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Fibrogenesis is an often-deadly process with increas-
ing world-wide incidence and limited therapeutic op-
tions. Pulmonary fibrogenesis involves remodeling of
the distal airspace and parenchyma of the lung, and is
characterized by excessive extracellular matrix depo-
sition and accumulation of apoptosis-resistant myofi-
broblasts. Recent studies have added significantly to
our understanding of the complex mechanisms in-
volved in lung fibrogenesis. Emerging concepts in
this field include the critical role of the epithelium,
particularly type II pneumocytes, in the initiation and
perpetuation of fibrosis in response to either endog-
enous or exogenous stress; a growing awareness of
alternative activation of macrophages in tissue re-
modeling; growing appreciation of the alternative or-
igins and phenotypic plasticity of fibroblasts; the
roles of epigenetic reprogramming and context-de-
pendent signaling in profibrotic phenotype alter-
ations; and recognition of the importance of cross
talk and convergence of intracellular signaling path-
ways. In vitro , in vivo , and in silico approaches
support a paradigm of “disordered re-development”
of the lung. Designing effective antifibrotic inter-
ventions will require accurate understanding of the
complex interactions among the genetic , environ-
mental , epigenetic , biochemical , cellular , and con-
textual abnormalities that promote pulmonary
fibrogenesis. (Am J Pathol 2009, 175:3–16; DOI:
10.2353/ajpath.2009.081170)

Lung fibrosis occurs in interstitial lung diseases (ILDs)
and idiopathic interstitial pneumonias (IIPs), as part of
several systemic connective tissue diseases and child-

hood interstitial lung disease syndrome, and in response
to many types of lung injury, including radiation and some
chemotherapeutic drugs. Idiopathic pulmonary fibrosis
(IPF) is perhaps the most pernicious and enigmatic form
of the greater problem of lung fibrogenesis. IPF claims
more lives annually in the United States than many types
of cancer1; however, effective therapy is lacking. Recent
evidence indicates that both IPF prevalence and mortality
are growing in the United States and elsewhere.2 The
increasing burden of IPF is not simply reflective of an
aging population, as age-adjusted mortality for IPF is
increasing as well.2

In much of the latter half of the 20th century, perhaps as
the result of successful use of anti-inflammatory therapies
such as corticosteroids for some of the IIPs, fibrosis was
believed to be initiated and propagated by persistent
lung inflammation.3,4 However, corticosteroids and other
anti-inflammatory therapies have been uniformly unhelp-
ful for IPF, and may in fact be harmful.5 This fact, com-
bined with absence of classic inflammatory biomarkers in
IPF, and evidence from animal models in which fibrosis
proceeds in the absence of inflammation, led to reas-
sessment of the inflammatory paradigm.

The view that fibrotic remodeling, both of the lung
parenchyma (eg, in IPF) and airways (eg, in asthma)
instead represents a form of disordered wound healing,
in which epithelial-mesenchymal interactions are pre-
dominant, has become canonical in the literature of the
past two decades.6–8 Selman et al accordingly proposed
reconsideration of IPF as a disorder of epithelial-fibro-
blast interaction.8 Interactions between the epithelium
and mesenchyme have been shown to be critical for
developmental morphogenesis of the lung,9 and are also
prominent in lung fibrogenesis. Recent microarray data
from IPF and experimental models of fibrosis demon-
strated recapitulation of expression patterns and signal-
ing pathways critical during lung development.10,11 Thus
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it appears that many of the cellular and molecular events
critical to “modeling” of the lung during development are
recapitulated during the “re-modeling” that occurs during
fibrogenesis. Lung fibrosis may thus not only be concep-
tualized as a form of aberrant repair,6,12–14 but also as a
“disordered re-development” of the lung.

Because nearly 45% of all deaths in the developed
world are attributed to some type of chronic fibroprolif-
erative disease,15 it is important periodically to review
new developments in the study of fibrogenesis. This re-
view focuses on recent experimental findings with regard
to the pulmonary epithelium and fibroblasts, which in-
clude novel observations regarding the role of the epi-
thelium in the initiation and maintenance of pulmonary
fibrogenesis, as well as support newer concepts regard-
ing the origins and differentiation of fibroblasts in fibrotic
processes. In addition, it will review the latest data on
intracellular signaling pathways and cross talk within and
between the fibroblasts and epithelial cells that mediate
pulmonary fibrosis. Understanding the emerging con-
cepts discussed in this review and their relative roles in
lung fibrosis will facilitate development of novel therapeu-
tic approaches to ameliorate the global burden of fibro-
proliferative disease.

Role of Epithelium in Genesis and Perpetuation
of Fibrosis

Epithelium as a Mediator of ILD

The pulmonary alveolar epithelium is the final barrier
interface to inhaled substances. Together with sentinel
macrophages, the epithelium controls pulmonary ho-
meostasis by responding to environmental challenges
through continuous reciprocal interactions with mesen-
chymal and vascular cells. Chronic epithelial cell stress,
due to either intrinsic cellular defects or extrinsic insults
such as infection, can promote epithelial cell death, im-
pair normal re-epithelialization and alter epithelial–mes-
enchymal interactions, leading to fibroproliferation.16

Defined etiologies for pulmonary fibrosis secondary to
intrinsic cellular defects include genetic deficiency of the
pulmonary surfactant protein C (SP-C) and ATP binding
cassette protein (ABC)A3. Persistent infection by viruses
(specifically Herpesviridae) targeting the respiratory ep-
ithelium have also been associated with a fibrotic re-
sponse. These distinct origins of human fibrosis have
related mouse models that share many features of human
disease, thus better delineating epithelial-based mecha-
nisms of lung fibrosis.

Abnormalities of Surfactant Protein C in Idiopathic
and Familial Pulmonary Fibrosis

Pulmonary SP-C is a highly hydrophobic protein that
enhances surface activity and contributes to innate im-
mune defense of the lung. SP-C is synthesized and se-
creted only by alveolar type II cells, which are the site of
initial injury in SP-C dysfunction disease. A variety of
mutations in the SFTPC gene have since been identified

that strongly associate this gene with disease. SFTPC
mutations include point mutations that alter single amino
acid residues, frame shift mutations that change or ter-
minate downstream translation, and splice site mutations
that delete entire exons to produce a truncated proSP-C
protein.17,18 The natural history and severity of SP-C-
associated lung disease is highly variable and may re-
flect the cellular response to the distinct mutations in the
SFTPC gene coupled with the action of undefined mod-
ifier genes.

Alterations of a proprotein structure due to mutations
can potentially inhibit proper folding to achieve correct
conformation and function (loss of function). Likewise,
impaired processing can lead to accumulation of non-
functional protein that the cell must now eliminate (toxic
gain of function). Maturation of newly translated proteins
occurs as a series of folding events as proteins transit the
endoplasmic reticulum and Golgi for release into cellular
compartments for secretion. Cells have adapted a series
of endoplasmic reticulum-based responses to restore
proper folding or guide elimination of terminally misfolded
proteins to relieve further stress. The cascade of re-
sponses is termed the unfolded protein response (UPR).
If the UPR does not ultimately relieve cellular stress, then
caspase-dependent cellular apoptosis pathways can be
activated to eliminate cells entirely. The presence of ab-
errant forms of the SP-C precursor protein is a particular
threat to homeostasis due to the high levels of SP-C
normally synthesized, processed, and stored for secre-
tion by the type II epithelial cells.

UPR marker immunostaining is increased in the lungs
of individuals with both SP-C mutations and IPF.19 These
observations have been extended to non-SP-C-related
sporadic IPF. Increased expression of UPR mediators
and caspase 3 were demonstrated by immunoblotting in
IPF but not in chronic obstructive pulmonary disease.
Immunostaining co-localized markers of UPR and apo-
ptosis to type II cells in regions of dense fibrosis.20 Col-
lectively, these findings are consistent with a generalized
endoplasmic reticulum stress response of epithelial cells
in fibrotic tissue.

In vitro expression of SP-C constructs encoding an
SFTPC mutation found in patients resulted in SP-C ag-
gregation, impaired epithelial cell growth, increased ex-
pression of an endoplasmic reticulum stress response
and epithelial cell apoptosis.21,22 Co-chaperones precip-
itated with the truncated SP-C, indicating association of
UPR pathway proteins with the truncated and potentially
misfolded SP-C. Expression of the SFTPC exon-four de-
letion mutation in the lungs of transgenic mice was lethal
at birth, and analysis of the lungs demonstrated severe
hypoplasia, reduced branching morphogenesis, and ep-
ithelial cell death.23 These and additional studies are
consistent with the overproduction of non-native proSP-C
eliciting a misfolded protein stress response and epithe-
lial cytotoxicity that contributes to the progressive lung
disease in affected individuals.

Usual interstitial pneumonia, the hallmark histopatho-
logical lesion in IPF, has also been described in two
reports of SP-C deficiency without identified mutations in
the SFTPC gene, in which no mature SP-C and greatly
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diminished proSP-C were detected.24,25 Fibrotic disease
in these affected individuals implies that the SP-C null
condition may also produce altered type II cell or alveolar
function that results in disease. When SP-C deficient mice
were generated by gene targeting techniques, the mice
developed a strain-specific ILD that progressed with age
to irregular fibrosis.26 The severity of bleomycin-induced
lung fibrosis was increased in the lungs of SP-C deficient
mice, suggesting that the absence of SP-C predisposes
the lung to fibrosis.27 The SP-C deficient mice do not
produce any proSP-C that could stimulate an UPR. Taken
together, the origins of SP-C-related lung disease may be
multifactorial, resulting from cumulative epithelial cell in-
jury initiated by the lack of SP-C in the airspace, abnor-
mality of cellular SP-C processing events, or the pres-
ence of aberrant forms of proSP-C and an UPR.

ATP Binding Cassette Family Member ABCA3 and
Interstitial Lung Disease

The ABC transporter family is a diverse group of
large transmembrane proteins that use ATP to translo-
cate substrates. The ABCA subfamily facilitates the
movement of cholesterol or specific phospholipids.
ABCA3 is highly expressed in the lung relative to other
organs. The localization of ABCA3 to the limiting mem-
brane of lamellar bodies in type II cells implicated
ABCA3 in the assembly of the intracellular storage form
of pulmonary surfactant.28,29

ABCA3 mutations are recessive and associated with a
highly variable disease phenotype. Infants homozygous
for mutations in the ABCA3 gene generally develop se-
vere and usually fatal neonatal respiratory distress; how-
ever, a subset has been described with ABCA3 mutations
presenting as ILD in later childhood, some of whom had
transient neonatal symptoms.30–32 Histopathology indi-
cates alveolar proteinosis and interstitial thickening, with
ultrastructural evidence of small lamellar bodies with
dense eccentrically positioned membranes, consistent
with a surfactant lipid transport function for ABCA3.30

Data are limited regarding disease progression in
older individuals and the potential to develop clinical
fibrosis. However, an adolescent heterozygous for three
novel variants of ABCA3 was the first well-documented
case of a child with usual interstitial pneumonia, which
was not previously thought to occur in children.32 A re-
cent study identifies a modifier effect of ABCA3 mutation
in individuals with a single specific SFTPC point mutation.
The presence of the ABCA3 mutation with the SFTPC
mutation increased the severity of clinical disease in
comparison to individuals with only the SFTPC point mu-
tation.33 This study highlights the possibility that idio-
pathic lung disease may result either from single muta-
tions altering epithelial cell integrity or multiple gene
mutations that disrupt different components of a common
process.

Distinct mutations have been identified that alter
ABCA3 structure, including nonsense mutations that pre-
vent any ABCA3 production.34 Abca3�/� mice die of
neonatal respiratory failure. Analysis of lungs of Abca3�/�

mice demonstrates no detectable surfactant with im-

paired lamellar body formation, similar to lamellar body
defects of patients.35 ABCA3 missense mutations have
also been identified that likely generate a UPR.34 Thus
the mechanisms of ABCA3-related ILD may also be mul-
tiple and complex, involving decreased surfactant pro-
duction and cellular stress from UPR responses, similar
to SFTPC-related ILD.

Relationship of Pulmonary Fibrosis to Herpesvirus
Infection

Viral infection of the pulmonary epithelium is tradition-
ally viewed as a transient injury. However, the capacity of
some viruses to establish latent infection has been hy-
pothesized to mediate a state of chronic or repetitive
damage to the infected epithelium that eventually results
in fibrosis. Herpesvirus family members can establish
latency after acute infection, and various herpesviruses
have been detected in tissue of patients with IPF. In one
study, Epstein-Barr virus was found in lung tissue of
almost half of patients with IPF, and a more recent study
identified either Epstein-Barr virus, cytomegalovirus, hu-
man herpesvirus 7, human herpesvirus 8 (also known as
Kaposi’s sarcoma herpesvirus) or combinations of these
herpesviruses in the lungs of IPF patients.36,37,38 Herpes-
viruses were detected in the lungs of non-IPF patients at
a lower prevalence. Herpesvirus infection (Epstein-Barr
virus, cytomegalovirus, or human herpesvirus 8/Kaposi’s
sarcoma herpesvirus) was detected by immunohistochem-
istry in the lungs of 15/23 individuals with IPF, with similar
prevalence in sporadic, non-SFTPC-associated familial,
and SFTPC-associated cases, but none was detected in
controls. Notably, herpesvirus colocalized with cells ex-
pressing increased UPR markers. These results support the
hypothesis that herpesvirus infections may be a modifier
that exacerbates the severity of SP-C dysfunction disease,
as well as an independent cause of disease.

The concept of persistent herpesvirus infection-in-
duced IPF is supported by reports of gamma herpesvirus
in equine pulmonary fibrosis and murine gamma herpes-
virus (MHV-68)-induced lung fibrosis in interferon �-defi-
cient mice.39,40 Gamma herpesvirus infection also ac-
centuates the severity of chemically-induced lung fibrosis
in mice.41 Fibrosis following chronic viral exposure may
also result in part from altered function of alveolar
macrophages.

In murine MHV-68 infection models and human IPF
lung tissue, macrophages found in fibrotic regions ex-
pressed markers of alternatively activated macrophages
(AAMs).42,43 AAMs have reduced phagocytic and bac-
tericidal activity and express genes consistent with a
repair and remodeling phenotype. Markers associated
with the AAM phenotype are better defined in mice, but
both mouse and human AAMs express increased argi-
nase 1 activity compared with classically activated mac-
rophages.42,43 Arginine turnover by arginase 1 activity
limits nitric oxide production and enhances production of
collagen precursors used in wound healing processes.
Arginase 1 activity is similarly induced in interstitial fibro-
blasts from the lungs of bleomycin-treated mice.42,44

Both tissue arginase 1 and AAM arginase 1 activity are
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increased by chemically induced and herpesvirus-asso-
ciated fibrosis and may contribute to the aberrant accu-
mulation of matrix.

The pathology of infants with SFPTC and ABCA3-related
disease is frequently classified as desquamative interstitial
pneumonia (DIP), indicative of a macrophage-dominated
histopathology.34,45–46 Sftpc�/� mice have been reported
to have an abnormal macrophage phenotype and impaired
microbial killing and express markers consistent with an
AAM phenotype.47 The relationship between macrophage
activation patterns and epithelial dysfunction, and their role
in the generation of disease is still unclear.

Section Summary

Disease arising from mutations and deficiencies of
SP-C or ABCA3 is uniquely alveolar type II cell in origin,
emphasizing the role of the epithelium in ILD/IPF. Type II
cell injury from either SP-C or ABCA3 dysfunction may be
sufficient to drive pathogenesis; alternatively, either of
these deficiencies may render the alveolar epithelium
more vulnerable to additional insults such as infection.
Chronic herpesvirus infection linked to familial and
SFTPC-related IPF supports the concept of an infectious
process promoting ILD/IPF progression in the setting of
alveolar epithelial compromise. Activation of macro-
phages in a manner identified with tissue repair rather
than microbial protection suggests that epithelial cell
stress may signal to the innate macrophage population in
an effort to restore alveolar integrity. Thus signaling by
impaired epithelial cells may be multidirectional, altering
function of both fibroblasts and macrophages (Figure 1).

Origins and Phenotypic Regulation of
Fibroblasts

Central Role of the Fibroblast in Fibrosis

Although evidence is mounting that the epithelium in
many cases initiates and perpetuates fibrogenic signal-
ing, the fibroblast is by definition the principal effector cell
in fibrosis; its very name implies fibrogenesis. Persis-

tence of fibroblasts in the altered extracellular matrix
within damaged airspaces, and their excessive matrix
deposition, exemplified in IPF by the histopathological
lesions termed “fibroblastic foci,” are the features that
correlate most clearly with poor outcomes.48,49

Fibroblasts are somewhat enigmatic cells in that they
lack a universal marker. They are present in most tissues,
particularly those with prominent epithelial and microvas-
cular components (eg, skin, lung, liver, kidney). Often
they are defined by their location in interstitial/mesenchy-
mal compartments, and their elongated morphology. In
tissue culture, they are often defined morphologically and
by the absence of other specific markers.

Fibroblasts have significant roles in three principal ar-
eas in normal biology: development, tissue homeostasis,
and wound healing. In organs and tissues which have a
prominent epithelial derivation, such as the lung, kidney,
liver and skin, fibroblasts are critical to normal develop-
ment and function. Injury and repair in such tissues fol-
lows a fairly defined pathway. Epithelial and/or endothe-
lial damage results in exudation of platelet-rich plasma
into procoagulant-rich tissue spaces, where it forms a
fibrinous clot (provisional matrix).50 Fibroblasts migrate
into the provisional matrix, proliferate, and produce ad-
ditional extracellular matrix components, such as fi-
bronectin and collagen, resulting in fibroblast-populated
granulation tissue. Simultaneously, fibroblasts acquire a
myofibroblastic phenotype. The role of myofibroblastic
differentiation, the acquisition by fibroblasts of smooth
muscle-like phenotypic features such as expression of
�-smooth muscle actin, in wound healing and fibrosis has
been extensively reviewed recently.51,52 Normal repair
depends on re-epithelialization, remodeling of provisional
matrix, and eventual removal of fibroblasts, probably
through apoptosis.53 Recent findings regarding the origins
of fibroblasts in fibrotic tissues, and regulation of their dif-
ferentiation will be considered in greater detail here.

Circulating Fibroblast Precursors

Multiple studies in the past decade have considered
alternative origins of lesional fibroblasts in fibrosis in the

Figure 1. Schematic representation of cellular
and contextual abnormalities in pulmonary fibro-
genesis (IPF fibroblastic focus). A: Fibrogenesis is
initiated by injury to, infection of, or intrinsic ab-
normalities (eg, surfactant dysfunction mutations)
within alveolar epihtelial cells. Capillary disruption
results in deposition of fibrin-rich provisional ma-
trix, into which fibroblasts (either resident intersti-
tial fibroblasts, fibrocytes, or EMT-derived) mi-
grate. Signals for perpetuation of fibrogenesis (eg,
fibroblast proliferation, myofibroblastic differentia-
tion, extracellular matrix remodeling) may arise
from the altered epithelium, alternatively activated
macrophages (AAM), composition and/or biome-
chanical properties of ECM, or the fibroblasts
themselves, recapitulating developmental path-
ways and resulting in progression of fibrogenesis
(B). Epigenetic alterations, such as DNA methyl-
ation or histone modifications, lead to silencing of
fibrosis supressor (FS) genes, further promoting an
apoptosis-resistant myofibroblast phenotype.
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lung and other tissues besides differentiation, prolifera-
tion, or migration of resident tissue fibroblasts. Bucala
popularized the term fibrocyte to refer to circulating fibro-
blast precursors.54 The idea of circulating fibroblast pre-
cursors participating in wound healing dates to the 19th

century,55 but the characteristics of this population of
cells, their differentiation, and mechanisms of their re-
cruitment have only recently been defined in numerous
elegant studies.56–59

The contribution of fibrocytes to hypertrophic scars
and keloids,60 scleroderma, renal fibrosis,61 airway re-
modeling in asthma,62,63 and experimental models of
lung fibrosis59 have been well-described. A recent study
demonstrated fibrocytes, defined predominantly by co-
expression of CXCR4, a fibrocyte-associated chemokine
receptor, with myofibroblast markers such as procolla-
gen I, �-smooth muscle actin, and prolyl-4-hydroxylase,
in lung tissue of 8/9 patients with lung fibrosis, but none in
normal lungs.64 There was a positive correlation between
the abundance of fibroblastic foci and the number of lung
fibrocytes (r � 0.79; P � 0.02). However, the exact role of
bone marrow-derived fibroblasts in IPF has not been
definitively established.

Although cultured fibrocytes can be induced to differ-
entiate into myofibroblasts in vitro, it is not clear in vivo that
the bone marrow-derived cells recruited to the lung con-
tribute to pathological fibrosis.59,65,66 In the setting of
fibrogenic injury, bone-marrow derived mesenchymal
stem cells may promote repair and thus ameliorate fibro-
sis.67,68 Previous studies had indicated that bone mar-
row-derived cells can become type II pneumocytes after
hematopoietic stem cell transplantation.69 A large num-
ber of studies have followed, using different stem cell
pools and different animal models, with varying results
(reviewed in70). This phenomenon has been suggested
to occur in humans undergoing sex-mismatched lung
transplants as well, by demonstration of epithelial cells of
recipient origin in donor lungs.71 Different populations of
fibroblast precursors may be recruited to the lung after
injury (eg, fibrogenic fibrocytes versus repair-promoting
mesenchymal stem cells). Factors present in the local
environment are likely to influence the differentiation of
fibroblastic cells from multiple sources, as discussed
further below. Additional studies are needed to clarify
some of these controversies.

Epithelial-Mesenchymal Transition

During development, cells show remarkable pheno-
typic plasticity. In gastrulation, endodermal epithelial
cells differentiate into mesenchyme, which subsequently
contributes to the formation of germ layers.72 After this
primary epithelial–mesenchymal transition (EMT), there
are additional instances of EMT and also of mesenchy-
mal–epithelial transition during development.72,73 The
molecular changes that occur in EMT—loss of cell–cell
adhesion, increased motility, cytoskeletal and morpho-
logical changes, and resistance to apoptosis—are also
changes that occur during wound healing. Because there
is similarity among phenotypic characteristics of epithe-
lial and mesenchymal cells in development, wound heal-

ing, and fibrosis, it is not surprising that the molecular
pathways which regulate EMT overlap significantly with
those associated with fibrogenesis.

Numerous studies have characterized EMT in vitro.
A549 cells, primary human and rat alveolar epithelial
cells, and human bronchial epithelial cell lines can all
be induced to undergo EMT in vitro.74 –75 There is in vivo
evidence of EMT in fibrogenesis as well. In both bleo-
mycin-induced fibrosis and in the transforming growth
factor (TGF)-�-overexpressing model, up-regulation of
�-smooth muscle actin and vimentin in E-cadherin and
surfactant-protein C-expressing cells, respectively, has
been observed, suggesting EMT.75,76 In obliterative
bronchiolitis following lung transplantation, localization of
S100A4/fibroblast-specific protein, a mesenchymal marker,
has been observed in bronchial epithelium; explanted
bronchial epithelial cells have increased expression of
matrix metalloproteinases 2 and 9 and are collagen-inva-
sive, all consistent with EMT.77 Two studies have demon-
strated colocalization of epithelial markers, such as thy-
roid transcription factor-1 or pro-surfactant protein B or C,
with �-smooth muscle actin or N-cadherin in cells over-
lying fibroblastic foci in IPF.78,76 However, others have
failed to detect dual expression of epithelial and mesen-
chymal markers in vivo in either clinical samples or the
bleomycin model.79

An intriguing recent study of 30 cases of IPF and
multiple disease controls demonstrates a unique and
novel finding of cells with a bronchiolar basal cell phe-
notype in a layer between myofibroblasts and overlying
alveolar or bronchial epithelium, perhaps introducing a
novel cellular player into the field.80 These cells co-ex-
press markers associated with increased cellular motility
(laminin-5 �-2 and facsin), as well as markers of activa-
tion of the Wnt-�-catenin pathway, suggesting they may
be undergoing EMT. However, the relative contribution of
EMT to the pathogenesis of IPF is by no means clear. As
fibrogenesis is considered to be a displaced or dysregu-
lated repair process and many of the cellular and molec-
ular events necessary for lung modeling during develop-
ment are recapitulated during remodeling, the weight of
evidence suggests that EMT is an important contributor
to pulmonary fibrogenesis. Data from microarray analy-
ses bear this out further, with enrichment of genes rep-
resentative of multiple developmental pathways in IPF,
including Wnt-� catenin, the TGF�-bone morphogenetic
protein family, and multiple developmental transcription
factors.10

Fibroblast Heterogeneity

In addition to (or perhaps as a result of) the different
possible origins of fibroblasts, it is clear that they exist in
a remarkable range of phenotypes. Fibroblast heteroge-
neity has been the subject of extensive review in the
past.81 Differences among subsets of normal lung fibro-
blasts have been characterized on the basis of size and
shape, surface markers, cytoskeletal composition, lipid
content, cytokine profile, and expression of cyclooxygen-
ase 2 and telomerase.81–82 Fibroblasts from lungs with
active fibrosis have increased proliferation, display an-
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chorage-independent growth, and are morphologically
distinct.83–84 Fibroblasts from fibrotic tissue also demon-
strate enhanced migration and invasion of matrices, pro-
cesses critical to their entering damaged airspaces.85,86

One of the most extensively studied in vitro models of
fibroblast heterogeneity is based on the surface expres-
sion of the lipid raft glycoprotein Thy-1. Thy-1(�) and
Thy-1(�) mouse lung fibroblasts are morphologically dis-
tinct, with Thy-1(�) being more rhomboid and compact,
and Thy-1(�) having the characteristic spindle shape of
normal fibroblasts with more abundant intracellular lipid
and rough endoplasmic reticulum. The two subpopula-
tions differ in cytokine and growth factor production, cy-
tokine receptor expression, and expression of major his-
tocompatibility complex (MCH) class II.87–92 Recent
studies demonstrate that Thy-1 is an important modulator
of latent TGF-� activation, myofibroblast differentiation,
and survival.93,94 Thy-1 thus appears to function as a
“fibrosis suppressor,” analogous to tumor suppressors.
Another candidate fibrosis suppressor, which like Thy-1
affects lipid raft-associated signaling, is caveolin-1,
which modulates multiple aspects of fibrogenic signaling.
Its role in pulmonary fibrosis and scleroderma has been
recently reviewed.95

Emerging Mechanisms of Regulation of Fibroblast
Phenotype

Recently, clinical and laboratory data have generated
renewed interest in the role of telomerase in fibroblasts.96

Telomeres are guanine-rich repeat sequences on the
ends of chromosomes and are regulated by telomerase,
a ribonucleoprotein complex with an RNA component
(Terc, hTR) that serves as a template for addition of
repeat sequences, and a reverse transcriptase catalytic
subunit (Tert).97 The absence of telomerase leads to
progressive telomere shortening with each round of cel-
lular replication, resulting in a eventual loss of cellular
viability characteristic of replicative senescence.

Telomerase is up-regulated in many malignancies.
Terc null mice are initially phenotypically normal, but
subsequent generations develop loss of fertility, a num-
ber of premature aging phenotypes, and decreased lon-
gevity.97 Induction of telomerase activity has been noted
in rat lung fibroblasts in bleomycin-induced fibrosis.98

Dyskeratosis congenita is a rare disorder associated with
mutations in telomerase genes, with skin manifestations,
bone marrow failure, and some cases, usual interstitial
pneumonia, often at an early age.99,100 Two recent stud-
ies demonstrated telomerase mutations (hTERT, hTR) in
families with IPF and in some sporadic cases, associated
with abnormal telomere length.101,102 Furthermore, te-
lomerase (TERT)-deficient mice are protected from bleo-
mycin-induced fibrosis; transplantation of wild-type bone
marrow into TERT-null mice restores sensitivity to bleo-
mycin, and transplantation of TERT-null bone marrow into
wild-type mice is protective.103 This set of studies indi-
cates that telomerase expression is required for the pro-
fibrotic fibroblast phenotype, and that bone marrow-de-
rived cells have a critical role in bleomycin-induced
fibrosis. Interestingly, patients with IIPs, including IPF,

have shorter telomeres than age-matched controls even
in the absence of telomerase mutations.104

Epigenetic alterations result in heritable changes in
gene function without changes in the DNA sequence,
thus offering an extra layer of transcriptional control re-
garding how, when, and where genes are expressed.105

Epigenetic regulation is important for the diversity of cell
types arising during development, and is critical to main-
taining the stability and integrity of expressed gene pro-
files. DNA methylation and chromatin modifications have
been extensively studied in cancer research. Other epi-
genetic mechanisms, such as microRNAs and chromatin
structural alterations, are increasingly recognized as crit-
ical to defining and maintaining cell phenotype.

There is growing evidence for epigenetic alterations in
fibrotic diseases. Methylation of FLI1 is associated with
increased collagen expression in scleroderma fibro-
blasts106; histone deacetylase 4 is required for TGF-�-
induced myofibroblastic differentiation of skin fibro-
blasts.107 However, the extent to which epigenetic
reprogramming is responsible for the multiple cellular
phenotypic alterations in fibroblasts (or for that matter in
other cell types) associated with pulmonary fibrosis has
yet to be determined. A recent study demonstrated epi-
genetic silencing of Thy-1 by DNA hypermethylation spe-
cifically within fibroblastic foci in IPF, suggesting that this
may be an important mechanism for pathogenic fibro-
blast alterations.108

MicroRNAs are single-stranded RNA molecules of 21
to 23 nucleotides in length that can be complementary to
multiple mRNAs and induce silencing of multiple tran-
scripts. They have been found to regulate reprogram-
ming of gene expression in several types of cancer and in
fibrosis in other organs, such as the heart.109 Specific
microRNA genes are selectively expressed in the lung,
implicating them as candidate regulatory factors in de-
velopment or disease. Lung epithelial specific overex-
pression of the miR-17-92 microRNA cluster in transgenic
mice stimulated epithelial cell proliferation, while impair-
ing distal lung alveolarization.110 When the miR-223 gene
was deleted in vivo, the mice developed a progressive
pulmonary inflammation consisting of neutrophils that
have an increased oxidative response to challenge.111

These findings indicate that microRNAs are an important
component of pulmonary gene regulation; however, the
role of microRNA in pulmonary fibrogenesis has yet to be
determined.

Mechanisms controlling cellular phenotype such as
epigenetic programming, in addition to being regulated
temporally (as in development or aging) or environmen-
tally (such as by nutrition or exposure to toxicants) may
also be regulated contextually (such as by local bio-
chemical or mechanical signals). A recent study support-
ing contextual programming applied microarrays and hi-
erarchical clustering to characterize fibroblasts derived
from 43 different anatomical sites, demonstrating marked
heterogeneity of gene expression.112 Although there
were general groupings indicating compartmentalization
among anteroposterior, proximal–distal, and dermal–
nondermal locations, there were also strong and specific
location-restricted profiles such that, for example, fore-
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arm dermal fibroblasts had expression profiles more sim-
ilar to adult lung fibroblasts than to lower leg dermal
fibroblasts. Within organs there are also likely to be sig-
nificant positional differences based on structural local-
ization.113 Epigenetic mechanisms are believed to drive
this context-dependent programming.112 Local biochem-
ical signals are critical in contextual programming; for
example, regional differences in oxygen tension are im-
portant in airway branching.114 Significant influence may
also come from the composition or biophysical properties
of the extracellular matrix, both of which in turn are al-
tered by the cells themselves.

A large and growing literature, largely from the cancer
field, demonstrates the effects of matrix composition and
stiffness on cell behavior (reviewed in115,116). A dramatic
example of the role of cell–matrix biophysical interactions
in regulating phenotype demonstrated that constraining
individual mesenchymal stem cells on either a large
(10,000 �m2) or small (1024 �m2) surface area of fi-
bronectin promoted differentiation into osteoblast or adi-
pocyte lineage, respectively, even in the absence of clas-
sic differentiation-promoting factors.117 Prostaglandin E2
was recently shown to inhibit TGF-�1-induced myofibro-
blast differentiation through cell shape and adhesion-
dependent signaling.118 In addition, fibroblasts from IPF
patients elude the normal antiproliferative effects of poly-
merized collagen through alterations in integrin-dependent
signaling.119 Normal myofibroblasts undergo apoptosis
within contracting collagen gels; fibroblasts lacking Thy-1
escape this mechanism, which is restored on transfection
of Thy-1.93

Myofibroblast differentiation has been demonstrated to
be maximized in the presence of both active TGF� and
mechanical tension.51 A related study showed that myo-
fibroblast contraction mediates latent TGF-�1 activation
through a direct biophysical alteration of the matrix where
it is sequestered.120 Focal adhesion kinase and focal
adhesion kinase-related non-kinase, which are critical
regulators of cytoskeletal organization downstream of
matrix binding, have opposing effects on TGF�-induced
myofibroblastic differentiation.121 A recent intriguing find-
ing is that of genome-wide alterations in translational
control in IPF fibroblasts, downstream of aberrant integrin
signaling.122

Section Summary

The origin and regulation of fibrogenic myofibroblasts
in IPF and other fibrotic disorders are complex and vari-
able. Local structural fibroblasts, those arising through
transdifferentiation of other cells, and those recruited
from bone marrow or circulating progenitors, are all sub-
ject to reprogramming by a number of mechanisms, re-
sulting in developmental or wound-healing expression
repertoires that may self-perpetuate, resulting in aberrant
fibrogenesis (Figure 1). The immediate biochemical/bio-
mechanical context within fibrotic lesions, and the cell’s
ability both to respond to and alter that context, signifi-
cantly affect fibroblast differentiation, persistence, and
survival.

Signaling Pathways and Programming
Paradigms

Fibrogenic Signaling: Lessons from Animal Models

Multiple rodent models have been established that
recapitulate mechanisms leading to pulmonary fibrosis.
Most involve the administration of drugs, chemical com-
pounds, irradiation, or infections.123 Administration of
bleomycin through a number of routes to rodents is
among the earliest and most widely published methods,
causing a transient, inhomogeneous fibrotic response
associated with early inflammatory infiltration of macro-
phages and lymphocytes.124 The use of this model to test
antifibrotic interventions has been recently reviewed,
demonstrating its very limited ability to predict clinical
responses in humans, and underscoring the important
differences between bleomycin-induced fibrosis and hu-
man IIPs.125 Instillation of other chemicals, including flu-
orescein isothiocyanate, asbestos fibers, or silica parti-
cles, into rodent lungs also results in chronic and
progressive inflammation with fibrosis.126,127 In addition,
radiation-induced pulmonary fibrosis results in a more
uniform cellular injury compared to drug- or chemical-
induced lung injury. Within 1 month following irradiation,
inflammatory cells are recruited into the air spaces and
are closely associated with fibrotic lesions.128 Also, mice
defective in interferon-gamma receptor signaling chron-
ically infected with the murine �-herpesvirus 68, a virus
that is closely related to Epstein-Barr virus and human
herpesvirus 8, develop progressive interstitial lung fibro-
sis associated with a robust inflammatory response, as
well as enhanced fibrotic responses to bleomycin or flu-
orescein isothiocyanate.123,129

Limited Role of Inflammation per se and
Pre-Eminence of TGF-�

Injury models use agents known to cause pathological
disease in humans, and have identified many cells, path-
ways, and a vast number of chemokines, cytokines, and
growth factors that mediate pulmonary fibrosis. The dis-
advantage of these models is their reliance on acute
injury leads to a broad inflammatory response, which is
not characteristic of IPF or many other IIPs.

Replication-deficient adenoviral vectors containing
cDNAs of specific genes have been transferred to the
lung epithelium of rodents to mimic these diseases. Ex-
pression of the chemokines macrophage inflammatory
protein-2, RANTES, IP-10, monokine induced by gamma
interferon and lymphotactin all resulted in marked in-
creases in bronchoalveolar lavage inflammatory cells
and tissue pneumonitis, but did not induce lung fibrosis
or residual remodeling.130–133 The cytokines tumor ne-
crosis factor-�, granulocyte macrophage colony-stimu-
lating factor, and interleukin-1� also induced an acute
inflammatory response with variable degrees of alveolar
destruction,134–136 along with a graded fibrotic response
ranging from marginal (tumor necrosis factor �) to severe
(interleukin-1�). The degree of fibrosis in these models
was found to correlate directly to both the amount and
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duration of expression of active TGF�1.137 Confirmation
of the critical role of TGF�1 in fibrogenesis was demon-
strated by overexpression of active TGF�1 in rat lung,
resulting in prolonged and severe interstitial and pleural
fibrosis.138 TGF�1-induced fibrosis developed and pro-
gressed without extensive inflammation, and was not in-
duced by expression of the latent form.138 Together
these studies demonstrate that induction of lung fibro-
sis is not directly dependent on the degree or charac-
terization of the inflammatory response, but rather, the
amount and length of TGF�1 induced downstream of
cytokine signaling.

Further evidence supporting the important role of
TGF�1 in modulating the fibrotic response has been
demonstrated by other transgenic models. Overexpres-
sion of the cytokine IL-13 using the Clara cell secretory
protein regulatable airway epithelial promoter led to a
marked inflammatory response with airway and paren-
chymal fibrosis.139 IL-13-induced fibrosis was signifi-
cantly ameliorated by treatment with a TGF� antagonist,
demonstrating that the fibrotic effects of IL-13 are medi-
ated to a great extent through the TGF�1 pathway.140 In
addition, there is a balance between TGF� and bone
morphogenetic proteins, which appears to be disrupted
in some animal models and in human IPF by expression
of Gremlin, a bone morphogenetic protein antagonist that
is up-regulated by TGF� in a MAPK-dependent manner.
Restoration of bone morphogenetic protein-7 signaling
inhibits asbestos-induced fibrosis in mice.141

TGF-� Downstream Signaling

Collectively, studies in both viral-delivered and pulmo-
nary-specific transgenic models demonstrate that TGF�
is a key modulator of lung fibrosis and support targeting
TGF� pathways to prevent or reverse fibrosis. Responses
elicited by TGF� are dependent on and specific for the
target cell lineage and are classically mediated by intra-
cellular signaling via Smad proteins. In mesenchymal
cells, the fibrotic effects of TGF� depend on active TGF�
release from the matrix-bound latent complex. Factors
which activate latent TGF� include thrombospondin and
the integrin �v�6.142,143 Once activated, TGF� family
members initiate signaling by interacting with and com-
plexing the TGF� type II receptors and the TGF� Type I
receptor (ALK5). Smad2 and Smad3 proteins then asso-
ciate with the activated receptor and become phosphor-
ylated, allowing the formation of an oligomeric complex
with Smad4. This complex translocates into the nucleus
and binds to specific nucleotide motifs to regulate tran-
scription of target genes. Multiple studies in fibroblasts
have established that the Smad pathways modulate
TGF�-induced cellular processes associated with lung
fibrosis including enhanced collagen synthesis, prolifer-
ation, migration, adhesion, and transdifferentiation into
myofibroblasts.144,145 The role of Smad signaling in
TGF�-driven fibrosis has been demonstrated in vivo using
Smad3 null mice, which are resistant to TGF�1 mediated
pulmonary fibrosis.146 Furthermore, administration of a
selective kinase inhibitor of Alk5 prevents the induction of
fibrosis from adenovirus-mediated gene transfer of active

TGF�1, and also blocks progressive fibrosis when ad-
ministered transiently to rats with established fibrosis.147

Although the Smad pathway is believed to be the
primary conduit for signals from the TGF�1 receptors,
emerging evidence highlights the importance of non-
Smad pathways. Fibroblasts stimulated with TGF�1 dem-
onstrate Smad-independent proliferation and matrix pro-
tein production which are regulated by mitogen-activated
protein kinase and phosphoinositide 3-kinase (PI3K) path-
ways.145,148,149 c-Albelson is a proto-oncogene regulated
by PI3K; TGF� stimulates c-Albelson kinase activity in fibro-
blasts independent of Smad2 and Smad3 phosphoryla-
tion.150 Loss of c-Albelson kinase prevents TGF�-medi-
ated stimulation of extracellular matrix gene expression
and cell proliferation. In vivo, transgenic mice that condi-
tionally over express TGF�1 in the lung epithelium de-
velop epithelial apoptosis and extensive inflammation fol-
lowed by progressive lung fibrosis.151 Mice that are
deficient in the semaphorin 7A, a protein believed to
function in angiogenesis, apoptosis, and immune re-
sponses, when crossed with TGF�1 overexpressing
mice, develop markedly less fibrosis and alveolar remod-
eling, despite TGF�1 activation of Smad proteins.152 To-
gether, these findings indicate that TGF�1-initiated cel-
lular responses are regulated by relative contributions
and cross talk between both Smad-dependent and
Smad-independent signaling pathways.

Non-TGF-� Pathways to Fibrogenesis

Recent studies have shown that fibrosis and lung re-
modeling may also develop independently of TGF�1 sig-
naling. Mice exposed to house dust mite antigen and
concurrently treated with a pan-neutralizing anti-TGF�
antibody developed airway remodeling comparable with
mice exposed to house dust mite and treated with irrel-
evant antibody control.153 Similarly, house dust mite-ex-
posed Smad 3 knockout mice developed remodeling to
the same extent as house dust mite-exposed wild-type
littermate control mice.

TGF� binds to the epidermal growth factor receptor.
Overexpression of TGF� using the regulatable Clara cell
secretory protein promoter causes progressive and ex-
tensive pulmonary fibrosis characterized by pleural,
perivascular, and peribronchial matrix deposition. Fibro-
sis in this transgenic model develops and progresses in
the absence of detectable inflammation or activation of
TGF�.154 Oncostatin-M, an inflammatory cytokine that is
elevated in IPF BALF, causes exuberant inflammation
and fibrosis in an animal model. Interestingly, the on-
costatin-M-mediated fibrosis appears independent of
both inflammation and TGF-� signaling.155

Potential Downstream Confluence of Signaling
Pathways

As fibrosis is likely heterogeneous in etiology and mo-
lecular pathophysiology, attempts to block or counteract
single pathways may not be sufficient to inhibit cellular
processes associated with fibrosis. Ongoing studies
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have identified potential points of confluence, where
multiple inputs eventually converge to elicit the cellular
response of mesenchymal proliferation and matrix
deposition.

PI3K is a signal transduction enzyme that catalyzes the
phosphorylation of phosphatidylinositol (4,5)-biphos-
phate to form phosphatidylinositol (3,4,5)-triphosphate in
response to activation of receptor tyrosine kinase, G-
protein coupled receptors or cytokine receptors. Activa-
tion of PI3K is essential to a number of cellular processes
associated with fibrogenesis including cell growth, pro-
liferation, migration, survival, and collagen gene expres-
sion.156 The tumor suppressor phosphatase and tensin
homolog is a negative growth regulator of the PI3K-Akt
pathway, for which baseline activity is believed to be
constitutively high. Both cell proliferation and collagen
production are up-regulated in lung fibroblasts deficient
in phosphatase and tensin homolog.157 Moreover, in
phosphatase and tensin homolog-haploinsufficient mice,
using both cutaneous wound healing and bleomycin-
induced lung injury models, deficiency in phosphatase
and tensin homolog results in a more durable fibroprolif-
erative response.119 Further evidence supporting the
PI3K pathway mediating lung fibrosis is demonstrated in
transgenic models. Pulmonary fibrosis in the regulatable
TGF�1 transgenic model was significantly attenuated
when mice were treated with an Akt inhibitor.152 The
PI3K-Akt pathway is also activated in the regulatable
TGF� transgenic model, and lung fibrosis in this model is
prevented when mice are treated with a PI3K-specific
inhibitor (WH, unpublished observations). The platelet
derived growth factor family, another profibrotic cytokine
group implicated in inflammatory models of lung fibro-
sis,158,159 also activates PI3K.160 These data further sup-
port the PI3K as a common pathway where multiple cy-
tokines synergistically function or become confluent.

While emerging data supports targeting common sig-
naling pathways such as PI3K-Akt, the plethora of cellar
processes mediated and potentially affected by broad
signaling inhibitors poses significant challenges.161

Therefore, more specific downstream effectors involved
in matrix synthesis and proliferation may be better thera-
peutic targets. The mammalian target of rapamycin
(mTOR) is a highly conserved intracellular serine/threo-
nine kinase and a major downstream component of the
PI3K pathway.162 Inhibitors of mTOR, such as rapamycin,
bind to an intracellular cytoplasmic receptor, the FK506-
binding protein-12.162 The complex formed then interacts
and disrupts mTOR function and leads to cell cycle arrest
in the G1 phase. In addition to blocking cell proliferation,
mTOR inhibitors have been identified with anti-inflamma-
tory, anti-tumor, and anti-fibrotic properties.

The role of mTOR in fibrosis has been demonstrated in
vivo in rodent models of renal fibrosis and cirrhosis where
rapamycin treatment has provided effective in either re-
versing or preventing fibrosis.149,163 In the lung, the rapa-
mycin analog SDZ RAD reduced bleomycin-induced pul-
monary fibrosis by 75% compared to vehicle control.164

In the TGF� transgenic model, rapamycin prevented de-
velopment of epidermal growth factor receptor-induced
fibrosis as assessed by lung histology, lung collagen

content, and changes in lung mechanics.165 Activation of
mTOR leads to interaction with downstream effectors
such as p70 ribosomal S6 kinase (S6K) and eukaryotic
initiation factor-4E-binding protein-1. Through these path-
ways, mTOR controls cellular growth, proliferation and
translation. Both S6K and 4E-binding protein-1 possess
several phosphorylation sites that are points of conver-
gence of several pathways including not only mTOR, but
also PI3K and MAPK.162,166 Future research targeting
S6K and 4E-binding protein-1 phosphorylation in fibrosis
models will be needed to determine whether these pro-
teins represent effective and specific therapeutic targets.

Recent studies have underscored the role of transcrip-
tion factors in the regulation of fibrogenesis. The tran-
scription factors Fra-2/AP-1 have been shown to be pro-
fibrogenic in lung, in part by regulating coordinated
expression of non-TGF-� fibrogenic mediators.167 Tumor
necrosis factor-� induces expression and DNA binding of
AP-1 in fibroblasts, resulting in increased transcription of
the TGF-beta 1 gene.168 Additional studies are needed to
further define the roles and hierachies of transcription
factors in regulating the “fibrogenic transcriptome” IPF
and other IIPs.

Section Summary

Animal models of pulmonary fibrosis have revealed
multiple cytokines and growth factors leading to fibrosis
through a number of different pathways including TGF�
(Smad dependent and non-Smad dependent) and non-
TGF� pathways. However, to date there is no single
model that duplicates the correct temporal, spatial, and
dynamic aspects of human fibrotic disease.169 Currently,
methods to identify specific pathways causing fibrosis in
human disease are limited to “footprints” of molecular
activation, such as immunostaining for phosphorylated
signaling intermediates. Development of biomarkers for
assessment of activation of cellular and molecular path-
ways associated with fibrogenesis is an active area of
investigation. Identification of common downstream “fun-
neling” factors where signals converge is likely to provide
optimal therapeutic targets that will allow treatment of
fibrosis regardless of the upstream initiating events.

Summary and Future Directions

Recent studies have added significantly to our under-
standing of pulmonary fibrogenesis. Emerging concepts
include the critical role of the epithelium, particularly type
II pneumocytes, in the initiation and perpetuation of fibro-
sis, in response to either endogenous or exogenous
stress; a growing awareness of alternative activation of
macrophages in tissue remodeling; growing appreciation
of the alternative origins and phenotypic plasticity of fi-
broblasts; the roles of epigenetic reprogramming and
context-dependent signaling in profibrotic phenotype al-
terations; and recognition of the importance of cross talk
and convergence of intracellular signaling pathways in
designing antifibrotic interventions. Remarkable overlap
exists in molecular and cellular programming among nor-
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mal development, wound healing, fibrogenesis, and can-
cer,170 such that careful attention to novel findings in
related fields is warranted. Overall, the paradigm that
emerges is one of “disordered re-development” of the
lung. Only by careful analysis of the developmental con-
text, understanding of the key molecular “players” and
mechanisms of context disruption, and by using a coor-
dinated, multidisciplinary approach, can we hope to dis-
cover the critical points of convergence and begin to
restore order and function.
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