
Percolation on fitness landscapes: effects of correlation,
phenotype, and incompatibilities

Janko Gravner*, Damien Pitman*, and Sergey Gavrilets†,‡
*Department of Mathematics, University of California, Davis, CA 95616

†Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville,
TN 37996, USA

Abstract
We study how correlations in the random fitness assignment may affect the structure of fitness
landscapes, in three classes of fitness models. The first is a phenotype space in which individuals are
characterized by a large number n of continuously varying traits. In a simple model of random fitness
assignment, viable phenotypes are likely to form a giant connected cluster percolating throughout
the phenotype space provided the viability probability is larger than 1/2n. The second model explicitly
describes genotype-to-phenotype and phenotype-to-fitness maps, allows for neutrality at both
phenotype and fitness levels, and results in a fitness landscape with tunable correlation length. Here,
phenotypic neutrality and correlation between fitnesses can reduce the percolation threshold, and
correlations at the point of phase transition between local and global are most conducive to the
formation of the giant cluster. In the third class of models, particular combinations of alleles or values
of phenotypic characters are “incompatible” in the sense that the resulting genotypes or phenotypes
have zero fitness. This setting can be viewed as a generalization of the canonical Bateson-
Dobzhansky-Muller model of speciation and is related to K- SAT problems, prominent in computer
science. We analyze the conditions for the existence of viable genotypes, their number, as well as
the structure and the number of connected clusters of viable genotypes. We show that analysis based
on expected values can easily lead to wrong conclusions, especially when fitness correlations are
strong. We focus on pairwise incompatibilities between diallelic loci, but we also address multiple
alleles, complex incompatibilities, and continuous phenotype spaces. In the case of diallelic loci, the
number of clusters is stochastically bounded and each cluster contains a very large sub-cube. Finally,
we demonstrate that the discrete NK model shares some signature properties of models with high
correlations.
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1 Introduction
The notion of fitness landscapes, introduced by a theoretical evolutionary biologist Sewall
Wright in 1932 (see also Kauffman 1993; Gavrilets 2004), has proved extremely useful both
in biology and well outside of it. In the standard interpretation, a fitness landscape is a
relationship between a set of genes (or a set of quantitative characters) and a measure of fitness
(e.g. viability, fertility, or mating success). In Wright’s original formulation the set of genes
(or quantitative characters) is the property of an individual. However, the notion of fitness
landscapes can be generalized to the level of a mating pair, or even a population of individuals
(Gavrilets, 2004).

To date, most empirical information on fitness landscapes in biological applications has come
from studies of RNA (e.g., Schuster 1995; Huynen et al. 1996; Fontana and Schuster 1998),
proteins (e.g., Lipman and Wilbur 1991; Martinez et al. 1996; Rost 1997), viruses (e.g., Burch
and Chao 1999, 2004), bacteria (e.g., Elena and Lenski 2003; Woods et al. 2006), and artificial
life (e.g., Lenski et al. 1999; Wilke et al. 2001). The three paradigmatic landscapes — rugged,
single-peak, and flat — emphasizing particular features of fitness landscapes have been the
focus of most of the earlier theoretical work (reviewed in Kauffman 1993; Gavrilets 2004).
These landscapes have found numerous applications with regards to the dynamics of adaptation
(e.g., Kauffman and Levin 1987; Kauffman 1993; Orr 2006a,b) and neutral molecular evolution
(e.g., Derrida and Peliti 1991).

More recently, it was realized that the dimensionality of most biologically interesting fitness
landscapes is enormous and that this huge dimensionality brings some new properties which
one does not observe in low-dimensional landscapes (e.g. in two- or three-dimensional
geographic landscapes). In particular, multidimensional landscapes are generically
characterized by the existence of neutral and nearly neutral networks (also referred to as holey
fitness landscapes) that extend throughout the landscapes and that can dramatically affect the
evolutionary dynamics of the populations (Gavrilets, 1997; Gavrilets and Gravner, 1997;
Reidys et al., 1997; Gavrilets, 2004; Reidys et al., 2001; Reidys and Stadler, 2001, 2002).

An important property of fitness landscapes is their correlation pattern. A common measure
for the strength of dependence is the correlation function ρ measuring the correlation of
fitnesses of pairs of individual at a distance (e.g., Hamming) d from each other in the genotype
(or phenotype) space:

(1)

(Eigen et al., 1989). Here, the term in the numerator is the covariance of fitnesses of two
individuals at distance d, and var(w) is the variance in fitness over the whole fitness landscape.
For uncorrelated landscapes, ρ(d) = 0 for d > 0. In contrast, for highly correlated landscapes,
ρ(d) decreases with d very slowly.

The aim of this paper is to extend our previous work (Gavrilets and Gravner, 1997) in a number
of directions paying special attention to the question of how correlations in the random fitness
assignment may affect the structure of fitness landscapes. In particular, we shed some light on
issues such as the existence and number of viable genotypes, as well as the number and size
of the clusters of viable genotypes. To this end, we introduce a variety of models, which could
be divided into two essentially different classes: those with local correlations, and those with
global correlations. As we will see, techniques used to analyze these models, and answers we
obtain, differ significantly. We use a mixture of analytical and computational techniques; it is
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perhaps necessary to point out that these models are very far from trivial, and one is quickly
led to outstanding open problems in probability theory and computer science.

We start (in Section 2) by briefly reviewing some results from Gavrilets and Gravner (1997).
In Section 3 we generalize these results for the case of a continuous phenotype space when
individuals are characterized by a large number of continuously varying traits such as size,
weight, color, or the concentrations of some gene products. The latter interpretation of the
phenotype space may be particularly relevant given the rise of proteomics and the growing
interest in gene regulatory networks.

The main idea behind our local correlations model studies in Section 4 is fitness assignment
conformity. Namely, one randomly divides the genotype space into components which are
forced to have the same phenotype; then, each different phenotype is independently assigned
a random fitness. This leads to a simple two-parameter model, in which one parameter
determines the density of viable genotypes, and the other the correlations between them. We
argue that the probability of existence of a giant cluster (which swallows a positive proportion
of all viable genotypes) is a non-monotone function of the correlation parameter and identify
the critical surface at which this probability jumps almost from 0 to 1. In Appendix B we also
investigate the effects of interaction between conformity structure and fitness assignment.

Section 5 introduces a class of models where genotypes are eliminated due to random
incompatibilities between alleles. These models are characterized by global correlations. When
there are only two alleles at each locus, the models are equivalent to random versions of the
SAT problem, which is the canonical constraint satisfaction problem in computer science. In
general, a SAT problem involves a set of Boolean variables and their negations that are strung
together with OR symbols into clauses. The clauses are joined by AND symbols into a
formula. A SAT problem asks one to decide, whether the variables can be assigned values that
will make the formula true. Arguably, SAT is the most important class of problems in
complexity theory. In fact, the general SAT problem was the first known NP-complete problem
and was established as such by S. Cook in 1971 (Cook 1971). An important special case, K-
SAT, has the length of each clause fixed at K. Even considerable simplifications, such as 3-
SAT (see Section 5.4), remain NP-complete, although 2- SAT (see Section 5.1) can be solved
efficiently by a simple algorithm. See e.g. Korte and Vygen (2005) for a comprehensive
presentation of the theory. Difficulties in analyzing random SAT problems, in which formulas
are chosen at random, in many ways mirror their complexity classes, but even random 2-
SAT presents significant challenges (de la Vega, 2001; Bollobás et al., 1994). In our present
interpretation, the main reason for these difficulties is that correlations are so high that the
expected number of viable genotypes may be exponentially large, while at the same time the
probability that even one viable genotype exists is very low. In Section 5, we show that the
high correlations in the random 2- SAT model essentially force the landscape to either have no
viable genotypes or else to have fairly large sub-cubes contained within any cluster of viable
genotypes. Moreover, the number of such clusters will be, in a proper interpretation, finite.
The theory for higher order incompatibilities is closely related and we briefly review the
existing literature for 3- SAT. We also describe pairwise incompatibility models on multiallelic
genotype spaces and continuous phenotype spaces where we address the question of existence
of viable individuals.

In Section 6 we demonstrate that the discrete NK model shares some signature properties of
models with high correlations. The proofs of our major results are relegated to Appendices A–
E.
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We summarize our main findings, provide their intuitive explanations, and briefly discuss their
biological significance at the end of each section. Our most general results, their theoretical
and biological significance, implications, and limitations are discussed in Section 7.

2 The basic case: binary hypercube and independent binary fitness
We begin with a brief review of the basic setup, from Gavrilets and Gravner (1997) and
Gavrilets (2004). There are n diallelic loci with alleles 0 and 1. Each genotype is represented
by a binary sequence of length n. The genotype space, i.e. the set of all possible genotypes,
can be represented by an n-dimensional binary hypercube G. In this space, genotypes are linked
by edges induced by bit-flips, i.e., mutations at a single locus, for example. For n = 4, a sequence
of mutations might look like

The (Hamming) distance d(x, y) between genotypes x and y is the number of loci in which x
and y differ or, equivalently, the least number of mutations which connect x and y.

The fitness of each genotype x is denoted by w(x). We will describe several ways to prescribe
the fitness w at random, according to some probability measure P on all 22n possible
assignments. Then we say that an event An happens asymptotically almost surely (a. a. s.) if its
probability P(An) → 1 as n → ∞. Typically, An will capture some important property of
(random) clusters of genotypes.

We will commonly assume that fitness w takes only two values so that each genotype x is either
viable (w(x) = 1) or inviable (w(x) = 0). As a natural starting point, Gavrilets and Gravner
(1997) considered uncorrelated landscapes, in which w(x) is chosen to be 1 with probability
p, for each x independently of others. Thus, p can be viewed as the probability that a random
combination of genes results in a viable individual. Such binary fitness assignment is not as
restrictive as one might expect. If fitness were to be a random number between 0 and 1, then
p could be interpreted as the width of an acceptable “fitness band” (Gavrilets and Gravner,
1997; Gavrilets, 2004). We continue to refer to viable genotypes for the rest of this section and
note that this is a well-studied problem in mathematical literature, although it presents
considerable technical difficulties and some issues are still not completely resolved.

Given a particular fitness assignment, viable genotypes form a subset of G, which is divided
into connected components or clusters. For example, with n = 4, if 0000 is viable, but its 4
neighbors 1000, 0100, 0010, and 0001 are not, then it is isolated in its own cluster.

Perhaps the most basic result determines the connectivity threshold (Toman, 1979): when p >
1/2, the set of all viable genotypes is connected a. a. s. By contrast, when p < 1/2, the set of
viable genotypes is not connected a. a. s. This is easily understood, as the connectedness is
closely linked to isolated genotypes, whose expected number is 2np(1 − p)n. This expectation
makes a transition from exponentially large in n to exponentially small at p = 1/2. The events
{x is isolated}, x ∈ G, are only weakly correlated, which implies that when p < 1/2 there are
exponentially many isolated genotypes with high probability, while when p > 1/2, a separate
argument shows that the event that the set of viable genotypes contains no isolated vertex but
is not connected becomes very unlikely for large n. This is perhaps the clearest instance of the
local method: a local property (no isolated genotypes) is a. a. s. equivalent to a global one
(connectivity).
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Connectivity is clearly too much to ask for, as p above 1/2 is not biologically realistic. Instead,
one should look for a weaker property which has a chance of occurring at small p. Such a
property is percolation, a. k. a. existence of the giant component. For this, we scale p = λ/n,
for a constant λ. When λ > 1, the set of viable genotypes percolates, that is, it a. a. s. contains
a component of at least c · n−12n genotypes, with all other components of at most polynomial
(in n) size. When λ < 1, the largest component is a. a. s. of size Cn. Here and below, c and C
are some constants. These are results from Bollobás et al. (1994).

The local method that correctly identifies the percolation threshold is a little more sophisticated
than the one for the connectivity threshold, and uses branching processes with Poisson offspring
distribution — hence we introduce notation Poisson(λ) for a Poisson distribution with mean
λ. Viewed from, say, genotype 0…0, the binary hypercube locally approximates a tree with
uniform degree n. Thus viable genotypes approximate a branching process in which every node
has the number of successors distributed binomially with parameters n − 1 and p, hence this
random number has mean about λ and is approximately Poisson(λ). When λ > 1, such a
branching process survives forever with probability 1 − δ > 0, where δ depends on λ and is
given by the implicit equation

(2)

(e.g., Athreya and Ney 1971). Large trees of viable genotypes created by the branching
processes which emanate from viable genotypes merge into a very large (“giant”) connected
set. On the other hand, when λ < 1 the branching process dies out with probability 1.

The condition λ > 1 for the existence of the giant component can be loosely rewritten as

(3)

This shows that the larger the dimensionality n of the genotype space, the smaller values of
the probability of being viable p will result in the existence of the giant component. Biological
populations can evolve along this giant cluster by mutation and random drift and can diverge
dramatically without the need to cross any fitness valleys or any help from selection. See
Gavrilets and Gravner (1997); Gavrilets (1997, 2004); Skipper (2004); Pigliucci and Kaplan
(2006); Wilkins (2007) for discussions of biological and philosophical significance and
implications of this important result.

3 Percolation in a continuous phenotype space
In this section we assume that individuals are characterized by n continuous traits, labeled 1,
2,…,n (such as size, weight, color, or concentrations of particular gene products), each of which
can have value between 0 and 1. A phenotype is therefore given by n trait-values, that is, by
numbers z1,…, zn ∈ [0, 1]. Let P = [0, 1]n be the phenotype space, i.e., the set of all possible
phenotypes.

We begin with a modification of the model of independent binary fitness assignment used in
the previous section. First, we choose N points x1,…, xN ∈ P uniformly at random where N is
a Poisson(λ) random variable. (This construction is known as Poisson point location.) Points
x1,…, xN will be interpreted as “peaks” of equal height in the fitness landscape. Note that in
this section, parameter λ gives the expected number of peaks in the phenotype space. Second,
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we declare any phenotype within r of one of the peaks, where r is a small positive number,
viable and any phenotype not within r of one of the peaks inviable. Parameter r can be
interpreted as measuring how harsh the environment is. For simplicity, we will assume “within
r” to mean that “every coordinate differs by at most r.” Note that this makes the set of viable
phenotypes correlated, albeit the range of correlations is limited to 2r.

Our most basic question is whether a positive proportion of viable phenotypes is connected
together into a giant cluster. Note that the probability p that a random point in P is viable is
equal to the probability that there is a “peak” within r from this point. Therefore,

This is also the expected combined volume of viable phenotypes.

We will consider peaks xi and xj to be neighbors if they share a viable phenotype, that is, if
their r-neighborhoods overlap; and we consider them to be connected if they are linked by a
chain of consecutively neighboring peaks. By the standard branching process comparison, the
necessary condition for the existence of a giant cluster is that a peak x neighbors more than
one other peak on the average. All peaks within 2r of the focal peak are its neighbors. Therefore,
the expected number of peaks neighboring x is

and ν > 1 is necessary for percolation. As demonstrated by Penrose (1996) (for a different
choice of the norm, but the proof is the same), this condition becomes sufficient when n is
large.

If ν > 1 and fixed, then a. a. s. a positive proportion of all peaks (that is, cN peaks, where c =
c(ν) > 0) are connected in one “giant” component, while the remaining connected components
all have size of order log N. On the other hand, if ν < 1, all components a. a. s. have size of
order log N.

Note that the expected number λ of peaks in P can be written as ν · (4r)−n. Thus, the condition
ν > 1 for the existence of the giant component of viable phenotypes can be loosely rewritten
as

(4)

This shows that viable phenotypes are likely to form a large connected cluster even when one
is very unlikely to hit one of them at random, if n is even moderately large. The same conclusion
and the same threshold are valid if instead of n-cubes we use n-spheres of a constant radius.

Thus, dramatic divergence in phenotype without any loss in fitness is possible if the
dimensionality of the phenotype space is sufficently large. The percolation threshold in the
continuous phenotype space given by inequality (4) is much smaller than that in the discrete
genotype space which is given by inequality (3). For example, the percolation threshold in the
10-dimensional continuous space P is similar to that in the genotype space G corresponding
to 1024 diallelic loci. An intuitive reason for this is that continuous space offers a viable point
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a much greater opportunity to be connected to a large cluster. Indeed, in the discrete genotype
space G there are n neighbors per each genotype. In contrast, in the continuous phenotype space
P, the ratio of the volume of the space where neigboring peaks can be located (which has radius
2r) to the volume of the focal n-cube (which has radius r) is 2n.

4 Percolation in a correlated landscape with phenotypic neutrality
The standard paradigm in biology is that the relationship between genotype and fitness is
mediated by phenotype (i.e., observable characteristics of individuals). Both the genotype-to-
phenotype and phenotype-to-fitness maps are typically not one-to-one. Here, we formulate a
simple model capturing these properties which also results in a correlated fitness landscape.
Below we will call mutations that do not change phenotype conformist. These mutations
represent a subset of neutral mutations that do not change fitness.

We propose the following two-step model. To begin the first step, we make each pair of
genotypes x and y in a binary hypercube G independently conformist with probability qd where
d = d(x, y) is the Hamming distance between x and y. We then declare any pair x and y to belong
to the same conformist cluster if they are linked by a chain of conformist pairs. This version
of long-range percolation model (cf., Berger 2004; Biskup 2004) divides the set of genotypes
G into conformist clusters. We postulate that all genotypes in the same conformist cluster have
the same phenotype. Therefore, genetic changes represented by a change from one member of
a conformist cluster to another (i.e., single or multiple mutations) are phenotypically neutral.
In the second step, we make each conformist cluster independently viable with probability p
= λ/n. This generates a random set of viable genotypes, and we aim to investigate when this
set has a giant connected component.

To illustrate our model, we can interpret the “genotype” as a linear RNA sequence. This
sequence folds into a 3-dimensional molecule which has a particular structure, and corresponds
to our “phenotype.” Finally, the molecule itself has a particular function, e.g., to bind to a
specific part of the cell or to another molecule. A measure of how well this can be accomplished
is represented by our “fitness.”

The distribution of conformist clusters depends on the probabilities q1, q2, q3,… which
determine how the conformity probability varies with genetic distance. We will study the case
when q1 = q > 0, q2 = q3 = … = 0 (Häggström, 2001). That is, q is the probability that a pair
of nearest neighbors is a conformist pair. Thus, we can talk about conformist edges or
equivalently conformist mutations, and q is the probability that a mutation is conformist. (Note
however that it is possible that nearest neighbors x and y are in the same conformist cluster
even if the edge between them is non-conformist.) Figure 1 illustrates our 2-step procedure in
a four-dimensional example.

We expect that a more general model with qk declining fast enough with k is just a smeared
version of this basic one, and its properties are not likely to differ from those of the simpler
model. We conjecture that for our purposes, “fast enough” decrease should be exponential with
a rate logarithmically increasing in the dimension n, e.g. for large k, qk ≤ exp(−α(log n)k), for
some α > 1. (This is expected to be so because in this case the expected number of neighbors
of the focal genotype is finite.)

We observe that the first step of our procedure is an edge version of the percolation model
discussed in the second section, with a similar giant component transition (Bollobás et al.,
1992). Namely, let q = μ/n. Then, if μ > 1, there is a. a. s. one giant conformist cluster of size
c · 2n, with all others of size at most Cn. In contrast, if μ < 1 all conformist clusters are of size
at most Cn. Note that the number of conformist clusters is always on the order 2n. In fact, even
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the number of “non-conformist” (i.e., isolated) clusters is a. a. s. asymptotic to e−μ2n, as the
probability P(x is isolated) = (1 − μ/n)n.

Denote by x  y (resp. x  y) the event that x and y are (resp. are not) in the same conformist
cluster. First, we note that the probability P(x  y) that two genotypes belong to the same
conformist cluster depends on the Hamming distance d(x, y) between them, and on q = μ/n. In
particular, we show in Appendix A that, if μ < 1 and d(x, y) = k is fixed, then

(5)

The dominant contribution k!qk is simply the expected number of conformist pathways between
x and y that are of shortest possible length.

It is also important to note that, for every x ∈ G, the probability P(x is viable) = p, therefore it
does not depend on q. Moreover, for x, y ∈ G,

Therefore, the correlation function (1) of fitness is

(6)

which clearly increases with q and, thus, with μ. The correlation function ρ(x, y) decreases
exponentially with distance d(x, y) when μ < 1, and is bounded below when μ > 1. Nevertheless,
as we will see below, we can effectively use local methods for all values of μ. Therefore, in
this model the probability of being viable is controlled by parameter λ while the correlation
structure of the landscape is controlled by parameter μ.
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Proceeding by local branching process heuristics analogous to those used in Section 2, we
reason that a surviving node on the branching tree can have two types of descendants: those
that are connected by conformist mutations and those that are in different conformist clusters
and viable independently. Therefore the number of descendants in the branching process is
approximately Poisson(μ + λ).

The above argument can only work when μ < 1, as otherwise the correlations are global. If μ
> 1, we need to eliminate the entire conformist giant component, which is a. a. s. inviable
(because p is small). Locally, we condition on the (supercritical) branching process of the
supposed descendant to die out. Such conditioned process is a subcritical branching process,
with Poisson (μδ) distribution of successors (Athreya and Ney, 1971) where δ = δ(μ) < 1 is
given by the equation δ = exp(μ(δ − 1)), analogous to the equation (2). This gives the conformist
contribution, to which we add the independent Poisson(λδ) contribution.

To have a convenient summary of the conclusions above, assume that μ is fixed and let ζ(μ)
be the smallest λ which a. a. s. ensures the giant component, i.e.,

One would expect that for λ < ζ(μ) all components are a. a. s. of size at most Cn. The asymptotic
critical curve is given by λ = ζ(μ), where

(7)

The asymptotic critical curve ζ(μ) reaches the smallest value of 0 at μ = 1. To intuitively
understand why percolation occurs the easiest with μ ≈ 1 (that is, when the probability of a
conformist mutation is ≈ 1/n), it helps to think of the model as a branching process on clusters
rather than on genotypes. Suppose we fix a particular set of k genotypes as a viable conformist
cluster. The number of genotypes neighboring this cluster is then fixed, but the number of
neighboring conformist clusters is random. For any μ < 1, it follows from equation (5) that the
expected number of neighboring clusters is asymptotically the same as the number of
neighboring genotypes. Consequently, we expect the overall number of descendants in the
branching process to be greater if the size of the neighboring clusters is greater on average;
which is exactly what happens as μ increases towards 1. If μ > 1, then there is a positive
proportion of the neighboring genotypes that are in the giant cluster. This giant cluster is likely
to be inviable, so the parameter λ must be greater to compensate for its loss.

In fact, one can prove rigorously (Pitman, unpub.) that 1 − μ is a lower bound on the critical
surface by comparison with an edge percolation model in which each edge is retained
independently with probability p + q − pq. We also remark that the number of viable clusters
is on the same order as the number of all viable genotypes, that is, 2n/n. Since p = λ/n, it follows
that the number of viable genotypes is on the order of 2n/n.

We have not been able to find an analytic proof that ζ(μ) (7) is also an upper bound, i.e., that
the actual critical surface is given by ζ. Thus, we resort to computer simulations for
confirmation. For this, we indicate global connectivity with the event A that a genotype within
distance d = 2 of 0…0 is connected (through viable genotypes) to a genotype within distance
d = 2 of 1…1. We make this choice because the distance 2 is the smallest that works with
asymptotic certainty. Indeed, the genotypes 0…0 and 1…1 are likely to be inviable. Even the
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number of viable genotypes within distance one of each of these is only of constant order. It
follows that, for any μ > 0, the probability of connectivity between a viable genotype within
distance one of 0…0 and a viable one within distance one of 1…1 does not converge to 1 but
is of a nontrivial constant order. By contrast, there are about n2 vertices within distance 2 of
0…0 among which of order n are viable.

When λ > ζ(μ) the probability of the event A should therefore be (exponentially) close to 1. On
the other hand, when λ < ζ(μ) the probability that a connected component within distance 2 of
either 0…0 or 1…1 extends for distance of the order n is exponentially small. We further define
the critical curves

We approximated λm and λM for n = 10,…, 20 and μ = 0(0.1)2, with 1000 independent
realizations of each choice of n, μ, and λ. We used the linear cluster algorithm described in
Sedgewick (1997). Unfortunately, simulations above n ≈ 20 are not feasible. The results are
depicted in Figure 2.

We make the following observations relating to Figure 2:
• Even for low n, both critical curves approximate well the overall shape of the

theoretical limit curve ζ.
• The two curves λm and λM appear to be approaching a limiting curve away from the

theoretical limiting curve ζ. However, this need not be interpreted as evidence against
ζ being the actual limiting curve. Indeed, this behavior is an instance of a sharp
threshold (Friedgut, 1999): if one fixes a μ, and increases λ from 0 to ∞, then the global
connectivity probability P(A) rises from 0.1 to 0.9 within a very short interval (of
length λM − λm) even for a relatively low n. The location of this sharp increase gets
close to ζ much later; in symbols, λM − λm ≪ |ζ − λm| for large n.

• For μ < 1, λm tends to be above the limit curve. This is not surprising because the local
argument always gives an upper bound on the probability P(A) of event A.

• The approximation of λm appears to deteriorate near μ = 2, which stems from the
increased probability of survival of the giant component for larger μ.

Summarizing, we have shown that this more realistic model with phenotypic neutrality and
fitness correlation shares the most important property of simpler models considered above -
the existence of a percolating giant cluster of viable genotypes extending throughout the
genotype space. More specifically, the number of clusters of viable genotypes is on the order
of 2n/n for any λ and μ, and percolation occurs for λ larger than ζ(μ) given by equations (7). In
terms of the viability probability p, the percolation threshold is thus inversely proportional to
the dimensionality n of the genotype space (because p = λ/n). Conformist mutations are most
advantageous at about μ = 1, which is the point of phase transition between between local and
global conformist connectivity. In particular, for μ ~ 1, percolation could potentially occur for
p on a scale smaller than 1/n. What is also clear from the heuristics and simulations is that
conformist clustering, and thus correlations, can help or hinder connectivity in fitness
landscapes. Indeed, the critical probability for global connectivity in the uncorrelated landscape
is about λ = 1 (Section 2). In the correlated landscape model considered here, the critical value
ζ < 1 approximately for μ < 1.5 (Figure 2). However, for large values of μ, correlations hinder
connectivity.
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In the model studied above, the viability probability p was independent of the size of the
conformist clusters. In Appendix B, we consider a simple generalization that can be tuned to
create positive or negative correlations between conformist cluster size and viability.

5 Percolation in incompatibility models
In the model considered in the previous section correlations rapidly decreased with distance.
This property made local analysis possible. The models we introduce now are fundamentally
different in the sense that correlations are so high that the local method gives a wrong answer.

In the previous sections, in constructing fitness landscapes we were assigning fitness to
individual genotypes or phenotypes. Here, we make certain assumptions about “fitness” of
particular combinations of alleles or the values of continuously varying phenotypic characters.
Specifically, we will assume that some of these combinations are “incompatible” in the sense
that the resulting genotypes or phenotypes under given environmental conditions have reduced
(or zero) fitness (Orr, 1995; Orr and Orr, 1996; Gavrilets, 2004). The resulting models can be
viewed as a generalization of the Bateson-Dobzhansky-Muller model (Cabot et al., 1994; Orr,
1995; Orr and Orr, 1996; Orr, 1997; Orr and Turelli, 2001; Gavrilets and Hastings, 1996;
Gavrilets, 1997; Gavrilets and Gravner, 1997; Gavrilets, 2003, 2004; Coyne and Orr, 2004)
which represents a canonical model of speciation.

5.1 Diallelic loci
We begin by considering n diallelic loci and assuming that each pair of alleles is independently
incompatible with probability

We let a single pair of incompatible alleles make an individual inviable. Thus, the variable p
characterizes the probability of being inviable rather than viable as in the previous sections.

There are  allele pairs in all, and we form a random list F of those that are incompatible.
We denote the allele pair u at locus i and υ at locus j by (ui, υj). In this nonstandard notation,
(01, 02) ∈ F, for example, means that allele 0 at locus 1 and allele 0 at locus 2 are incompatible.
In general, if (ui, υj) ∈ F, all genotypes with u in position i and υ in position j are inviable. A
genotype x is then inviable if and only if there exist i and j, with i < j, so that u and υ are,
respectively, the alleles of x at loci i and j, and (ui, υj) ∈ F. For example, if F1 = {(01, 02),
(12, 03), (11, 12)}, viable genotypes may have 011, 100, and 101 as their first three alleles. For
F2 = F1 ∪ {(01, 13), (11, 02)}, no viable genotype remains.

Incompatibility (01, 02) is equivalent to two implications: 01 ⇒ 12 and 02 ⇒ 11 or to the single
OR statement 11 OR 12. In this interpretation, the problem of whether, for a given list of
incompatibilities F, there is a viable genotype is known as the 2 -SAT problem (Korte and
Vygen, 2005). The associated digraph DF is a graph on 2n vertices xi, i = 1,…n, x = 0, 1, with
oriented edges determined by the implications. A well-known theorem (Korte and Vygen,
2005) states that a viable genotype exists iff DF contains no oriented cycle from 0i to 1i and
back to 0i for any i = 1,…n in DF. For example, for the incompatibilities F2 as above, one such
cycle is 01 → 12 → 13 → 11 → 12 → 01.
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Existence of viable genotypes—In this model, viable genotypes exist only if the
probability of pairwise incompatibility p is smaller than 1/(2n). More precisely, let N be the
number of viable genotypes. Then

• if c > 1, then a. a. s. N = 0.
• if c < 1, then a. a. s. N > 0.

This result first appeared in the computer science literature in the 90’s (see de la Vega 2001
for a review), and it is an extension of the celebrated Erdös-Rényi random graph results
(Bollobás, 2001; Janson et al., 2000) to the oriented case.

Note that the expectation , which grows exponentially
whenever c < 4 log 2 ≈ 2.77. Neglecting correlations would therefore suggest a wrong threshold
for the existence of viable genotypes. The local method based on analysis of the averages (e.g.,
used in Gavrilets 2004, Chapter 6) is even farther off, as it suggests an a. a. s. giant component
when p < (1 − ε) log n/n for any ε > 0.

The number of viable genotypes—Assume that c < 1. Sophisticated, but not
mathematically rigorous methods based on replica symmetry (Monasson and Zecchina,
1997; Biroli et al., 2000) from statistical physics suggest that, as n → ∞, lim n−1 log N varies
almost linearly between log 2 ≈ 0.69 (for small c, when, as we prove below, this limit is log 2
+ O(c)) and about 0.38 (for c close to 1). One can however prove that n−1 log N is for large n
sharply concentrated around its mean (de la Vega, 2001).

Upper and lower bounds on N can also be obtained rigorously. For example, if X is a number
of incompatibilities which involve disjoint pairs of loci (i.e., those for which every locus is
represented at most once among the incompatibilities), then N ≤ exp(n log 2 + X log(3/4)), as
each of the X incompatibilities reduces the number of viable genotypes by the factor 3/4. If we
imagine adding incompatibilities one by one at random until there are about cn of them, then
after we have k incompatibilities on disjoint pairs of loci the waiting time (measured by the
number of incompatibilities added) for a new disjoint one is geometric with expectation

. Therefore, X is a. a. s. at least Kn, where K solves the approximate equation

or

which reduces to K = c/(1 + 2c). This implies that in the limit of large n the upper bound on
N can be written as
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(8)

A lower bound is even easier to obtain. Namely, the probability that a fixed location (i.e., locus)
i does not appear in F is (1 − p)4(n − 1) → e−2c, and then it is easy to see that the number of loci
represented in F is asymptotically (1 − e−2c)n. As the other loci are neutral (in the sense that
changing their alleles does not affect fitness), n−1 log N is asymptotically at least e−2c log 2.
Clearly, this gives a lower bound on the exponential size of any cluster of viable genotypes.

If this was an accurate bound, it would imply that the space of genotypes is rather simple, in
that almost all its entropy would come from neutral loci. (By analogy with physical systems,
entropy is a measure of the amount of choice (“number of degrees of freedom”) one has in
selecting a viable genotype.) The Appendix C presents two arguments which will demonstrate
that this is not the case.

The structure of clusters—The derivations in Appendix C show that every viable genotype
is connected through mutation to a fairly substantial viable sub-cube. In this sub-cube, alleles
on at most a proportion ru(c) < 1 of loci are fixed (to 0 or 1) while the remaining proportion 1
− ru(c) could be varied without effect on fitness. Note from Figure 4 in Appendix C that 1 −
ru(c) ≥ 0.3 for all c, and that such a phenomenon is extremely unlikely on uncorrelated
landscapes. Namely, in the setting of Section 2, the probability that a viable subcube of size
k exists anywhere is at most

so even at the connectivity threshold p = 1/2 the size of largest viable subcube is a. a. s. of order
log log n. Note also that, for c < 1, N ≥ 2(1 − ru(c))n a. a. s. and so in the limit of large n the lower
bound on N can be written as

(9)

The number of clusters—The natural next question concerns the number of clusters R
when c < 1. This again has quite a surprising answer, unparalleled in landscapes with rapidly
decaying correlations. Namely, R is stochastically bounded, that is, for every ε > 0 there exists
an z = z(ε) such that P(R ≤ z for all n) > 1 − ε. This follows from a result in Pitman (unpub.),
which shows that the distribution of R converges in distribution to 2X, where X is distributed
Poisson(λ) for

The probability that there is a unique cluster thus converges to .
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Asymptotically, a unique cluster has a better than even chance of occurring for c below about
0.9, and is very likely to occur for small c, though of course not a. a. s. so. To confirm, we have
done simulations for n = 20 and c = 0.01(0.01)1 (again 1000 trials in each case) and got
distribution of clusters depicted in Figure 3. The results suggest that the convergence to limiting
distribution is rather slow for c close to 1, and that the likelihood of a unique cluster increases
for low n.

To summarize, in the presence of random pairwise incompatibilities, the set of viable genotypes
is, when nonempty, divided into a stochastically bounded number of connected clusters, where
a unique cluster is usually the most likely possibility. These clusters are all of exponentially
large size (with bounds given by equations 8 and 9), in fact they all contain sub-cubes of
dimension at least (1 − ru(c))n. However, the proportion of viable genotypes among all 2n

genotypes is exponentially small, by equation (8).

In fitness landscapes based on incompatibilities, high correlations make a significant
proportion of genetic information irrelevant in the sense that genotypes can be changed by
mutations at many loci without affecting fitness. This might be expected from the perspective
that the model of lethal allele pairs (i.e., pairwise incompatibilities) is a natural generalization
of the much simpler model of lethal alleles in which each of 2n alleles is independently lethal
with probability p. In this model, the proper scale is . A viable genotype exists when
there is no locus at which both alleles are lethal, which happens with probability (1 − p2)n ~
e−c2. (Note that there is not a sharp threshold in this mode, i.e., taking the existence probability
from 1 to 0 requires varying c from 0 to ∞.) Moreover, all the loci for which neither allele is
lethal can be changed by mutation without affecting fitness. The number of such loci is about

, so nearly all loci are neutral. It is also interesting to point out that the
uncorrelated model, where viability of genotypes is independently determined is at the other
extreme — viability of genotypes is based on lethal combinations of all n alleles.

In the following sections, we study the conditions for the existence of viable genotypes in
several related models starting with complex incompatibilities.

5.2 Complex incompatibilities
Here we assume that incompatibilities involve K (≥ 2) diallelic loci (Cabot et al., 1994; Orr
and Orr, 1996; Gavrilets, 2004). Determining whether a viable combination of genes exists is
then equivalent to the K -SAT problem (Korte and Vygen, 2005). Even for K = 3, this is an
NP-complete problem (Korte and Vygen, 2005), so there is no known polynomial algorithm
to answer this question. The random case, which we now describe, is also much harder to

analyze than the 2 -SAT one. Let F be a random set to which any of the 
incompatibilities belong independently with probability

Here c = c(K) is a constant, and the above form has been chosen to make the number of
incompatibilities in F asymptotically cn. (Note also the agreement with the definition of p in
Section 5.1 when K = 2.) For a fixed K, it has been proved (Friedgut, 1999) that the probability
that viable genotype exists jumps sharply from 0 to 1 as c varies. However, the location of the
jump has not been proved to converge as n → ∞. Instead, a lot of effort has been invested in
obtaining good bounds. For example (Achlioptas and Peres, 2004), for K = 3, c < 3.42 implies
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a. a. s. existence of viable genotype, while c > 4.51 implies a. a. s. nonexistence (while the
sharp constant is estimated to be about 4.48, see e.g. Biroli et al. 2000). For K = 4 the best
current bounds are 7.91 and 10.23. For large K, the transition occurs at c = 2K log 2 − O(K)
(Achlioptas and Peres, 2004).

Techniques from statistical physics (Biroli et al., 2000) strongly suggest that, for K ≥ 3, there
is another phase transition, which for K = 3 occurs at about c = 3.96. For smaller c, the viable
genotypes are conjectured to be contained in a single cluster. For larger c, the space of viable
genotypes (if nonempty) is divided into exponentially many connected clusters. It appears that
3 -SAT is already noticeably closer than 2 -SAT to the uncorrelated model in Section 2 where
the number of clusters is on the order of the number of viable genotypes and to the weakly
correlated model of Section 4.

Perhaps more relevant to genetic incompatibilities is the following mixed model (commonly
known as (2 + p) -SAT), Monasson and Zecchina 1997). Assume that every 2-incompatibility
is present with probability c2/(2n), while every 3-incompatibility is present with probability
3c3/(4n2). The normalizations are chosen so that the numbers of 2-incompatibilites and 3-
incompatibilities are asymptotically c2n and c3n, respectively.

If c2 (resp. c3) is very small, then the respective incompatibility set affects a very small
proportion of loci, therefore c3 (resp. c2) determines whether a viable genotype is likely to
exist. Intuitively, one also expects that 2-incompatibilities should be more important than 3-
incompatibilities as one of the former type excludes more genotypes than one of the latter type.
A careful analysis confirms this. First observe that c2 > 1 implies a. a. s. non-existence of a
viable genotype. The surprise (Monasson and Zecchina, 1997; Achlioptas et al., 2001) is that
if c3 is small enough, c2 < 1 implies a. a. s. existence of viable genotypes, so the 3-
incompatibilities do not change the threshold. This is established in Monasson and Zecchina
(1997) by a physics argument for c3 < 0.703, while Achlioptas et al. (2001) gives a rigorous
argument for c3 < 2/3. Therefore, even if their numbers are on the same scale, if the more
complex incompatibilities are rare enough compared to the pairwise ones, their contribution
to the structure of the space of viable genotypes is not essential.

5.3 Multiallelic loci
Here we assume that at each locus there can be a (≥ 2) alleles (cf., Reidys 2006). In this case,
the genotype space is the generalized hypercube Ga = {0,…, a − 1}n. For a = 3 this could be
interpreted as the genotype space of diploid organisms without cis-trans effects (Gavrilets and
Gravner, 1997), a = 4 corresponds to DNA sequences, and a = 20 corresponds to proteins.
Much larger values of a can correspond to a number of alleles at a protein coding locus and
we will see later that there is not much difference between this model and a natural continuous
space model.

We will assume that each pair of alleles, out of total number of  is independently
incompatible with probability

The main question we are interested in here is for which values of c viable genotypes exist a.
a. s.
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Clearly, if N is the number of viable genotypes, then the expectation

and so there are a. a. s. no viable genotypes when c > 4 log a. On the other hand, clearly there
are viable genotypes (with all positions filled by 0’s and 1’s) when c < 1. It turns out that the
first of these trivial bounds is much closer to the critical value when a is large. Before we
proceed, however, we state a sharp threshold result from Molloy (2003): there exists a function
γ = γ(n, a) so that for every ε > 0,

• if c > γ + ε, then a. a. s. N = 0.
• if c < γ − ε, then a. a. s. N > 0.

In words, for a fixed a, the probability of the event that N ≥ 1 transitions sharply from large to
small as c increases through γ. As it is not proved that limn→∞ γ(n, a) exists, it is in principle
possible that the place of this sharp transition fluctuates as n increases (although it must of
course remain within [1, 4 log a]).

Our main result in this section is

(10)

This somewhat surprising result in proven in Appendix D by the second moment method, as
developed in Achlioptas and Moore (2004) and Achlioptas and Peres (2004).

Equation (10) implies that viable genotypes exist only if the incompatibility probability

(11)

which decreases linearly with the number of the loci n but increases only logarithmically with
the number of alleles a. That is, multiple alleles widen the conditions for the existence of viable
genotypes but the effect is not too strong.

5.4 Continuous phenotype spaces
Here we extend the model of pair incompatibilities for the case of continuous phenotypic space
P = [0, 1]n. Again, each phenotype is characterized by values z1,…, zn, each between 0 and 1,
which specify n continuous traits. This time we also have a small r > 0 as a parameter. For
each pair of traits (i, j), i < j, we independently choose a Poisson(λ) number of points Пij
uniformly at random in the unit square [0, 1] × [0, 1]. These points will be interpreted as
“gorges” of equal deapth in the fitness landscapes. As in the discrete case, we assume that λ =
c/(2n). Then we declare each phenotype z = (z1,…, zn) ∈ P inviable if it has two traits i < j so
that (zi, zj) is within r of the “gorge” Пij. Our procedure can be visualized as throwing a random
number of (n − 2)-dimensional square tubes of inviable phenotypes into the phenotype space.

Our main result here is that the existence threshold is on the order c ≈ − log r/r2. Namely, we
prove in Appendix E that there exists a constant C > 0 so that for small enough r,
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•
if , then a. a. s. N = 0.

•
if , then a. a. s. N > 0.

In the basic and continuous models in Sections 2 and 3, the difference in percolation thresholds
(given by equations 3 and 4) was dramatic. In contrast, the continuous and discrete cases here
are a lot closer. The scaling of the critical probability is 1/n for both cases, and as explained in
Appendix E, the continuous case described here is related to the discrete one (from Section
5.3) with a ≈ 1/r and the incompatibility probability p ≈ r2/n.

Overall, the results presented in Section 5 show that the structure of fitness landscapes in
incompatibility models are very different from that in models considered in earlier sections.
Although both types of models result in large clusters of viable genotypes, the former allow
for more neutral changes on local scales (because incompatibilites are rare) but for less
extensive genetic divergence on larger scales (because viable clusters are repreented by
subcubes rather than trees) than the latter.

6 Notes on neutral clusters in the discrete NK model
The model considered here is a special case of the discretized NK model (Kauffman, 1993),
introduced in Newman and Engelhardt (1998a). This model features n diallelic loci each of
which interacts with K other loci. To have a concrete example, assume that the loci are arranged
on a circle, so that n + 1 ≡ 1, n + 1 ≡ 2, etc., and let the interaction neighborhood of the i’th
locus consist of itself and K loci to its right i + 1,…, i + K. For a given genotype x ∈ G = {0,
1}n, the neighborhood configuration of the i’th locus is then given by Ni(x) = (xi, xi+1,…,xi+K)
∈ {0, 1}K+1. To each locus and to each possible configuration in its neighborhood we
independently assign a binary fitness contibution. To be more precise, we choose the 2K+1n
numbers υi(y), i = 1,…,n and y ∈ {0, 1}K+1, to be independently 0 or 1 with equal probability,
and interpret υi(y) as the fitness contribution of locus i when its neighborhood configuration is
y. The fitness of a genotype x is then the sum of contributions from each locus:

In Kauffman (1993), the values υi were taken from a continuous distribution. In Newman and
Engelhardt (1998a), these values were integers in the range [0, F − 1] so that our model is a
special case F = 2. The NK model results in a correlated fitness landscape; the corresponding
correlation function (1) can be found explicitly (Fontana et al., 1993; Campos et al., 2002;
Gavrilets, 2004).

We define neutral clusters as connected components of same fitness. The K = 0 case, wich
corresponds to an additive fitness model, is easy but nevertheless illustrative. Namely, a
mutation at locus i will not change fitness iff υi(0) = υi(1); let D be the number of such loci.
Since the fitnesses contributions are assigned randomly and with equal probabilities, each locus
has a 50% chance to be in this category. Then D ~ n/2 a. a. s., the number of different fitnesses
is n − D, each neutral cluster is a sub-cube of dimension D, and there are exactly 2n − D neutral
clusters.

The next simplest situation is when K = 1, so that each locus interacts with one other locus.
Let D1 be the number of loci i for which the fitness contribution υi is constant, i.e., does not
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depend on the configuration in the i’th neighborhood Ni. Then D1 ~ n/8 a. a. s. (because out of
the 24 = 16 possible functions υi, two are constant, the 0 and the 1), and each neutral cluster
contains a sub-cube of dimension D1. Moreover, let D2 be the number of loci i for which
υi(00) = υi(01) ≠ υi(10) = υ1(11). Note that there are again two functions with this property,
and that any genotypes that differ at such a locus i must belong to a different neutral cluster.
Consequently, the number of different neutral clusters is at least 2D2 and there are exponentially
many of them, as again D2 ~ n/8 a. a. s. This division of genotype space into exponentially
many clusters of exponential size persists for every K, although the distribution of numbers
and sizes of these clusters is not well understood (see Newman and Engelhardt 1998a for
simulations for n = 20).

Overall, neutral clusters are a prominent feature of the NK model. We also mention that the
question of whether a genotype with the maximal possible fitness n exists for a given K is in
many way related to issues in incompatibilities models (Choi et al., 2005).

7 Discussion
In this section we summarize our major findings and provide their biological interpretation.

The previous work on neutral and nearly neutral networks in multidimensional fitness
landscapes has concentrated exclusively on genotype spaces in which each individual (or a
group of individuals) is characterized by a discrete set of genes. However many features of
biological organisms that are actually observable and/or measurable are described by
continuously varying variables such as size, weight, color, or concentration. A question of
particular biological interest is whether (nearly) neutral networks are as prominent in a
continuous phenotype space as they are in the discrete genotype space. Our results provide an
affirmative answer to this question. Specifically, we have shown that in a simple model of
random fitness assignment, viable phenotypes are likely to form a large connected cluster even
if their overall frequency is very low provided the dimensionality of the phenotype space, n,
is sufficiently large. In fact, the percolation threshold for the probability of being viable scales
with n as 1/2n and, thus, decreases much faster than 1/n which is characteristic of the analogous
discrete genotype space model.

Earlier work on nearly neutral networks has been limited to consideration of the relationship
between genotype and fitness. Any phenotypic properties that usually mediate this relationship
in real biological organisms have been neglected. In Section 4, we proposed a novel model in
which phenotype is introduced explicitly. In our model, the relationships both between
genotype and phenotype and between phenotype and fitness are of many-to-one type, so that
neutrality is present at both the phenotype and fitness levels. Moreover, this model results in
a correlated fitness landscape in which the correlation function can be found explicitly. We
showed that phenotypic neutrality and correlation between fitnesses can reduce the percolation
threshold. Our results suggest that the most conducive conditions for the formation of the giant
component is when the correlations are at the point of phase transition between local and global.
To explore the robustness of our conclusions, we then look at a simplistic but mathematically
illuminating model in which there is a correlation between conformity (i.e., phenotypic
neutrality) and fitness. The model has supported our conclusions.

In Section 5, we studied a number of models that have been recently proposed and explored
within the context of studying speciation. In these models, fitness is assigned to particular gene/
trait combinations and the fitness of the whole organisms depends on the presence or absence
of incompatible combinations of genes or traits. In these models, the correlations of fitnesses
are so high that local methods lead to wrong conclusions. First, we established the connection
between these models and SAT problems, prominent in computer science. Then we analyzed
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the conditions for the existence of viable genotypes, their number, as well as the structure and
the number of clusters of viable genotypes. These questions have not been studied previously.
The majority of our results are for the case of pairwise incompatibilities between diallelic loci,
but we also looked at multiple alleles and complex incompatibilities. In the case of diallelic
loci we showed that the number of clusters is stochastically bounded and each cluster contains
a very large sub-cube. Our results suggest (in the context of the mixed model) that more
complex incompatibilities are less important than less complex incompatibilities in controlling
the structure of the space of viable genotypes. However, complex incompatibilities appear to
allow for exponentially many clusters of viable genotypes. Finally, we generalized some of
our findings to continuous phenotype spaces.

In Section 6, we provided some additional results on the size, number and structure of neutral
clusters in the discrete NK model which represent a popular tool for studying adaptation
(Kauffman and Levin, 1987; Kauffman, 1993; Newman and Engelhardt, 1998b; Welch and
Waxman, 2005).

In the majority of models studied here, we assumed for simplicity that fitness can take only
two values: zero and one. In Section 2, we mentioned the relationship between viable genotypes
and fitness bands. This concept is explored in some detail in our previous work (Gavrilets,
1997; Gavrilets and Gravner, 1997; Gavrilets, 2004) where we showed that many results on
viable genotypes in uncorrelated landscapes easily generalize to the case of continuously
changing fitness. The same is true of the models in Sections 3 and 4. For simplicity, our analysis
has been restricted to very symmetric models. However, we expect that many conclusions of
this paper can be generalized to nonsymmetric fitness assignments provided the dimensionality
of fitness landscapes is very large.

Overall, our results reinforce the previous conclusion (Gavrilets, 1997; Gavrilets and Gravner,
1997; Reidys et al., 1997; Gavrilets, 2004; Reidys et al., 2001; Reidys and Stadler, 2001,
2002) that percolating networks of genotypes with approximately similar fitnesses (holey
landscapes) is a general feature of multidimensional fitness landscapes (both uncorrelated and
correlated and both in genotype and phenotype spaces). The evolution along such networks
can readily proceed by mutation and random genetic drift (Kimura, 1983; Ohta, 1992, 1998;
Lynch, 2007) and result in the accumulation of reproductive isolation between diverging
lineages and in allopatric, parapatric or sympatric speciation (Cabot et al., 1994; Orr, 1995;
Orr and Orr, 1996; Orr, 1997; Orr and Turelli, 2001; Gavrilets and Hastings, 1996; Gavrilets,
1997; Gavrilets and Gravner, 1997; Gavrilets, 2003, 2004; Coyne and Orr, 2004). Selection
(e.g., for local adaptation or sexual) can either help or hinder these processes depending on
whether its net effect is diversifying or stabilizing.

Some more general theoretical lessons of our work are that
• Correlations may help or hinder connectivity in fitness landscapes. Even when

correlations are positive and tunable by a single parameter, it may be advantageous
(for higher connectivity) to increase them only to a limited extent. One reason (see
Section 4.2) is that high correlations may result in a loss of very large phenotypically
similar clusters.

• Averages (i.e., expected values) can easily lead to wrong conclusions, especially when
correlations are strong (see Section 5.1). Nevertheless, they may still be useful with
a crafty choice of relevant statistics (see Achlioptas and Peres (2004) and Appendix
D).

• Very high correlations may fundamentally change the structure of connected clusters.
For example, clusters may look locally more like cubes (Section 5) than trees (Sections
2, 3 and 4) and their number may be reduced dramatically (Section 5).
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• Necessary analytic techniques may be unexpected and quite sophisticated; for
example, they may require detailed understanding of random graphs, spin-glass
machinery, or decision algorithms.

Appendix

APPENDIX

Appendix A. Proof of equation (5)
To prove equation (5), we assume that μ < 1 and show that for a fixed k (which does not grow
with n), the event that x and y at distance k are in the same conformist cluster is most likely to
occur because x and y are connected via the shortest possible path. Indeed, the dominant term
k!qk is the expected number of conformist pathways between x and y that are of shortest possible
length k. This easily follows from the observation that on a shortest path there is no opportunity
to backtrack; each mutation must be toward the other genotype. We can assume that x is the
all 0’s genotype and y is the genotype with 1’s in the first k positions and 0’s elsewhere. There
are k! orders in which the 1’s can be added.

To obtain the lower bound we use inclusion-exclusion on the probability that x  y through
a shortest path. Let Ik = Ik(x, y) be the set of all paths of length k between x and y. Then

where Aα is the event that a particular path α consists entirely of conformist edges. Notice that
two distinct paths of the same length differ by at least two edges. Thus, we get the following
upper bound

and the lower bound in (5) follows.

The upper bound is a little more difficult to obtain (it is only here that we use μ < 1) and we
need some notation. Each genotype can be identified with the set of 1’s that it contains, so for
any two genotypes u and υ we let u Δ υ denote the set of loci on which they differ. Notice that
if u Δ υ is even (resp. odd) then every path between u and υ is of even (resp. odd) length because
each mutation which alters the allele at a locus not in u Δ υ must later be compensated for.

To estimate the expected number of conformist pathways, we will need to bound the number
of paths of length l between x and y. This is given by

We show this via the methods of Bollobás et al. (1992). They obtain an estimate for the number
of cycles of a given length through a fixed vertex of the cube.

Gravner et al. Page 20

J Theor Biol. Author manuscript; available in PMC 2009 July 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Given a path, say x = υ0, υ1,…, υl = y, between x and y, let us associate the sequence (ε1i1,
…,εlil) where

j = 1,…,l. Since distinct paths will have distinct sequences we can bound the number of paths
by finding an upper bound for the number of sequences.

Note that there must be m + k positive entries, which occur at  possible
locations. The absolute values of m of these entries are chosen freely from {1,…,n}, while the
remaining k must be the integers 1,…,k. There are nmk! ways to do this. We are free to order
the m negative entries and the bound follows.

We now assume that d(x, y) is even and relabel d(x, y) = 2k. We omit the similar calculation
for odd distances. Define b = −3k/(2 log μ) and t = ⌊b log n⌋. Then the expected number of
conformist paths between x and y can be expressed as

Appendix B. Correlations between conformity and viability
Assume now that conformist clusters are formed as in Section 4 (i.e., with edges being
conformist with probability q = μ/n), are still independently viable, but now the probability of
their viability depends on their size. We will consider the simple case when an isolated genotype
(one might call it non-conformist) is viable with probability p0 = λ0/n, while a conformist cluster
of size larger than 1 is viable with probability p1 = λ1/n.

In this case, the probability that a random genotype is viable,

Moreover, by a similar calculation as before,
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Here, the last factor is the indicator of the set {(x, y), d(x, y) = 1}, which equals 1 if d(x, y) =
1 and 0 otherwise. Therefore, for d(x, y) ≥ 2, the correlation function (1) is

which is smaller than before iff λ1 < λ0. However, it has the same asymptotic properties unless
λ1 = 0.

Assume first that μ < 1. The local analysis now leads to a multi-type branching process (Athreya
and Ney, 1971) with three types: NC (non-conformist node), CI (non-isolated node
independently viable, so no conformist edge is accounted for), and CC (non-isolated node
viable by conformity, so a conformist edge is accounted for). Note that while the type NC is a
new feature, the difference between CI and CC was the key to our earlier local analysis in
Section 4.1 — a neighbor of a viable genotype may be viable because of a conformist edge
between them or because it belongs to an independently viable conformist cluster.

Note first that a genotype is non-conformist with probability about e−μ. Hence a node of any
of the three types creates a Poisson(e−μλ1) number of type NC descendants, and a Poisson((1
− e−μ)λ1) number of type CI descendants. In addition, the type CI creates a Poisson(μ),
conditioned on being nonzero, number of descendants of type CC and type CC creates a Poisson
(μ) number of descendants of type CC. Thus the matrix of expectations, in which the ijth entry
is the expectation of the number of type j descendants from type i, is

When μ > 1, μ needs to be replaced by μδ, and λ1 by λ1δ, where δ = δ(μ) is given by (2).

It follows from the theory of multi-type branching processes (Athreya and Ney, 1971) that the
critical surface for survival of a multi-type branching process is given by det(M − 1) = 0.

The simplest case is when only non-conformist genotypes may be viable, i.e., λ1 = 0. In this
case the critical surface is given by λ0e−μ = 1 (Pitman, unpub.). Not surprisingly, the critical
λ0 necessary to achieve global connectivity strictly increases with μ, which is the result of
negative correlations between conformity and viability.
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The other extreme is when non-conformist genotypes are inviable, i.e., λ0 = 0. As an easy
computation demonstrates, the critical curve is now given by λ1 = ζ(μ), where

(12)

Note that ζ(μ) → ∞ as μ → 0. We carried out exactly the same simulations as before. These
are also featured in Figure 4, and again confirm our local heuristics. We conclude that positive
correlations between viability and conformity tend to lead to a V-shaped critical curve, whose
sharpness at critical conformity μ = 1 increases with the size of correlations. In short, then,
correlations help more if viability probability increases with size of conformist clusters.

Appendix C. Cluster structure under random pair incompatibilities
Here we show that, under random pairwise incompatibilities model introduced in Section 5.1,
connected clusters include large subcubes. The basic idea comes from Boufkhad and Dubois
(1999). A configuration a ∈ {0, 1, *}n is a way to specify a sub-cube of G, if *’s are thought
of as places which could be filled by either a 0 or a 1. The number of non-*’s is the length of
a. Call a an implicant if the entire sub-cube specified by a is viable.

We present two arguments, beginning with the one which works better for small c. Let the
auxiliary random variable X be the number of pairs of loci (i, j), i < j, for which:

(E1)There is exactly one incompatibility involving alleles on i and j.

(E2)There is no incompatibility involving an allele on either i or j, and an allele on k ∉
{i, j}.

Assume, without loss of generality, that the incompatibility which satisfies (E1) is (1i, 1j). Then
fitness of all genotypes which have any of the allele assignments 0i0j, 0i1j and 1i0j, and agree
on other loci, is the same. Note also that all pairs of loci which satisfy (E1) and (E2) must be
disjoint. Therefore, if x is any viable genotype, its cluster contains an implicant with the number
of *’s at least X plus the number of free loci. To determine the size of X, note that the expectation

and furthermore, by an equally easy computation,

so that X ~ ce−4cn a. a. s. It follows that every cluster contains a. a. s. at least exp((e−2c +
ce−4c) log 2−ε)n), viable genotypes, for any ε > 0.

The second argument is a refinement of the one in Boufkhad and Dubois (1999) and only works
better for larger c. Call an implicant a a prime implicant (PI) if at any locus i, replacement of
either 0i or 1i by *i results in a non-implicant. Moreover, we call a the least prime implicant
(LPI) if it is a PI, and the following two conditions are satisfied. First, if all the *’s are changed
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to 0’s, then no change from 1i to 0i results in a viable genotype. Second, no change *i1j to
1i*j, where i < j, results in an indicator.

Now, every viable genotype must have an LPI in its cluster. To see this, assume we have a PI
for which the first condition is not satisfied. Make the indicated change, then replace some 0’s
and 1’s by *’s until you get a prime indicator. If the second condition is violated, make the
resulting switch, then again make some replacement by *’s until you arrive at a PI. Either of
these two operations moves within the same cluster, and keeps the number of 1’s nonincreasing
and their positions more to the left. Therefore, the procedure must at some point end, resulting
in an LPI in the same cluster.

For a sub-cube a to be an LPI, the following conditions need to be satisfied:

(I1) Every non-* has to be compatible with every other non-*, and with both 0 and 1 on
each of the *’s.

(I2) Any of the four 0,1 combinations on any pair of *’s must be compatible.

(LPI1)Pick an i with allele 1, that is, a 1i. Then 0i must be incompatible with at least one
non-*, or at least one 0 on a *. Furthermore, if 0i has an incompatibility with a 0 on
a * to its left, it has to have another incompatibility, either with a non-*, or with a 0
or a 1 on a *.

(LPI2)Pick a 0i. Then 1i must be incompatible with a non-*, or a 0 or a 1 on a *.

The first two conditions make a an implicant, and the last two an LPI. Note also that these
conditions are independent.

Let now X be the number of LPI of length rn. We will identify a function L4 = L4(r, c) such
that

Let

This is the exponential rate for the probability that in zn Bernoulli trials with success probability
p there are exactly βn successes, i.e., this probability is ≈ exp(L1n). Further, if κ, ε, δ ∈ (0, 1)
are fixed, then among sub-cubes with rn non-*’s and αn 1’s (α ≤ r), the proportion which have
εn 1’s in [κn, n] and δn *’s in [1, κn] has exponential rate

(Here all four first arguments in L1 are in [0, 1], or else the rate is −∞.)

The expected number of LPI, with r,κ, ε, δ given as above, has exponential rate at most (and
this is only an upper bound)
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The next to last line is obtained from (LPI1), as εn 1’s must have δn *’s on their left.

It follows that L4 can be obtained by

If L4(r, c) < 0, all LPI (for this c) a. a. s. have length at most r. Numerical computations show
that this gives a better bound than 1 − e−2c − ce−4c for c ≥ 0.38. Let us denote the best upper
bound from the two estimates by ru(c). This function is computed numerically and plotted in
Figure 3.

Appendix D. Proof of equation (10)
In this section we assume that genotypes have multiallelic loci, which are subject to random
pair incompatibilities. The model introduced in Section 5.2 is the most natural, but is not best
suited for our second moment approach. Instead, we will work with the equivalent modified
model with m pair incompatibilities, each chosen independently at random, and the first and
the second member of each pair chosen independently from the an available alleles. We will

assume that , label , and denote, as usual, the resulting set of incompatibilities
by F.

To see that these two models are equivalent for our purposes, first note that the number of
incompatibilities which are not legitimate, in the sense that the two alleles are chosen from the
same locus, is stochastically bounded in n. (In fact, it converges in distribution to a Poisson(c
′a2) random variable.) Moreover, by the Poisson approximation to the birthday problem
(Barbour et al., 1992), the number of pairs of choices which result in the same incompatibility
in this model is asymptotically Poisson(c′a2/2). In short, then, the procedure results in the
number m − O(1) of different legitimate incompatibilities. If m in the modified model is
increased to, say, m′ = m + n2/3, then the two models could be coupled so that the
incompatibilities in the original model are included in those in the modified model. As the
existence of a viable phenotype becomes less likely when m is increased, this demonstrates
that (10) will follow once we show the following for the modified model: for every ε > 0 there
exists a large enough a so that c′ < log a − ε implies that N ≥ 1 a. a. s.

To show this, we introduce the auxiliary random variable
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where 1A is the indicator of the set A. The size of the intersection I ∩ σ is computed by
transforming both the incompatibility I and the genotype σ to sets of (indexed) alleles, and the
weights w0 and w1 will be chosen later. To intuitively understand the statistic X, note that when
w0 = w1 = 1, the product is exactly the indicator of the event that σ is viable and X is then the
number of viable genotypes N. In general, X gives different scores to different viable genotypes
— however, the crucial fact to note is that that X > 0 iff N > 0. Therefore

which is how the second moment method is used (Achlioptas and Moore, 2004).

As

we have

Moreover

where P(01) is the probability that I has intersection of size 0 with σ = 01…0k0k+1…0n and of
size 1 with τ = 11…1k0k+1…0n, and P(00) and P(11) are defined analogously. Thus, if k =
αn,

Let Λ = Λa,w0,w1(α) be the n’th root of the k = (αn)’th term in the sum for E(X2), divided by E
(X)2. Hence
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Let α* = (a − 1)/a. A short computation shows that Λ = 1 when α = α*.

If Λ > 1 for some α, then E(X2)/(E(X))2 increases exponentially and the method fails (as we
will see below, this always happens when w0 = w1 = 1, i.e., when X = N). On the other hand,

if Λ < 1 for α ≠ α*, and , then Lemma 3 from Achlioptas and Moore (2004) implies
that E(X2)/(E(X))2 ≤ C for some constant C, which in turn implies that P(N > 0) ≥ 1/C. The
sharp threshold result then finishes off the proof of (10).

Our aim then is to show that w0 and w1 can be chosen so that, for c′ = log a − ε, Λ has the
properties described in the above paragraph. We have thus reduced the proof of (10) to a
calculus problem.

Certainly the necessary condition is that , and

so we choose w0 = a − 2 and w1 = a − 1. (Only the quotient between w0 and w1 matters, so a
single equation is enough.) This simplifies Λ to

Let φ = log Λ. We need to demonstrate that φ < 0 for α ∈ [0, α*) ∪ (α*, 1] and that φ″(α*) <
0. A further simplification can be obtained by using x − Cx2 ≤ log(1 + x) ≤ x (valid for all
nonnegative x), which enables us to transform φ (without changing the notation) to

Now
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So automatically, for c′ large but c′ = o(a), φ″(α*) < 0 for large a. Moreover, φ cannot have
another local maximum when φ″ > 0. If φ(α) ≥ 0 for some α ≠ α*, then this must happen for
an α in one of the two intervals [0, 1/(2c′)+O((c′)−2)] or [1 − 1/(2c′) − O((c′)−2), 1]. Now, φ has
a unique maximum at α* in the second interval. In the first interval, a short computation shows
that

which is negative for large a. This ends the proof.

This method yields nontrivial lower bounds for γ for all a ≥ 3, cf. Table 1.

Appendix E. Existence of viable phenotypes
In this section we describe a comparison between models from Sections 5.2 and 5.3 that will
yield the result in Section 5.3. We discretize the continuous phenotype space and in the process
obtain slightly dependent incompatibilities which cause a loss of precision by the factor 4.

We begin by assuming that a = 1/r is an integer, which we can do without loss of generality.
Divide the i’th coordinate interval [0, 1] into a disjoint intervals Ii0,…,Ii,a − 1 of length r. Note
that in our notation, the first subscript of I specifies a particular trait while the second subscript
specifies a particular interval of the trait’s values. To a phenotype x ∈ P we assign an element
Δ(x) of the generalized hypercube Ga by Δ(x)i = j iff xi ∈ Iij.

Note that Δ(x)i = Δ(y)i implies that |xi − yi| ≤ r. Therefore, as soon as Ii1j1 × Ii2j2 contains a
point z ∈ Πi1i2, every x with Δ(x)i1 = j1 and Δ(x)i2 = j2 has |xi1 − zi1| ≤ r and |xi2 − zi2| ≤ r and
is therefore inviable by definition. Moreover, by the fundamental property of a Poisson point
location (e.g., Penrose, 1996), each product Ii1j1 × Ii2j2 intersects Πi1i2 independently with
probability 1 − exp(−λr2) ~ cr2/(2n), for large n. The result from Section 5.2 implies that, when
cr2 > 4 log a = −4 log r, a. a. s. no Δ(x) is viable and thus there is a. a. s. no viable genotype.

On the other hand, let Iε be the closed ε-neighborhood of the interval I in [0, 1] (the set of points

within ε of I), and consider the events that the square  contains a point in Πi1i2. These
events are independent if we restrict j1, j2 to even integers, as these squares are then disjoint.
Moreover, each event has probability 1 − exp(−4λr2) ~ 4cr2/(2n), for large n. We thus look for
a viable genotype with Δ(x)i even for all i. This reduces the number of traits a by a factor of 2,
and it follows from Section 5.2 that a viable genotype x with all Δ(x)i even a. a. s. exists as
soon as 4cr2 < 4(log(a/2) − o(1)) = (−4 log r − log 2 − o(1)).
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Figure 1.
A four-dimensional example. (a) Start with the four-dimensional hypercube. (b) On the first
step, create conformist clusters by randomly eliminating each edge with probability 1 − q. In
the example, there are 7 conformist clusters left. (c) On the second step, remove each conformist
cluster with probability 1 − p; the vertices to be removed are black. In the example, there are
3 viable conformist clusters left. (d) The remaining viable genotypes have nearest neighbors
connected by edges. In the example, all remaining viable genotypes are connected in a single
component.
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Figure 2.
Simulated lower bounds λm (dashed curves) and upper bounds λM (solid curves), and ζ (thick
curve) plotted against μ, for n = 10,…, 20. Lower bounds increase with n, and upper bounds
decrease, for this range of n.
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Figure 3.
Simulated number of clusters, vs. c for n = 20, with the proportion (out of 1000) of trials with
exactly one (squares), exactly two (triangles), and at least three (diamonds) clusters. The solid
curve is .
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Figure 4.
Simulated lower bounds λm (dashed curves) and upper bounds λM (solid curves), and ζ (thick
curve) plotted against μ, for n = 10,…, 20 in the model from Appendix B. Lower bounds
increase with n, and upper bounds decrease, for this range of n. Compare to Figure 2.
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Figure 5.
The upper bound ru(c) for the number of fixed loci (non-*’s) in the implicant of shortest length
included in every cluster of viable genotypes, plotted against c. As explained in the text, 1 −
ru(c) is a lower bound on the dimension of the subcube specified by the implicant.
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Table 1
The lower bounds on γ obtained by the method described in text, compared to the easy upper bounds 4 log a.

a l. b. on γ 4 log a

3 1.679 4.395

4 2.841 5.546

5 3.848 6.438

6 4.714 7.168

7 5.467 7.784

8 6.128 8.318

9 6.715 8.789

10 7.242 9.211

20 10.672 11.983

30 12.608 13.605

40 13.944 14.756

50 14.960 15.649

100 18.017 18.421

200 20.982 21.194

300 22.663 22.816

400 23.846 23.966

500 24.759 24.859
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