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Most theoretical models for NMR relaxation in liquids assume that
overall rotational motion can be described as rotational diffusion
with a single diffusion tensor. Such models cannot handle motions
(such as between “closed” and “open” states of an enzyme, or
between conformers of a partially disordered system) where the
shape of the molecule (and hence its rotational diffusion behavior)
fluctuates. We provide here a formalism for dealing with such prob-
lems. The model involves jumps between discrete conformers with
different overall diffusion tensors, and a master (rate) equation
to describe the transitions between these conformers. Numerical
examples are given for a two-site jump model where global and
local motions are concerted, showing how the rate of conforma-
tional transitions (relative to the rate of rotational diffusion) affects
the observed relaxation parameters.
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T he interpretation of NMR relaxation parameters in terms of
molecular parameters has a long and successful history. The

“classic” analysis, which is widely used, describes rotational tum-
bling by a diffusion equation with a single (perhaps anisotropic)
diffusion tensor; superimposed on this are internal motions (of
various amplitudes and timescales) that are assumed to be inde-
pendent of overall rotation (1). The internal motions themselves
may be modeled as diffusive motion, such as diffusion in a cone
or in a more general restraining potential (2, 3), or may be treated
as jumps between a set of discrete conformers, where populations
and rate constants of conversion among these species are specified
in a master equation (4–6).

In many interesting cases, however, the assumption that rota-
tional tumbling can be described with a single diffusion tensor is
not realistic. These include large-amplitude interdomain motions
and proteins that are at least partially disordered. In both cases,
there are significant populations of conformations with quite dif-
ferent shapes and hence diffusion tensors. The timescale of such
global conformational changes can be similar to that of the overall
reorientational dynamics, further complicating the problem.

At present, approaches used to analyze NMR relaxation in such
systems effectively assume that the overall tumbling and interdo-
main motions are uncorrelated. The simplest such procedure is
to use the extended model-free approach (7), as has been done
by Baber et al. for calmodulin (8), where it is assumed that the
overall tumbling motion can be described by the diffusion ten-
sor of the dynamically averaged structure and the slow internal
motion is identified with the interdomain motions with respect
to this frame. More recently, Ryabov and Fushman introduced
the ITS (interconversion between two states) model and applied
it to di-ubiquitin (9). With respect to overall and interdomain
motions, their model is simply a two-site jump model (6, 10) with
full anisotropic (but independent) overall motion.

In this article we consider the simplest class of models where
internal and overall tumbling motions are not statistically inde-
pendent. In brief, we assume that the system can jump among
discrete conformations with different diffusion tensors and ori-
entations of the vector of interest. Formally, our approach is
based on an equation describing the composite conformational
exchange-rotational diffusion process (11–13), which provides the

total correlation function characterizing laboratory frame reori-
entation of the vector of interest. Although some of the quantities
needed to make use of the formalism (such as the diffusion tensor
of each state) may be difficult to determine experimentally, theory
[e.g., hydrodynamic modeling (14, 15) of putative structures of the
interconverting species] may provide some of the missing input.

As an example, we apply our method to two particularly simple
scenarios. The first allows interconversion between two confor-
mations with different isotropic rotational correlation times. This
leads to biexponential decays of the time correlation functions that
are formally equivalent to the Lipari–Szabo model-free theory (1),
but where the parameters have different physical meanings. A
second scenario allows the conformations to undergo anisotropic
rotational diffusion. We also examine the problems that might be
encountered if one tried to force-fit such systems to a model with
only a single diffusion tensor.

For the sake of simplicity, we do not treat here the ever-
present and heterogeneous fast local motions. In the context of the
extended model-free approach (7), we consider only motions that
would be described by the slow internal correlation time and order
parameter. The simplest way to adapt the formalism of this arti-
cle to describe fast internal motion is to multiply the correlation
functions by [S2

f + (1 − S2
f ) exp(−t/τf )].

Results and Discussion
Fluctuating Isotropic Overall Diffusion Tensors. Much of the relax-
ation behavior of systems with fluctuating diffusion tensors can be
seen in the special case where all these tensors are isotropic. Con-
sider an isotropically reorienting macromolecule with rotational
diffusion coefficient D. Let n be a rigidly attached unit vector,
pointing along an internuclear vector (for dipolar relaxation) or
along a principal axis of the chemical shift tensor [for chemical
shift anisotropy (CSA) relaxation]. Then, the relevant reorienta-
tional correlation function is 〈P2[n(t) ·n(0)]〉 = exp(−6Dt), where
P2(x) = (3x2 − 1)/2 is the second Legendre polynomial. Now
imagine that because of global conformational changes the rota-
tional diffusion coefficient depends on time. Then, if the vector
n does not move at the instant the rotational diffusion coefficient
changes, the reorientational function can be written as

〈P2[n(t) · n(0)]〉 =
〈
exp

[
−6

∫ t

0
D(τ)dτ

]〉
[1]

where the angular brackets denote averaging of the fluctuations
of D. The problem of evaluating such an average has been solved
in a completely different NMR context. (For other physical prob-
lems that involve the same mathematics see ref. 13.) Specifically,
to describe the influence of chemical exchange on NMR line-
shapes, one can use Kubo–Anderson theory (16–18) to evaluate

Author contributions: V.W., D.A.C., and A.S. designed research, performed research, ana-
lyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: case@biomaps.rutgers.edu.

11016–11021 PNAS July 7, 2009 vol. 106 no. 27 www.pnas.org / cgi / doi / 10.1073 / pnas.0809994106



BI
O

CH
EM

IS
TR

Y

the magnetization 〈exp(i
∫

ω(τ)dτ)〉, where ω(τ) is a fluctuating
resonance frequency. We can use this formalism to calculate the
reorientational correlation function in Eq. 1, even though the
physics of the two problems are quite different.

As the simplest example, consider a macromolecule that fluc-
tuates between two states that have overall diffusion coefficients
D1 and D2. For this model,

〈P2[n(t) · n(0)]〉 =
2∑

αβ=1

p(β, t|α, 0)peq(α) [2]

The sum is over the possible initial and final states α and β, and
p(β, t|α, 0) ≡ pβα can be found by solving

d
dt

[
p11 p12
p21 p22

]
=[( −k1 k2

k1 −k2

)
−

(
6D1 0

0 6D2

)] [
p11 p12
p21 p22

]
≡ KP [3]

subject to the initial conditions P(0) = I, where I is a 2 × 2
unit matrix. Here, k1(k2) is the rate of transition between states
1 → 2(2 → 1), and peq(α) is the normalized equilibrium popula-
tion of state α: peq(1) = k2/(k1 + k2), peq(2) = k1/(k1 + k2). Eq.
3 has the formal solution p(β, t|α, 0) = [exp(Kt)]βα . The matrix
exponential can be expressed in terms of the eigenvectors and
eigenvalues of K, KT = Tk, as exp(Kt) = T−1 exp(kt)T.

Let us now generalize this in two directions. First, suppose
that there are N states with rotational diffusion coefficients Dα ,
i = 1, 2, . . . N . Second, assume that when the system switches from
one state to another, not only the overall motion, but also the
orientation of the unit vector changes. Hence, each state is spec-
ified by both Dα and nα , so that nα · nβ is the cosine of the angle
between unit vectors in states α and β . Let Rαβ be the rate con-
stant for transitions from state β to α, with Rαα = − ∑

β �=α Rβα .
The generalization of Eq. 3 is

dpβα

dt
=

∑
γ

Rβγpγα − 6Dβpβα [4]

with initial condition pβα(0) = δαβ . The generalization of Eq. 2 is

〈P2[n(t) · n(0)]〉 =
N∑

α,β=1

p(β, t|α, 0)peq(α)P2(nα · nβ). [5]

As before, peq(α) is the normalized equilibrium population of state
α (Rpeq = 0). Again, the solution of Eq. 4 can be written in terms
of the matrix exponential. In the special case where Dα = D for
all α, the above formalism gives the reorientational correlation for
an N site jump for internal motions of an isotropically reorienting
macromolecule in the limit that internal and overall motions are
independent (1, 5, 19).

As a simple illustration of this formalism consider the kinetic
scheme in Fig. 1. In this model, vertical transitions represent
local motions (i.e. changes in the orientation of the vector in a
body-fixed frame), whereas horizontal transitions represent global
motions that change the overall diffusion coefficient, but not
the body-fixed orientation of the vector. The diagonal transition
involves simultaneous changes in both the rotational diffusion
coefficient and local geometry. If we forbid all transitions except
the diagonal one shown in Fig. 1, then global and internal motions
are completely concerted. This case is the most different from the
usual formalism where global and local motions are independent,
so it is worthwhile to examine it in some detail.

Fig. 1. Simple model for local (vertical) and global (horizontal) conforma-
tional changes. The size of the circles reflects the magnitude of the over-
all isotropic rotational correlation time. The conventional analysis, which
assumes that overall and internal motions are independent, is appropriate
when only an single vertical pathway is present, and the corresponding cor-
relation function is given in Eq. 6 with parameters in Eq. 7. If only the diagonal
pathway is allowed, so that the overall rotational tumbling time and the local
orientation of the vector of interest change simultaneously, the correlation
function is still given by Eq. 6 but now with parameters in Eq. 8.

If only one of the vertical pathways is allowed, the reorienta-
tional correlation function is that of the familiar two-site jump
model for local motions and has the model-free form:

〈P2[n(t) · n(0)〉 = e−6Dt[S2 + (1 − S2)e−2kt] [6]

where D is the rotational diffusion constant for overall isotropic
motion and

k = (k1 + k2)/2

S2 = [
k2

1 + k2
2 + 2k1k2P2(n1 · n2)

]
/(4k2) [7]

This is the result that would be obtained if the formalism of Ryabov
and Fushman (9) were applied to this simple problem.

Using the formalism outlined above, we can show that the corre-
lation function for the “diagonal” model of Fig. 1 (in which global
and local motions are concerted) also has the model-free form, but
with parameters that have a different physical meaning. By solving
Eq. 3, we find that D, k, and S2 in the conventional theory (Eqs.
6 and 7) must be replaced by the following effective values:

keff = [k2 + 3(D1 − D2)(k1 − k2) + 9(D1 − D2)2]1/2

S2
eff = 1

2
+ (k1 − k2)(6D1 − 6D2 + k1 − k2) + 4k1k2P2(n1 · n2)

8keffk
6Deff = 3(D1 + D2) + k − keff [8]

As expected from the analogy with lineshapes (16, 17), the
deviation from the standard theory depends on the ratio
of the difference between D1 and D2 and interconversion
rate k (from Eq. 7). The two models become the same as
(D1 − D2)/k → 0.
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The first line of Eq. 8 is half the difference between the eigen-
values of the matrix K in Eq. 3. The third line is the eigenvalue
with the smaller magnitude. These results mean that, if the model-
free formalism was blindly applied to fit data for this model with
concerted overall and internal motions, the fit would be perfect,
but the extracted parameters could not be interpreted correctly in
the usual way. For example, the extracted S2 would now depend
not only on the amplitude of the internal motion but also on the
timescales of internal and overall motions. However, if the rate
of transition between the two states is faster than the difference
between the rotational diffusion coefficients of the two states,
then the concerted system would be closely approximated by a
system with the average rotational diffusion coefficient that under-
goes independent two-site internal motion. Thus, the model-free
approach would give the correct amplitude for the internal motion,
even though local and global transitions are concerted.

These results suggest that Baber et al.’s extended model-free
analysis of interdomain motions in calmodulin (8) provides a
meaningful estimate of the amplitude of such motions. In this
study, the effective overall correlation time was found to be
≈10 ns, whereas the interdomain correlation time was ≈3 ns. This
timescale separation is sufficient for the extracted order para-
meter describing the amplitude of interdomain motions to be
essentially uncontaminated by contributions due to coupling of
the interdomain and overall motions.

Although this model is quite simple, it does illustrate some of
the key physical ideas and the structure of the mathematical for-
malism. It is the simplest model that treats transitions that change
the rotational diffusion constant, a feature that has been omitted
from the ITS model for NMR relaxation in systems undergoing
large-scale conformational changes (9).

Formal Approach to Exchange Diffusion. The above exposition was
somewhat informal. Here, we give a more formal derivation,
starting with the work of Berne and Pecora (11), which allows
generalizations (such as to anisotropic diffusion) to be made in
a straightforward manner. Let us consider a system where the
diffusion tensor of each conformation is axially symmetric with
rotational diffusion coefficients Dα

⊥ and Dα
‖ , α = 1, 2, . . . N . Sup-

pose that in state α the vector of interest makes a polar angle θα

with respect to the symmetry axis of the diffusion tensor. Assume
that at the moment an α → β transition occurs, the orientation of
the monitored vector in the laboratory frame changes by an angle
Ψαβ . Immediately after the transition, the vector of interest con-
tinues to move by rotational diffusion, which is now characterized
by a polar angle θβ with the (new) principal diffusion axis. Because
we are considering axially symmetric diffusion tensors, the dynam-
ics before and after the transition do not depend on the azimuthal
angles φα and φβ .

If the direction of the symmetry axis of the diffusion tensor is
the same in all conformational states, we can assign for each state
angles θα and φα that locate the monitored vector in the (common)
diffusion tensor frame. The more general situation in which the
direction of this symmetry axis changes in different states is rather
complex.

As shown in Methods, the time correlation function relevant to
NMR relaxation can be written as

〈Pl[n(t) · n(0)]〉 = 4π

2l + 1

∑
m

∑
α,β

cβα

lm (t)

× peq(α)Y ∗
lm(θα , φα)Ylm(θβ , φβ) [9]

where the Ylm are spherical harmonics and the time-dependent
expansion coefficients cβα

lm (t) are solutions of

dcβα

lm (t)
dt

= −[
l(l+1)Dβ

⊥ +m2(Dβ

⊥ −Dβ

‖ )
]
cβα

lm (t)+
∑

γ

Rβγcγα

lm [10]

which must be solved subject to the initial conditions cβα

lm (0) = δβα .
Eqs. 9 and 10 are the main results of this section, and they reduce
to Eqs. 5 and 4 when the diffusion tensors are isotropic. For NMR
dipolar or CSA relaxation, we need only consider l = 2, and a
separate set of equations can be solved for each value of |m|. The
solution can again be written as a matrix exponential. For systems
with isotropic overall tumbling, cβα

lm (t) is independent of m. This
allows us to use the addition theorem for spherical harmonics to
carry out the sum over m in Eq. 9, recovering Eq. 5, with the iden-
tification p(β, t|α, 0) = cβα

2m. For axially symmetric tops and l = 2,
we have

〈P2[n(t) · n(0)]〉 =
∑
α,β

{
cβα

20 (t)P2(cos θα)P2(cos θβ)

+ 3
4

cβα

21 (t) sin(2θα) sin(2θβ) cos φαβ

+ 3
4

cβα

22 (t) sin2(θα) sin2(θβ) cos(2φαβ)
}

peq(α)

[11]

where φαβ = φα − φβ .

Illustrative Calculations. We now present numerical results for the
isotropic two-state model system discussed above, whose effec-
tive model-free parameters are given in Eq. 8. We discuss how it
might be possible to distinguish between conformational exchange
among states with different rotational properties versus more
localized internal motion superimposed on global tumbling char-
acterized by just a single diffusion coefficient. We are particularly
interested in parameters that arise from (relatively) slow exchange
between two states with different rotational constants, because
this is the regime that we expect to be relevant to large-amplitude
conformational transitions.

In Fig. 2, we plot the effective model-free parameters (τeff
c ≡

(6Deff )−1, τeff
e ≡ (2keff )−1, and S2

eff ) against the true timescale
for exchange, τtrue

e = (k1+k2)−1. In Fig. 3 we plot the effective gen-
eralized order parameters as a function of τtrue

e for several values
of the jump angles and peq(1) = 0.5.

Fast jumps between global conformations. The plots reveal the
existence of an averaging regime in the fast-exchange limit, which
is at the left-hand side of each profile. In this limit, the effec-
tive tumbling time is determined by the weighted average of the
diffusion constants of the individual spheres (Deff (fast) = D ≡
peq(1)D1 + peq(2)D2), the observed internal timescale is the true
timescale for exchange (τeff

e (fast) = τtrue
e ), and the apparent order

parameter becomes what is expected for the true local internal
dynamics superimposed on single tensor (isotropic) tumbling, i.e.,
the familiar two-state jump model in the second line of Eq. 7.
Hence, in this example, the model-free approach would work
even though overall and local motions are concerted as long as
τtrue

e < 2 ns.

Slow jumps between states. The slow-exchange limit is seen at
the right-hand edge of Figs. 2 and 3. Here, time-correlation func-
tions and spectral densities are the population-weighted average
of the two states. Hence, the effective tumbling time is the tum-
bling time for the slow sphere (sphere “1”), the apparent internal
timescale is determined by the difference between the two diffu-
sion constants (τeff

e (slow) = (6ΔD)−1, where ΔD ≡ D2 −D1), and
the effective order parameter is the population of the slow state.
Outside the slow-exchange limit, pairs of spheres with a larger ΔD
depart from the averaging limit for smaller values of τtrue

e than do
those with a smaller ΔD.

This behavior can be rationalized as follows. When the ran-
dom hops between the two spheres becomes fast enough, a vector

11018 www.pnas.org / cgi / doi / 10.1073 / pnas.0809994106 Wong et al.
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Fig. 2. Effective model-free parameters as a function of the true timescale for conformational exchange, τtrue
e = (k1 + k2)−1. Colors correspond to pairs

of states with different rotational constants. (Left) Effective global tumbling time, τeff
c = 1/6Deff. (Center) Effective internal correlation time, τeff

e = 1/2keff.

(Right) Effective order parameter, S2
eff. In all cases, peq(1) = 0.3, n1 = n2.

rigidly attached to the protein effectively samples both of the
diffusion constants (weighted by their equilibrium populations)
over any small angle it traverses. Under this condition, the single
diffusion tensor description of tumbling is adequate. Departure
from the averaging regime should largely depend on ΔDτtrue

e
(see Eq. 8). With this in mind, in Fig. 3 we have plotted the
ratio τeff

c /τeff
c (fast) = D/Deff as a function of 6ΔDτtrue

e when
peq(1) = 0.5. It is evident that deviation of the effective model-free
parameters from their fast-exchange limits grows with 6ΔDτtrue

e .
This ratio reaches its maximum value D/D1 (where D1 is the diffu-
sion constant for the larger sphere) in the slow-exchange limit. For
fixed values of 6ΔDτtrue

e and 6D (i.e., along a vertical line in Fig. 3
Center), spheres characterized by larger 6ΔD exhibit greater devi-
ation from 1 because, on average, larger angle displacements of
the fast sphere take place before jumps to the slow form, implying
that the motion of the vector is more heterogeneous. However,
for fixed 6ΔDτtrue

e and 6ΔD, increasing D also increases the ratio
for the same reason.

Is it possible to distinguish slow exchange between states with
different rotational properties from internal motion superim-
posed on single tensor tumbling? This is clearly not possible if
one has access to the correlation function of only a single spin,
because any set of effective model-free parameters that can be
produced by our model has a plausible interpretation from within
the single tensor paradigm. However, in our model, not only τeff

c ,
but also τeff

e should have the same value for any spin in the protein.
Thus, a signature of global conformational changes that alter the

overall diffusion tensor is the existence of a single internal corre-
lation time. However, this effective internal time must be shorter
than the global tumbling time or it will not have a significant effect
on the relaxation. With this in mind, we have plotted both τeff

c and
τeff

e against τtrue
e in Fig. 3 to explore conditions under which τeff

e
is less than τeff

c . As can be seen in the orange curves in Fig. 3,
τeff

c may be greater than τeff
e for large enough values of ΔD, even

for slow exchange. This is in contrast to the green curves, which
correspond to a smaller value of ΔD and for which τeff

e > τeff
c for

slow enough exchange. The orange curves thus correspond to a
situation in which even slow conformational exchange leads to a
fairly short effective (global) internal timescale; finding this to be
nearly constant for many vectors might then be an indication of
conformational exchange between states of different rotational
tumbling times.

Concluding Remarks
We have developed a method for obtaining time correlation func-
tions and spectral densities when a macromolecule undergoes
exchange between conformations with different overall rotational
properties. For many values of the expected input parameters, kα

and Dα (shown in Figs. 2 and 3), the resulting effective model-free
parameters are not qualitatively different from those that would
be extracted from a conventional model-free analysis (1) [or, in
practice where fast local motions are allowed, the extended model-
free analysis (7)]. The simple formulas for a two-state isotropic
case, given in Eq. 8, can be used qualitatively to estimate the likely

Fig. 3. Effective model-free parameters. (Left) Effective order parameters for different jump angles Δθ ≡ cos−1[n1 · n2]. τ1
c = 5.56 ns, τ2

c = 2.38 ns. (Center)
τeff

c /τav
c = D/Deff as a function of 6ΔDτtrue

e for pairs of states with different rotational constants. (Right) Values of τeff
c (solid lines) and τeff

e (dashed lines), plotted
against τtrue

e = (k1 + k2)−1. In all cases, peq(1) = peq(2) = 0.5.
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deviations from the single-diffusion-tensor limit, given estimates
of diffusion constants and rates of conformational transitions.
These analytical results can be applied in a qualitative way to
more complex systems to assess the sensitivity of NMR relaxation
parameters to the assumption of a single overall diffusion tensor.

The results presented here are limited to systems in which each
conformer tumbles as a symmetric top and where the symme-
try axis of the diffusion tensor is the same for all states. The
physics of the situation, however, suggests that the only vari-
ables that are important are θα , the angle between the monitored
vector and the symmetry axis of the diffusion tensor, and Ψαβ ,
the orientation change in the laboratory frame for the α → β
transition. (One can also make the substitution θα → π − θα

without changing the physics of the model.) If the value of Ψαβ

is such that it is possible to define azimuthal angles φα , φβ

such that cos Ψαβ = ± cos θα cos θβ + sin θα sin θβ cos(φα − φβ),
then the problem simplifies. In this case, we expect that this
can be treated as though the orientation of the diffusion tensor
does not change, but instead the angles of the monitored vec-
tor change from θα , φα to θβ , φβ (or to π − θβ , φβ). In a future
study, the conserved symmetry axis constraint should be removed,
and the formalism generalized to treat fully anisotropic overall
motion. A key feature of this more general theory is the pres-
ence of coupling between different values of m in the analogue
of Eq. 10.

It is also possible to write analogous expressions for the corre-
lation function and equations of motion when the conformational
dynamics are diffusive, instead of given by a jump model. Such a
formulation extends our approach to nonactivated structural tran-
sitions. However, the challenge for such more sophisticated mod-
els is not really to write down and solve the equations of motion,
or to find the corresponding spectral densities and relaxation
parameters. Rather, the challenge is to find circumstances where
enough is known about the number of states, and their detailed
(anisotropic) rotational diffusion tensors to warrant applying such
detailed models. One promising avenue exploits the significant
recent improvements in the ability to compute rotational diffu-
sion tensors from structure (14, 15). The input required to apply
the theory described here would then consist of two or more struc-
tural models and the rate constants for interconversion between
them. The number of fitting parameters would be similar to that
required for analysis of micro- to millisecond chemical exchange
data (20), and could serve to extend ideas developed there to
shorter timescales.

Methods
With use of the addition theorem for spherical harmonics, the general form
of the angular time correlation function is

〈Pl[n(t) · n(0)]〉 = 4π

2l + 1

∑
m

〈
Y ∗

lm[n(t)]Ylm[n(0)]〉 [12]

For NMR relaxation experiments, l = 2. Here, n is a lab frame (LF) unit vector
specifying the internuclear orientation or the principal axis of an axially-
symmetric chemical shift tensor whose relaxation behavior is being monitored
(21–23). NMR relaxation also depends on other fluctuating parameters, such
as the internuclear distance (for dipolar relaxation) or the magnitude of the
chemical shift anisotropy (for CSA relaxation). For simplicity, we have omit-
ted such interaction strength factors here; as long as the fluctuations in these
factors are independent of angular motion, their effects can be readily added
to the formalism outlined here (6, 24).

Two operations are needed to rewrite Eq. 12 in a form amenable to
treatment by the propagator method. First, we decompose the motion of n

into global reorientation of a body-fixed reference frame (BF) coordinate sys-
tem, and the trajectory of the vector in the body-fixed frame, nBF. Then, the
total correlation function can be decomposed into contributions from each
of the species in the exchange-diffusion system (11, 25), each with its own BF
coordinate system. Eq. 12 then becomes

〈Pl[n(t) · n(0)]〉 = 4π

2l + 1

∑
m,n,n′

∑
α,β

× 〈
Dl

mn[Ω(t)]Dl∗
mn′ [Ω(0)]〉

βα
peq(α)Y ∗

ln(θα , φα)Yln′(θβ , φβ) [13]

Here, Ω are the Euler angles that rotate the LF axes into the BF axes, and the
Dl

mn are Wigner rotation matrices (26). Greek indices α and β label confor-
mations or states adopted by the protein, and the subscript βα indicates that
the initial state for this term is assumed to be α, and the state at time t is
β; summing over all values of α and β then yields the total time-correlation
function. As described above, (θα , φα) give the orientation of the vector of
interest, nBF (e.g., an NH bond vector) in the principal axis frame of state α.

We write the global correlation function in Eq. 13 as

〈
Dl

mn[Ω(t)]Dl∗
mn′ [Ω(0)]〉

βα
=

∫
dΩ0dΩDl

mn(Ω)

× p(β, Ω, t|α, Ω0, 0)Dl∗
mn′(Ω0)peq(Ω0) [14]

Here, p(β, Ω, t|α, Ωo, 0) is the conditional probability for a molecule to be
in conformation β and lab-frame orientation Ω at time t, given that it was
in conformation α and orientation Ω0 at t = 0; this is a generalization of
the well-known Green’s functions for pure rotational diffusion (27, 28). In
an isotropic medium, the equilibrium probability of the LF orientation Ω0 is
peq(Ω0) = 1/(8π2).

We employ a standard technique of expanding the propagator in Eq. 14
in terms of the eigenfunctions of the rotational diffusion operator for state
β (4, 11). For an axially symmetric top, we may write

p(β, Ω, t|α, Ω0, 0) =
∑
lmn

(
2l + 1
8π2

)
cβα

lm (t)Dl
nm(Ω0)Dl∗

nm(Ω) [15]

Dl
nm are Wigner matrices, which are eigenfunctions of the diffusion operator

for axially symmetric tensors. (26, 29) The time-dependent expansion coeffi-
cients cβα

lm (t) are solved for later. We can evaluate Eq. 14 by substituting Eq. 15
into Eq. 14 and using orthogonality properties of the Wigner rotation matri-
ces. Substituting the result into Eq. 13 yields the total correlation function
given in Eq. 9 above.

When the conformational states are discrete, the time evolution of the
Green’s function in Eq. 15 is governed by the following equation of motion
(11, 25)

dp(β, Ω, t|α, Ω0, 0)/dt = −
(∑

i

L2
i Dβ

i

)
p(β, Ω, t|α, Ω0, 0)

+
∑

γ

Rβγp(γ, Ω, t|α, Ω0, 0) [16]

Here, Li is an angular momentum operator and R is the rate matrix for transi-
tions, as before. We use the diagonal form of the diffusion operator,

∑
LiD

β

ij Lj ,
because the body-fixed frame diagonalizes this operator. We obtain equa-
tions of motion for the time-dependent expansion coefficients by substituting
Eq. 15 into Eq. 16, using the fact that Dl

mn is an eigenfunction of the diffusion
operator for a symmetric top with eigenvalue l(l + 1)D⊥ + m2(D⊥ − D‖). The
resulting equation for the time-dependent expansion coefficients is given by
Eq. 10 above.
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