (normal), MCF-7 (cancer) and MDA-MB231 (metastatic) using
nanoparticle-polymer supramolecular complexes. Each value is average of 6
parallel measurements. (B) Canonical score plot for the first two factors of
simplified fluorescence response patterns obtained with NP–PPECO2 assembly
arrays against different mammalian cell types.

Fig. 4. Detection of Isogenic cell types. (A) Change in fluorescence intensities
(F � F0) for 3 cell lines of same genotype CDBgeo, TD cell and V14 using
nanoparticle-polymer supramolecular complexes. Each value is average of 6
parallel measurements. (B) Canonical score plot for the first two factors of
simplified fluorescence response patterns obtained with NP–PPECO2 assembly
arrays against different mammalian cell types.
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Metaanalysis of our studies using LDA indicates that normal
epithelial cell lines CDBgeo and MCF10A were overlapping
(Fig. 5a) even though both of these cell lines were isolated from
mouse and human respectively. Likewise the metastatic murine
(V14) and human MDMBA-231 metastatic cell lines were
clustered, indicating a potential correlation between cell surface
properties and disease states of cells.

In summary, we have developed a rapid and effective array-
based approach to differentiate between normal and cancerous
cell lines. Significantly, full differentiation was achieved using
only 3 nanoparticle-polymer dyads, indicating that a simple
sensor array has ample diagnostic capacity when exposed to
mammalian cells. These systems have the potential to help us
understand the physical changes that occur on the surfaces of
cells in various disease states. Taken together, ‘‘nose’’ based

sensor systems are a fundamentally new way of looking into
biodiagnostic, biophysical and surface science processes involv-
ing cell surfaces.

Materials and Methods
Nanoparticles (25, 37, 38) (SI Text, Scheme S1, and Fig. S1) and polymers (39)
were synthesized as reported previously. All of the cells except MCF10A,
CDBgeo, TD and V14 were grown in DMEM media supplemented with 10%
FBS and 1% antibiotics in T75 flasks. NT2 cell line was obtained from R. T.
Zoeller (Department or Biology, University of Massachusetts, Amherst, MA).
CDBgeo, TD and V14 cells were grown in DMEM-F12 media supplemented
with 2% ABS, 25 mM Hepes, 10 �g/mL insulin, 5 ng/mL EGF, 15 �g/mL
gentamycin. Cells were washed with DPBS buffer, trypsinized with 1� trypsin
and collected in the DMEM media. Fluorescence titration experiments deter-
mined the complexation between nanoparticles and PPECO2. Fluorescence
intensity changes at 465 nm were recorded with an excitation wavelength of
430 nm. Polymer and stoichiometric amounts of NP1–NP3, as determined by
the fluorescence titration study were diluted with phosphate buffer (5 mm,
pH 7.4) to solutions with a final polymer concentration of 100 nM. Each
solution (200 �L) was placed into a well on the micro plate. After incubation
for 30 min, the fluorescence intensity at 465 nm was recorded with an
excitation wavelength of 430 nm. Next, 100 �L of cell suspension (20,000 cells)
was added to each well. After incubation for another 30 min, the fluorescence
intensity at 465 nm was measured again. The fluorescence intensity before
addition of the cells was subtracted from that obtained after addition of the
cells to record the overall fluorescence response (DI) (Tables S1–S3). This
process was completed for all cell lines to generate 6 replicates of each that
was subjected to a classical linear discriminant analysis (LDA) using SYSTAT
(version 11.0). Each cell line possesses a unique fluorescence response data
with the NP-PPECO2 complex array, because cell interaction with the NP-
PPECO2 complex array depends on the cell surface characteristic. Therefore,
for each cell, we tested its fluorescence responses against 3 NP-PPECO2 adduct
6 times, generating (i) 3 � 6 � 4 matrix for 4 different cancer cell lines HeLa
(Cervical), MCF7 (Breast), HepG2 (Liver) and NT2 (Testes) for Fig. 2, (ii) 3 � 6 �
3 matrix for 3 breast cell lines of different nature MCF10A (normal), MCF-7
(cancer) and MDA-MB231 (metastatic) for Fig. 3, and (iii) 3 � 6 � 3 matrix for
3 cell lines of same genotype CDBgeo, TD cell and V14 for Fig. 4. The raw data
obtained were subjected to Linear Discriminant Analysis (LDA) (40, 41) to
maximize the ratio between-class variance to the within-class variance, thus
differentiate the fluorescence response patterns of the NP-PPECO2 system the
cell targets. This analysis reduced the size of the training matrix and trans-
formed them into canonical factors that are linear combination of the fluo-
rescence response patterns (i) 2 factors � 6 replicates � 4 cell, (ii) 2 factors �
6 replicates � 3 cells, and (iii) 2 factors � 6 replicates � 3 cells, respectively. The
canonical factors contain different percentage of variation and two of them
were plotted in 2D as shown in Figs. 1B and 4B. In a blind experiment, the rates
of fluorescence patterns of new case were first converted to canonical scores
using discriminate functions established on training samples. Then, Mahal-
anobis distances [the distance of a case to the centroid of a group in a
multidimensional space, in the current case it is 2-dimensional (42, 43)] of the
new case to the centroid of respective groups (normal or cancerous or meta-
static cells) of training samples were calculated. The new case was assigned to
the group with shortest Mahalanobis distance. This processing protocol was
performed on the SYSTAT 11 program, allowing the assignment of cells to
specific groups.
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