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The Mori–Zwanzig formalism is an effective tool to derive dif-
ferential equations describing the evolution of a small number
of resolved variables. In this paper we present its application to
the derivation of generalized Langevin equations and generalized
non-Markovian Fokker–Planck equations. We show how long time
scales rates and metastable basins can be extracted from these
equations. Numerical algorithms are proposed to discretize these
equations. An important aspect is the numerical solution of the
orthogonal dynamics equation which is a partial differential equa-
tion in a high dimensional space. We propose efficient numerical
methods to solve this orthogonal dynamics equation. In addition,
we present a projection formalism of the Mori–Zwanzig type that is
applicable to discrete maps. Numerical applications are presented
from the field of Hamiltonian systems.

Mori–Zwanzig formalism | optimal prediction with memory | coarse-grained
model | reduced order model | multiscale model

M any applications such as molecular dynamics lead to the
solution of a system of ordinary differential equations,

du
dt

= R(u), u ∈ R
n, [1]

involving a wide range of time scales. For example the time step
in molecular dynamics simulations of proteins is 1 fs while typical
events of interests are in the micro- or millisecond time scale.
Carrying out these simulations using brute force techniques is
impractical (e.g., by integrating the equations of motion); this
is one of the main limiting factors towards greater predictability
and applicability. This issue can be partially addressed by tech-
niques that attempt to model this high-dimensional system by
using a reduced set of resolved variables A(u), or observables. It
is not possible to formulate exact equations for dA(t)/dt in closed
form, that is in terms of A only. Approximations are necessary to
close the equations. An effective approach can be derived from
the Mori–Zwanzig formalism (1–3), which assumes that there is
a probability distribution μ(du) conserved by the dynamics. This
formalism leads to a decomposition of dA(t)/dt in three terms (4):
a drift term that is a function of A(t), a memory term that depends
on A(s) for 0 ≤ s ≤ t, and a fluctuating term Ft. One may then
replace the fluctuating term by a stochastic process, for example
white or colored noise (5, 6), to close the system of equations.

As examples of applications in biochemistry, one might be inter-
ested in modeling the position of an ion in a membrane channel,
or the motion of the centers of mass of groups of atoms without
resolving internal vibrations. It might also be desirable to model
a large number of degrees of freedom which are computationally
expensive to calculate; this is the case for example in implicit water
models where water molecules are removed from the system and
replaced by a stochastic model such as a Langevin model. Many
other such examples can be found from the literature on multiscale
modeling (5).

The same Mori–Zwanzig formalism can be used to derive a
kind of generalized Fokker–Planck equation for the evolution of
a probability density function φt(A). This equation, contrary to the
Fokker–Planck equation for diffusive processes, contains a term
function of φt and a non-Markovian term function of past values
φs, 0 ≤ s ≤ t. We will show how all the relevant time scales in the

system, e.g., reaction rates, and metastable basins can be extracted
numerically from this equation.

One of the main numerical difficulties in these equations is that
the fluctuating term Ft and the memory kernels require in princi-
ple the solution of the so-called “orthogonal dynamics equation”
(7) which is a partial differential equation with n + 1 variables
(recall that u ∈ R

n). This is impractical in most real life applica-
tions where n can be in the range 104–106. Many techniques have
been developed to address this issue (see refs. 5–8 for example).
We propose a new approach to solve this equation. This approach
does not require a time scale separation, wherein the variable A
is assumed to be much slower than other time scales in the sys-
tem, or an adiabatic or Markovian approximation. The method
is numerically robust, e.g., it is not sensitive to small perturba-
tions in the data (see for example ref. 9 which requires solving a
Volterra integral equation of the first kind). The method has a low
computational cost and can be carried out on desktop computers.

The paper is organized as follows. We first present the stan-
dard Mori–Zwanzig formalism. For any phase variable B, this

gives an equation for etLB where L def= ∑n
i=1 Ri∂/∂ui is the Liou-

villian. We also derive a new formulation applicable to a dis-
crete map M, in which we obtain equations for MkB. This is
followed by 2 important equations which can be derived from
the Mori–Zwanzig formalism: the generalized Langevin equation
(GLE) and generalized non-Markovian Fokker–Planck equation
(GFPE). A numerical discretization of the GFPE based on a
Galerkin scheme is then proposed along with an algorithm to cal-
culate reactions rates and other time scales in the system. These
equations rely on the solution of the orthogonal dynamic equa-
tions. An algorithm to carry out this calculation is presented. The

paper ends with numerical results. The notation def= indicates a
definition or an equality that cannot be derived from previous
statements.

Mori–Zwanzig Projection
We consider the dynamical system given by Eq. 1 where u ∈ Ω ⊂
R

n. In the context of molecular dynamics of proteins, the vector u is
the set (q, p) of atom coordinates and momenta. In many contexts
it is desirable to model the dynamical system using only a subset
of variables instead of the full set u. This might be the case if one is
trying to build a coarse grained model. These problems can be for-
mulated abstractly in the following fashion. Let us denote υ(u0, t)
the solution of Eq. 1 at time t with initial conditions u(0) = u0.
A phase variable A is an m-dimensional vector valued function
defined on Ω, A(u). Associated with the Liouvillian L, we define

a time evolution operator etL : [etLA](u) def= A(υ(u, t)).
The general model reduction problem or coarse graining prob-

lem can be formulated as follows: given a phase variable B and
esLA (0 ≤ s ≤ t), is it possible to approximate etLB? We call
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this the closure problem. For example, B could be dA/dt. This
problem is trivial if A is a complete set of generalized coor-
dinates, i.e., m = n. In most applications however, m � n,
so that this (coarse-graining) procedure may provide significant
computational speed-up.

The Mori–Zwanzig procedure is a very general and power-
ful formalism to help answer such problems. From now on, we
assume that the initial conditions for u are drawn from a proba-
bility distribution μ0. The probability distribution μt is defined by
the condition

∀B,
∫

B(u)μt(du) def=
∫

B(υ(u, t))μ0(du).

We will assume that μt is conserved by the dynamics, i.e., μt = μ0.
We now simply denote this measure by μ.

Standard Mori–Zwanzig Decomposition. The Mori–Zwanzig proce-
dure uses a projector operator P . We define P as the following
conditional expectation (4):

P : B �→ [PB](u) def=
∫

B(u∗)δ(A(u∗) − A(u))μ(du∗)

We say that the phase variable C is a function of phase variable
D if D(u) = D(u∗) implies C(u) = C(u∗). As an example PB is a
function of A.

Because the Mori–Zwanzig decomposition has been derived by
many authors (1, 4), we skip the derivation and simply state the
final formula. We define the phase variable Ft (fluctuating term)
as the solution of the following partial differential equation with
n + 1 variables, the orthogonal dynamics equation:

F0 = B − PB,
∂Ft

∂t
= LFt − PLFt. [2]

Then:

etLB = etLPB +
∫ t

0
e(t−s)LPLFsds + Ft. [3]

For later convenience, we denote Sτ
⊥ the evolution operator

associated with the orthogonal dynamics equation:

Sτ
⊥(B) def= eτ(I−P)L(I − P)B (= Fτ). [4]

A key point to observe in Eq. 3 is that etLPB is a function of etLA,
and etLPLFs is a function of etLA. This means that given esLA,
0 ≤ s ≤ t, we can calculate etLPB and

∫ t
0 e(t−s)LPLFsds with-

out knowing the fully resolved trajectory υ(u, t). In this sense, the
first 2 terms in the decomposition satisfy the closure problem. The
function e(t−s)LPLFs is often called the memory kernel because it
is a function of past values of A. In addition, the last term satisfies
PFt = 0 for all t, and may therefore be called the fluctuating term.

Discrete Mori–Zwanzig Decomposition. It is possible to derive a sim-
ilar looking Mori–Zwanzig decomposition where the continuous
integration over time is replaced by a discrete sum. This decom-
position can be useful in different contexts, when the data itself is
discrete, or when a discretization is applied in numerical computa-
tion. For example, the set Ω might be divided into Ncell cells and the
data A(u) could be given as a vector of length Ncell such that Ai = 1
if u is in cell i and 0 otherwise. The discrete Mori–Zwanzig decom-
position can be formulated using an arbitrary map M : u �→ Mu.
For any phase variable A, we define: MA : u �→ A(Mu). As a

typical example, M can be defined as M def= eΔtL. Let us define
Fk recursively by

F0
def= B − PB, Fk+1

def= MFk − PMFk. [5]

The following decomposition can be obtained for an arbitrary
phase variable B, with k ≥ 1 an integer:

MkB = MkPB +
k∑

l=1

Mk−lPMF l−1 + Fk. [6]

This decomposition is in the same spirit as the original Mori–
Zwanzig decomposition because it satisfies the following proper-
ties: PB and PMF l are functions of A, and PFk = 0. It can be
proved by induction.

Generalized Langevin Equations
The Mori–Zwanzig decomposition can be further transformed to
reach a form more suitable to construct stochastic models of A. In
particular, this leads to a generalized Langevin equation (10). If

we assume that the dynamics is volume preserving (∇ · R def= 0),
then, using integration by parts and the chain rule, the memory
kernel PLFt can be shown to be equal to

PLFt = [(∇A − ∇AH) · P[LA ⊗ Ft]]T

H def= − ln
∫

δ(A(u∗) − A)μ(du∗),

where T is the transpose operator and ⊗ is the outer product of

2 vectors. Using this result with B def= LA along with the Mori–
Zwanzig decomposition (Eq. 3), we get a form of the fluctuation
dissipation theorem (10, 11):

etLLA = etLPLA

+
∫ t

0
e(t−s)L[(∇A − ∇AH) · P[F0 ⊗ Fs]]T ds + Ft,

[7]

where the memory kernel is related to the autocorrelation of the
fluctuations Ft.

This equation can be further simplified to some of the usual
forms. We briefly discuss an example. Consider the case of a sep-

arable Hamiltonian system H def= K(p) + U(q), in the canonical

ensemble (β def= (kBT)−1), with atomic positions ql , momenta
pl , and masses ml . We may choose A to be a coordinate and its
momentum (ξ, pξ). For simplicity we further assume that the mass

m−1
ξ

def= ∑
l

1
ml

( ∂ξ

∂ql
)2 is constant. From Eq. 7, we can prove that the

equations of motion are then given by dξ/dt = pξ/mξ, and

dpξ

dt
= −dU

dξ
+

∫ t

0
e(t−s)L

[(
d

dpξ

− βpξ

mξ

)
P[F0Fs]

]
ds + Ft

with: U(ξ) def= −β−1 ln
∫

δ(ξ(q) − ξ)e−βU(q)dq. [8]

Fokker–Planck Equation
We now derive a Fokker–Planck equation for the resolved variable
A. We have to distinguish between variable A seen as a function of
u, which is denoted by A(u), and seen as an independent variable,
then denoted a. We apply the Mori–Zwanzig projection (Eq. 3) to

the scalar phase variable Ba
def= Lδ(A(u) − a):

etLBa = etLPBa +
∫ t

0
e(t−s)LPLFsds + Ft. [9]

We denote φ∞(a) the equilibrium probability density function of
a = A(u). The Fokker–Planck equation assumes a simple form if
we choose an initial probability distribution of the form

ν0(du) def= φ0(A(u))
φ∞(A(u))

μ(du),
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where φ0 is some given initial condition. This corresponds to
a constrained equilibrium where variables orthogonal to a are
sampled from the equilibrium distribution while a is sampled
according to φ0. We denote φt(a) the probability density function
corresponding to the initial probability distribution ν0(du).

To obtain a Fokker–Planck equation, we need to multiply Eq. 9
by ν0(du) and integrate over u. Using the chain rule, integration by
parts and properties of the Dirac δ functions (a long derivation),
we can show that this leads to a GFPE:

∂ψt(a)
∂t

= −Pa(LA)∇ψt(a)

+ 1
φ∞(a)

∇a ·
∫

a′∈Ω

∫ s=t

s=0
φ∞(a′)K(a, a′, s)T∇ψt−s(a′)da′ds,

[10]

where ψt def= φt/φ∞, and K is a tensor phase-variable:

K(a, a′, s) def= Pa′
(
LA(u) ⊗ [

Ss
⊥LA(u)δ(A(u) − a)

])
. [11]

The notation Pa′ indicates explicitly the value of A(u) = a′ used
in the projection.

Numerical Solution Using a Galerkin Discretization
We now discuss how the GFPE may be solved numerically. The
direct numerical calculation of the memory kernel K(a, a′, s) is
difficult because of the Dirac δ function in its definition (Eq.
11). However this becomes relatively straightforward if one uses
a Galerkin discretization of ψt. Suppose we have some basis
functions Nj(a) and:

ψt(a) ≈
NG∑
j=1

ψj(t)Nj(a)

Galerkin Discretization. The Galerkin formulation is derived from
Eq. 10 by multiplying by the test function Ni(a) and integrating
over a. The coefficients ψi(t) are then solutions of the following
set of integro-differential equations.

ψ(t) def= [ψ1(t), · · · , ψNG (t)]T

M
dψ

dt
= Ldψ(t) +

∫ t

0
Lm(s)ψ(t − s)ds [12]

with the following matrices:

Mij
def=

∫
Ni(a)Nj(a)da

[Ld]ij
def=

∫
Nj

d
dt

(
Ni

φ∞

)
μ(du)

[Lm(s)]ij
def= −

∫
dNj

dt
Ss

⊥

(
d
dt

Ni

φ∞

)
μ(du).

For irreversible processes, [Lm(s)]ij decays when the support of Ni
and Nj are far from one another (diagonally dominant matrix) or
when s is large.

Discrete Mori–Zwanzig Decomposition. A second formulation can
be obtained by taking advantage of the discrete Mori–Zwanzig
formalism (Eq. 6). We choose as M the time evolution opera-

tor over Δt : M def= eΔtL and as Ba the scalar phase-variable
(M − I)δ(A(u) − a). Then, we obtain the following scheme
(tk = kΔt):

M(ψ(tk+1) − ψ(tk)) = L(1)
d ψ(tk) +

k∑
l=1

L(1)
m (l − 1)ψ(tk−l), [13]

where
[
L(1)

d

]
ij

def=
∫

Nj(M − I)
Ni

φ∞ μ(du)

[
L(1)

m (l)
]

ij
def= +

∫
Nj MS l

⊥

(
(M − I)

Ni

φ∞

)
μ(du).

The notation S l
⊥ refers to the discrete orthogonal dynamics

defined by Eq. 5. The integer superscript and the context are
hopefully sufficient to remove the ambiguity with Ss

⊥ from Eq. 4.
This decomposition is not a finite-difference approximation in

time. In particular it gives exactly the same solution as Eq. 12 at
times kΔt. There is no time discretization error. This is because
the discrete decomposition (Eq. 6) is an exact equation.

This formulation does not require any derivative of Ni and there-
fore is also applicable for discontinuous basis functions such as
the hat function. (Ni(x) = 1 if 0 ≤ x ≤ Δx and 0 otherwise.) A
simple piecewise constant approximation of ψ is therefore possi-
ble. This makes the numerical implementation relatively simple.
This numerical scheme was chosen for the discussion in Numerical
Results.

Reaction Rate and Metastable Basins. In many chemical systems,
metastable basins are separated by energy barriers making transi-
tion a rare event. Calculating the rate of transition between these
basins is often of great importance. Let us consider Eq. 13, and

look for solutions of the form ψ(tn) def= μn
l ψl . From these solu-

tions, we will derive the general solution of our problem. Plug in
the form of our solution in Eq. 13 and assume that the memory
kernel L(1)

m (l) becomes negligible for l ≥ l0. Then, we obtain a
polynomial eigenvalue problem
[−μ

l0+1
l M+μ

l0
l

(
L(1)

d +M
)+μ

l0−1
l L(1)

m (0)+· · ·+L(1)
m (l0 −1)

]
ψl = 0.

All solutions to this equation can be associated with solutions of
Az = μBz with

A def=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 I 0 · · · 0
0 0 I · · · 0
...

...
. . .

. . .
...

...
...

...
. . . I

L(1)
m (l0 − 1) L(1)

m (l0 − 2) · · · L(1)
m (0) L(1)

d + M

⎞
⎟⎟⎟⎟⎟⎟⎠

B def=

⎛
⎜⎜⎜⎜⎝

I
I

. . .
I

M

⎞
⎟⎟⎟⎟⎠

and zT = (ψT , μψT , . . . , μl0ψT ). If we assume that the eigenvalue
problem Az = μBz admits NG(l0 + 1) distinct eigenvalues μl and
eigenvectors zl , we can form the general solution of our problem.
Consider the vector

z(t0)T def= (ψ(t0)T , ψ(t1)T , . . . , ψ(tl0 )T )

for a given initial condition ψ(t0). It can be expanded in the

basis zl : z(t0) = ∑NG(l0+1)
l=1 clzl . By induction and using Eq. 13,

we can prove that the general solution is of the form z(tn) =∑NG(l0+1)
l=1 cl(μl)nzl , and in terms of ψ:

ψ(tn) =
NG(l0+1)∑

l=1

cl(μl)nψl , [14]

where ψl is the vector formed by taking the first NG components
of zl . Note that the ψl are not linearly independent because they
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are in a space of dimension NG but we do need NG(l0 + 1) such
vectors to expand the general solution.

In many chemical reactions, there is a (or a few) time scale
that is very slow compared to the other time scales in the system.
This is the case for example when an energy barrier separates
two metastable basins. That time scale can be obtained from μl .
One of the eigenvalues must be equal to 1 and the corresponding
eigenvector ψ0 is the equilibrium distribution. All others eigen-
values in general have a real part in the interval ] − 1, 1[. In many
instances, there is a single (or a few) eigenvalue μ1 close to 1;
this is the slowest time scale in the system. The corresponding
reaction rate is given by − ln(μ1)/Δt. This is the rate of transi-
tion across the energy barrier separating the 2 most stable basins.
The eigenvector ψ1 is approximately constant in each metastable
basin but changes sign between basins. The change of sign can
be used to identify precisely the boundary of metastable sets (for
additional details see ref. 12 for example). This is illustrated in
Numerical Results. More generally, all time scales in the system
can be extracted from the eigenvector decomposition, for exam-
ple the first passage times. If needed the conditional probability
p(a, t|a0, 0) can be obtained.

Orthogonal Dynamics Equation
Both the GLE and GFPE require computing the solution of the
orthogonal dynamics equation, which is a partial differential equa-
tion in dimension n + 1. A direct solution is impractical in most
cases. Various strategies with low computational cost have been
proposed most notably by Lange et al. (9) and Chorin et al. (7).
In ref. 9, the authors reconstruct the memory kernel in the GLE
from the velocity autocorrelation; their equation is derived from
Eq. 8 assuming that P[F0Fs] is independent of pξ. This leads to
a Volterra integral equation of the first kind which is difficult to
solve numerically. In ref. 7, a computationally efficient scheme is
proposed to calculate PLFs using a Galerkin approach.

We now assume that we have a numerical algorithm, e.g., Mol-
ecular Dynamics or Monte-Carlo, that allows generating samples
u with a distribution equal to (close to) the equilibrium distribu-
tion μ. We define the following notations. N sam: number of sample
points u; uk

0: sample k; NG: number of basis functions Ni(a); Nmem:
number of discrete times s at which the memory term is computed.
Assume we integrate in time using some numerical procedure; we
denote uk

m the sample at step m, using uk
0 as initial condition.

Given a function G, there are several ways to numerically
approximate PG from G(uk

0). For our application, we consider

a Galerkin expansion of the form PGG(a) def= ∑
j PjNj(a) with

∑
j

MijPj = 1
N sam

∑
k

Ni(A(uk
0))G(uk

0)
φ∞(A(uk

0))
.

The pseudocode to numerically compute Fs is then given by

For l = 0 to Nmem − 2, do
Calculate PGG with G(uk

0) = F l(uk
1)

Calculate F l+1(uk
m) = F l(uk

m+1) − (PGG)(A(uk
m)),

for 0 ≤ m ≤ Nmem − 2 − l
end

This is a numerical implementation of Eq. 5 where M is the evolu-
tion operator eΔtL. In the limit of taking Δt → 0, the sequence Fk
in Eq. 5 (0 ≤ k ≤ t1/Δt) converges to FkΔt in Eq. 2; the single step
error is O(Δt2). It is possible to derive higher order integrators,
however, in practice, statistical errors incurred when approximat-
ing P are larger than the time discretization errors. The cost of
this calculation is O(N sam(Nmem)2). If we apply this to calculate
the matrices in Eq. 12 or 13, the total cost is O(N sam(Nmem)2NG).
This assumes that the basis Ni has local support. If the basis
has global support, e.g., Legendre polynomials, the total cost is
O(N sam(Nmem)2NG + N samNmem(NG)2).

In the presence of energy barriers, it is possible to generate sam-
ples uk

0 from the constrained ensemble, that is for various a0 we
generate samples lying on the surface A(u) = a0. This is sufficient
to calculate PG and the efficiency of the method becomes inde-
pendent of φ∞(a) and in particular of energy barriers along A(u).
If the system does not exhibit large energy barriers, it is possible
to carry out this calculation using a single (a few) very long trajec-
tory. In that case the total cost using our approach is reduced to
O(N samNmemNG) for a basis with local support.

Accuracy and Limitations
The method works irrespective of energy barriers along A(u).
However it relies on techniques to numerically estimate P . This
requires being able to efficiently sample the surface A(u) = a.
Roughly speaking, if the coordinates orthogonal to A contain
metastable basins, the number of steps in a molecular dynamics
simulation required to generate N sam uncorrelated points is very
large. A precise statement is beyond the scope of this paper and
depends in general on the rate of decay of the auto-correlation
of B when moving on the surface A(u) = a. If we consider a
simulation in the hypersurface A(u) = a, the previous analysis
(see Reaction Rate and Metastable Basins) shows that the number
of steps required should be proportional to −1/ ln(maxa μ⊥

1 (a)),
where μ⊥

1 (a) is the largest eigenvalue different from 1 for the
constrained dynamics with A(u) = a. In this case, specific accel-
eration techniques must be applied. We mention the technique of
Zheng et al. ((13), biasing force along ∇A and ∇FA), normal mode
approximations (14), biasing techniques, etc. These techniques
allow lowering maxa μ⊥

1 (a) away from 1.
We also note that the method will be computationally expensive

to apply to problems where the dimensionality of A is large. This
is because all the functions of A become difficult to discretize in
an efficient manner. Techniques like sparse grid of Smolyak (15)
may become useful in those cases.

Numerical Results
Oscillators. It is possible for some systems to calculate analyti-
cally the fluctuating term Ft. We will use such a system to check
the accuracy of Eq. 5 and the pseudo-code above. Consider the
case of a particle attached to some masses with springs:

d2ξ

dt2
def= −dU

dξ
−

Np∑
i=1

ki(ξ − xi),
d2xi

dt2
def= −ω2

i (xi − ξ)

We can derive the following equation for ξ′′ (5):

d2ξ

dt2 = −dU
dξ

−
∫ t

0

⎛
⎝

Np∑
i=1

ki cos(ωis)

⎞
⎠ ξ′(t − s)ds + Ft, [15]

with : Ft
def=

Np∑
i=1

ki
(
C1

i cos(ωit) + C2
i sin(ωt)

)
.

If we assume that the initial positions and momenta of the masses
xi are generated randomly according to the canonical distrib-
ution at temperature T (= (kBβ)−1), then C1

i = 1/
√

βkiηi,
C2

i = 1/
√

βkiζi, with ηi and ζi normally distributed variables with
variance 1 and mean 0. Consequently,

P[FtFt+s] = 1
β

Np∑
i=1

ki cos(ωis). [16]

This is consistent with Eqs. 8 and 15.
To demonstrate the accuracy of Eq. 5 and its correspondence

with Eq. 2, we use Eq. 5 to calculate Ft (using the pseudo-code
above) and then calculate P[FtFt+s] as a function of s. The result
is compared with the analytical expression given by Eq. 16. Choose
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Fig. 1. Oscillators with ωi = i and ki = 1. The numerical solution is com-
pared with an analytical expression (Eq. 16). Eq. 5 and the pseudocode in
Orthogonal Dynamics Equations were used.

for example Np = 32 particles with ωi = i, ki = 1. As the num-
ber of particles goes to infinity, P[FtFt+s] approximates a Dirac
δ function at 0. Fig. 1 shows a comparison of Eqs. 5 and 16. We
used a trajectory with 4 107 steps and a step size of 5 × 10−3. The

Fig. 2. (A) Memory kernel β/mP[F0Fs] (see Eq. 8) for fluctuating atomic
forces exerted on a protein by water molecules. (B) Derivative of the velocity
auto-correlation function. We plot the left and right hand sides of Eq. 17 as
an indirect way to verify our computation of P[F0Fs].

Fig. 3. Probability density functions (PDF) at time 16Δt = 4.1. The label “PDF
at t = 0” corresponds to the initial distribution of x. The label “Direct sim-
ulation” corresponds to an estimate of the PDF based on running many tra-
jectories using Langevin dynamics. The label “Fokker–Planck” corresponds to
the solution computed using Eq. 13. The label “Equilibrium” is the reference
equilibrium distribution of x. The variable x is on the horizontal axis.

trajectory was generated using Langevin dynamics with a friction
coefficient of 0.05 and a temperature of kBT = 1. We note that the
decay of the memory kernel happens on a time scale comparable
to the time scale of ξ, and therefore the adiabatic approximation
does not apply.

Implicit Water Model. It is common in molecular dynamics simula-
tions of solvated molecules (e.g., protein) to model water using an
implicit model. In that case, the water molecules are removed from
the system and replaced by a model; the mean force may be esti-
mated using various techniques such as the Poisson–Boltzmann
equation or the Born and Onsager models (16). The fluctuating
part is typically approximated by a Langevin term with friction and
white noise. We revisit this problem using our approach.

We chose a small poly-peptide (alanine dipeptide) in water. This
is a 22-atom molecule. We used 450 water molecules. The box size
was 25.1 × 24.5 × 23 Å. We considered the total atomic force that
water is exerting on the protein and A is the location of the center
of mass of the protein. The memory kernel β/mP[F0Fs] (see Eq.
8) is shown on Fig. 2.

In that case, we could not compare with a reference solution.
However the following indirect verification was conducted. In Eq.
8, if we multiply by p(0), average over all initial conditions, and
neglect the derivative with respect to p (see ref. 9), we get

d
dt

P[p(t)p(0)] = −
∫ t

0
P[p(t − s)p(0)] β

m
P[F0Fs]ds. [17]

As a way to verify our calculation of P[F0Fs], we plot the left and
right hand sides of Eq. 17 in Fig. 2. The agreement is very good.

Non-Markovian Fokker–Planck Equation. We tested our numerical
scheme to calculate the GFPE. A comparison with a direct brute
force calculation is made. We used the discrete Mori–Zwanzig
scheme described in Discrete Mori–Zwanzig Decomposition.

Consider a particle x in a double well potential given by
x2/4(x2 − 2). This function has 2 minima at −1 and 1, and a
local maximum at 0. We attached to the particle 16 other par-
ticles using springs, with stiffnesses chosen such that the kernel
P[FtFt+s] decays approximately like e−20s (see Eq. 16 and ref. 5).
The temperature was chosen such that kBT = 0.1. This corre-
sponds to a barrier of 2.5 kBT . We generated trajectories using
a Langevin equation with a friction of 1. The time step for the

10888 www.pnas.org / cgi / doi / 10.1073 / pnas.0902633106 Darve et al.
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Fig. 4. Eigenvector ψ1 vs. xi . The eigenvalue for ψ1 is 0.99462. The 0 of the
function separates the 2 metastable basins.

integration was 0.001. The time interval Δt (see page 3) is equal
to 0.256. In our implementation of Eq. 13, we did not generate a
single long trajectory as this would have resulted in poor statistics
near −2 and 2. Instead we created bins of size 0.0625 and in each
bin we generated a fixed number of initial conditions drawn from
the constrained canonical ensemble distribution. For each initial
condition, we ran a trajectory of length 16Δt = 4096 steps. This
algorithm generated accurate data with small statistical errors.

After computing the drift matrix L(1)
d and the memory matri-

ces L(1)
m (l), we solved the GFPE numerically and compared with

a brute force calculation. The initial conditions are taken from a
Gaussian distribution centered at −1 with standard deviation 0.2.
Trajectories were run with these initial conditions and the final
value of x was recorded after 32,768 steps. This corresponds to
128Δt. The resulting probability density functions are shown on
Fig. 3.

We computed the eigenvectors and eigenvalues of the polyno-
mial eigenvalue problem as described in the section “Reaction
rate and metastable basins.” One of the eigenvalues was found
to be almost equal to 1. The corresponding eigenvector matched
the equilibrium distribution. The second eigenvalue is 0.9946. The
third is 0.84 and the other eigenvalues have a smaller real part. In
Fig. 4, we plot the vector ψ1 (see Eq. 14). As described in Reaction
Rate and Metastable Basins, we expect this vector to change sign at
the transition region between the 2 metastable basins, x < 0 and
x > 0. This is the case; we computed that the 0 of the function is
near x = 0.001.

In addition the associated eigenvalue gives a rate equal to
− ln(μ1)/Δt = 0.021 [time unit]−1. We compared this rate with
an estimate based on the brute force calculation shown in Fig. 3
(solid curve): This gave 0.021 [time unit]−1. The transition state
theory from ref. 17 predicts a rate of 0.033 [time unit]−1, which
is consistent with the fact that a rate from transition state theory
overestimates the actual rate since re-crossing of the transition
region at x = 0 is not accounted for.

Fig. 5. Reaction rate, or rate of transition, vs. number of terms kept in the
memory sequence L(1)

m (l). The direct simulation estimate is the horizontal line
and is equal to 0.021.

In Fig. 5, we calculated the rate using the Fokker–Planck equa-
tion while varying the number of terms we keep in the memory
kernel, that is for a given integer l on the x axis we only keep the
terms L(1)

m (0), . . . , L(1)
m (l−1). Fig. 5 shows the effect of the memory

kernel on the rate, which is essentially multiplied by 3.5 when we
keep 10 terms in the memory kernel. For l > 9, the memory kernel
L(1)

m (l) is small and dominated by statistical noise. This plot shows
the importance of memory and the non-Markovian effects in the
evolution of φt.

Conclusion
We presented a theoretical framework and numerical techniques
to calculate generalized Langevin equations and non-Markovian
Fokker–Planck equations by sampling trajectories. A discrete
form of the Mori–Zwanzig formalism has been derived (Eq. 6).
A generalized non-Markovian Fokker–Planck equation was pre-
sented in a general setting (Eq. 10), along with its numerical
discretization (Eq. 13). An algorithm to calculate the various terms
in these equations is given. An important element is the proce-
dure used to solve the orthogonal dynamics equation numerically.
The accuracy of the method was shown with different examples,
including one with analytical solutions, one with atomic forces
exerted by water molecules on a polypeptide, and a problem with
2 metastable basins for the Fokker–Planck equation. We haven’t
addressed the question of estimating statistical errors, and cases
with large energy barriers.
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