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RTKs (receptor tyrosine kinases) play important roles in
cellular proliferation and differentiation. In addition, RTKs reveal
oncogenic potential when their kinase activities are constitutively
enhanced by point mutation, amplification or rearrangement
of the corresponding genes. The ALK (anaplastic lymphoma
kinase) RTK was originally identified as a member of the
insulin receptor subfamily of RTKs that acquires transforming
capability when truncated and fused to NPM (nucleophosmin)
in the t(2;5) chromosomal rearrangement associated with ALCL
(anaplastic large cell lymphoma). To date, many chromosomal
rearrangements leading to enhanced ALK activity have been
described and are implicated in a number of cancer types. Recent

reports of the EML4 (echinoderm microtubule-associated protein
like 4)–ALK oncoprotein in NSCLC (non-small cell lung cancer),
together with the identification of activating point mutations in
neuroblastoma, have highlighted ALK as a significant player and
target for drug development in cancer. In the present review we
address the role of ALK in development and disease and discuss
implications for the future.
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DISCOVERY OF THE ALK (ANAPLASTIC LYMPHOMA KINASE) RTK
(RECEPTOR TYROSINE KINASE)

ALK was originally described as a novel tyrosine phosphoprotein
in ALCL (anaplastic large cell lymphoma) cell lines in 1994
[1,2]. The identity of this protein was revealed as a chimaeric
protein created via a translocation event between chromosomes
(2;5)(p23:q35), generating a previously uncharacterized fusion
protein, NPM (nucleophosmin)–ALK. NPM–ALK contains the
N-terminal portion of the NPM protein and the kinase domain of
a then novel tyrosine kinase protein that was named ALK after
the disease [1].

STRUCTURAL FEATURES OF ALK

The intriguing characteristics of the full-length ALK RTK were
not revealed until 1997, when they were simultaneously reported
by two groups [3,4]. ALK displays the classical structural
features of a RTK, with an extracellular ligand-binding domain,
a transmembrane-spanning region and an intracellular tyrosine
kinase domain. Based on overall homology, ALK is grouped with
LTK (leucocyte tyrosine kinase), and together they form their
own subgroup within the IR (insulin receptor) superfamily [3,4].
The human ALK gene encodes a protein of 1620 amino acids
giving rise to a protein of approx. 180 kDa. However, as a result

of post-translational modifications such as N-linked glycosyla-
tions, ALK migrates at approx. 220 kDa on SDS/PAGE [3,4].
The ALK extracellular region contains a unique combination
of domains among the RTKs, exhibiting an N-terminal signal
peptide, followed by two MAM (meprin, A5 protein and receptor
protein tyrosine phosphatase mu) domains, an LDLa (low-density
lipoprotein class A) motif and a large glycine-rich region proximal
to the membrane [3–6] (Figure 1).

Within ALK, the LDLa domain has an unknown function.
However, this module mediates the binding between the LDL-
receptor and LDL [7,8], suggesting a potential role in ligand
binding for this domain of ALK. MAM domains are thought
to participate in cell–cell interactions [9], but their significance
for ALK function is unclear. The importance of the MAM
domain is nevertheless emphasized in studies from Drosophila
in which a point mutation altering a highly conserved aspartic
acid residue in the MAM domain to arginine renders dALK
(Drosophila ALK) inactive [10]. The functional significance of
the glycine-rich domain has also been reported in Drosophila,
where several loss-of-function dALK mutants display point
mutations that convert a single glycine residue within the
glycine-rich region into an acidic amino acid [10]. The domain
organization of ALK is conserved throughout evolution, with
the highest conservation found in the kinase domains. In fact,
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Figure 1 Domain structure of human ALK and human LTK

The N-terminal region of human ALK (hALK) comprises two MAM domains (amino acids
264–427 and 480–626), one LDLa domain (amino acids 453–471) and a glycine rich
(G-rich) region (amino acids 816–940). A transmembrane (TM)-spanning segment, connects
the extracellular region with the protein tyrosine kinase (PTK), domain (amino acids
1116–1383)-containing intracellular region. The closest family member, LTK [hLTK (human
LTK)], is depicted with the corresponding regions denoted. The signal peptide (amino acids
1–16), the glycine rich, G-rich, domain (amino acids 63–334) and the kinase domain (amino
acids 510–777) located in the intracellular C-terminal region of the protein.

mouse and human ALK show 87% overall homology at the
protein level, and within the kinase domain these differ at
only four amino acids. Although mouse and human ALK are
highly similar, it should be noted that human ALK contains
one extra tyrosine residue, Tyr1604, which has been implicated in
tumour progression [11] (Figure 2). Within the activation loop
of the kinase domain, ALK contains a YxxxYY motif in common
with the IR. It has been reported that phosphorylation of the first
tyrosine residue (Tyr1278) of this YxxxYY motif is predominant
in the autoactivation of the ALK kinase domain. Phosphorylation
of Tyr1278 appears to be determined in part by the intervening
RAS amino acid triplet in the activation loop (Y’RAS’YY),
immediately following Tyr1278 of ALK, which differs from the
activation loop of the IR RTK [12,13].

ALK FUNCTION IN MODEL ORGANISMS

dALK

The in vivo function of ALK has been most thoroughly studied in
Drosophila melanogaster where ALK was initially shown to drive
ERK (extracellular-signal-regulated kinase) activation in vivo [5].
During embryonic development of the fruitfly, dALK plays a
vital role in the formation of the visceral musculature of the gut
[10]. In the absence of dALK, Drosophila embryos hatch into
gut-less larvae, which consequently die. This phenotype is due
to a lack of specification of a particular cell type, the founder
cell, in the developing gut musculature of Drosophila embryos
deficient in dALK signalling [14–16]. Activation of the dALK
signal transduction pathway in wild-type flies is initiated by
binding of the Jeb (jelly belly) ligand to a specific set of cells
in the embryonic visceral mesoderm, which thereby are specified
as founder cells. Founder cells then fuse with fusion competent
myoblasts to give rise to the multinucleated visceral musculature
of the gut [14–18]. Since dALK signalling specifies founder cells,

loss of dALK results in an absence of founder cells, as well as
muscle cell fusion, which as a consequence leads to defective
assembly of a functional gut musculature in dALK mutant flies.

The Jeb protein is now well-established as an activating
ligand for dALK, and as such is also required for founder-cell
specification [14–16]. Jeb is a secreted protein of approx. 61 kDa
containing a secretory signal and an LDLa domain [19]. The inter-
action of Jeb and dALK appears to be mediated via the LDLa
domain in Jeb, since a Jeb mutant protein lacking the
LDLa domain is unable to bind dALK [15]. Activation of the Jeb/
dALK signalling pathway leads to ERK activation and further
downstream transcription of target molecules such as Duf (dumb-
founded)/Kirre (kin of irregular chiasm) [14–16], Org [15], Hand
[20] and Dpp (decapentaplegic) [21] in the fruitfly (Figure 2).

The Jeb/dALK signalling pathway is also critical for
development of the Drosophila embryonic endoderm in an
indirect manner, since dALK activity in the visceral mesoderm
is required for Dpp [TGFβ (transforming growth factor β)]
transcription and subsequent signalling in the adjacent endoderm
[21]. Moreover, dALK and Jeb play a central role acting as
an anterograde signalling pathway mediating neuronal circuit
assembly in the Drosophila visual system. In the developing
Drosophila eye, dALK is expressed in, and required for, the
targeting of neurons in the optic lobe, whereas Jeb is primarily
produced by photoreceptor axons, functioning to control target
selection of R1–R6 axons in the lamina and R8 axons in the
medulla. Lack of either protein results in mistargeting of the R8
axons during later maturation of the optic lobe neuropile [22].

Caenorhabditis elegans ALK [SCD-2 (suppressor of constitutive
dauer-2)]

In C. elegans, ALK has been implicated in neuronal control of
entry into dauer and synapse stabilization [23,24]. C. elegans ALK
(T10H9.2), now formally known as SCD-2, was identified as an
effector through which the F-box protein Fsn-1 (F-box protein at
the synapse-1) stabilizes synapse formation in GABAergic neuro-
muscular junctions [23]. More recently, SCD-2 mutants were
characterized which display a temperature-sensitive adaptation
to dauer entry [24]. Epistatic analysis in C. elegans suggests that
SCD-2 modulates the TGFβ pathway upstream of Daf3 (abnormal
dauer formation 3; Smad)/Daf5 (Sno/Ski) [24]. The SCD-2 ligand
has been identified as Hen-1 (hesitation-1) [25], which like
Drosophila Jeb is a secreted ligand containing an LDLa domain,
and the genetically mapped signal transduction pathway employs
the adaptor SOC-1 (suppressor of Clr-1) and the MAPK (mitogen-
activated protein kinase) SMA-5 (small body size-5) [24].

Zebrafish LTK/ALK

Elegant studies in the zebrafish Danio rerio have recently demons-
trated an in vivo role for LTK. During zebrafish embryogenesis
LTK signalling leads to specification of iridophores from the
neural crest linage, and mutants in LTK (known as shady) display
defects in pigmentation patterns [26]. The LTK/ALK family in
zebrafish comprises two genes: LTK and ALK, both of which
contain MAM domains [26]. This is in contrast with mouse and
human LTK which both lack MAM domains. Although zebrafish
LTK has no reported ligand to date, its expression in the develop-
ing neural crest is of particular interest given the recent reports of
human ALK activating mutations in neuroblastoma (see below).

MAMMALIAN ALK

Mammalian ALK has been postulated to play a role in the
normal development and function of the nervous system, a
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Figure 2 Signalling via ALK

Signalling via dALK occurs via binding of the ligand Jeb, downstream activation of ERK and transcription of downstream target genes. Signalling via mammalian ALK is thought to occur via
ligand-mediated dimerization in response to the MK and PTN ligands. ALK mediates signalling via the JAK/STAT, RAS/MAPK, PI3K and PLCγ pathways. Activation of ALK via RPTPβ/ζ , independently
of direct ALK–ligand interactions has also been proposed. Lastly, ALK is proposed to function as a dependency receptor which is cleaved by caspase 3 (Casp. 3) in the absence of ligand, thereby
promoting apoptosis.

hypothesis arising from the extensive expression of ALK mRNA
throughout the nervous system during mouse embryogenesis
[3,4,27]. Furthermore, this pattern of ALK mRNA expression
is recapitulated in the developing CNS (central nervous system)
of the chicken where ALK localizes to a subset of spinal motor
neurons, the sympathetic ganglia and DRG (dorsal root ganglia)
[28]. A similar pattern of expression in a subtype of DRG neurons
during DRG development has also been reported in the rat [29]. In
mice, the intensity of the ALK transcript and protein diminishes
after birth, reaching minimum levels at 3 weeks of age, and
is thereafter maintained at low levels in the adult animal [3].
Immunohistochemical studies of adult human tissue reveal a
pattern consistent with that previously reported for mouse ALK,
with a weak ALK signal observed in the CNS [30]. ALK mRNA
transcripts of different sizes have also been reported in the testis,
small intestine, colon, prostate and brain of adult human material,
suggesting that differential splicing of ALK may occur [1].

In vitro studies also support a role for ALK in neuronal
development. For instance, substitution of the extracellular region
of ALK with the mouse IgG Fc domain, resulting in the crea-
tion of a constitutively active membrane-bound ALK–IgG Fc
hybrid protein, has the capacity to induce neuronal differentiation
of PC12 cells. Inhibition of MEK (MAPK/ERK kinase) abolishes
ALK–IgG Fc-induced PC12 cell neurite outgrowth, implying
that neurite outgrowth activity is mediated via the MAPK
pathway [31]. Other groups have also reported a role for ALK in
neurite outgrowth in cell culture [32–35]. Moreover, employing
antibodies to activate ALK, it has been shown that Shc (Src
homology and collagen homology) association with ALK is
required for downstream ERK1/2 activation and neurite extension,

further strengthening the hypothesis that neuronal differentiation
induced by ALK is mediated via the MAPK pathway [33,36].
FRS2 (fibroblast growth factor receptor substrate 2)/SNT has also
been reported to bind both ALK and NPM-ALK [36,37]. Since
prolonged activation of ERK is associated with differentiation
of PC12 cells, FRS2 recruitment may contribute to the neuronal
differentiation of PC12 cells stimulated by activated ALK [36].
Experiments replacing the extracellular domain of ALK with
the extracellular region of the EGFR (epidermal growth factor
receptor), leads to the phosphorylation of ALK and subsequent
activation of PLCγ (phospholipase Cγ ) and PI3K (phosphoinos-
itide 3-kinase). Activation of chimaeric EGFR–ALK efficiently
transforms NIH 3T3 cells, further illustrating the potential
oncogenic properties of ALK when deregulated [38].

LIGANDS OF MAMMALIAN ALK

In mammals PTN (pleiotrophin) also known as HB-GAM
(heparin-binding growth-associated molecule) [39], OSF-1
(osteoblast-specific factor-1) [40], HARP (heparin affinity
regulatory peptide) [41] and HBNF (heparin-binding neurotrophic
factor) [42]; and MK (midkine) [43], also known as RIHB
(retinoic acid-inducible heparin-binding protein) [44], have been
postulated to be the activating ligands for ALK [6,45]. MK and
PTN are small, heparin-binding growth factors implicated in
diverse processes such as neural development, cell migration and
angiogenesis [46,47]. The observation that PTN could function
as a ligand for ALK arises from the isolation of a small portion
of the extracellular region of ALK which was identified upon
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screening a human foetal brain phage display cDNA library for
PTN-binding partners [6]. Subsequently, the PTN-related protein
MK was identified as an ALK ligand. Furthermore, antibodies
directed toward the ALK extracellular domain could inhibit the
in vitro ligand–receptor interaction, suggesting that MK and PTN
bind ALK [45].

MK and PTN are conserved throughout evolution and are
found in species ranging from Drosophila to humans [46]. The
subject of receptors for MK and PTN is a complex one since,
in addition to ALK, a number of other proposed receptors exist.
To date, MK and PTN have been shown to bind and signal via
RPTPβ/ζ (receptor protein tyrosine phosphatase β/ζ ) [48,49]
and N-syndecan [50,51], whereas MK can also bind LRP (LDL-
related protein) [52] as well as the α4β1- and α6β1-integrins
[53].

Enhanced proliferation has been reported upon ALK activation
via PTN [6,54], a function that seems to be dependent on PKB
(protein kinase B)/Akt activation, thus implicating the PI3K
pathway as a target of PTN–ALK signalling [54,55]. Moreover,
a role for ALK in opposing apoptosis via the MAPK pathway in
NIH 3T3 cells has been suggested [54]. In agreement, ribozyme-
mediated reduction of ALK in glioblastoma cell lines results
in increased apoptosis [55]. MK–ALK signalling has also been
reported to be important for proliferation [45,56]. MK-mediated
activation of ALK leads to IRS-1 (IR substrate-1) and Shc
interaction, stimulating downstream signalling and ultimately
activation of NF-κB (nuclear factor κB), thereby inducing cell
growth, which is abrogated upon knockdown of the p65 subunit
of NF-κB [56].

Although several groups have shown that PTN and MK activate
ALK [6,45,54–57] some questions remain, since a number
of groups have reported contradictory findings [32,33,58–60].
Agonist monoclonal ALK antibodies mediate efficient ERK1/2
phosphorylation and differentiation of PC12 cells; however, this
could not be reproduced with PTN which failed to induce
phosphorylation of ALK [32]. Furthermore, treatment with
independently developed ALK-activating antibodies stimulates
neuronal differentiation of SK-N-SH cells, which can be blocked
by the MEK inhibitor PD98059, thus implicating the MAPK
pathway in this process. However, this activation of ALK was
not reproduced when MK and PTN were employed [33].

Interestingly, two different species of PTN, PTN15 and
PTN18, have been described. PTN15 has been reported to
promote glioblastoma growth via ALK, whereas PTN18 promoted
glioblastoma migration in an RPTPβ/ζ -dependent manner
[57]. The existence of two different PTN isoforms has been
hypothesized to explain the discrepancy in reports concerning the
ability of PTN to activate ALK. However, some investigators have
been unable to reproduce the effects of either PTN15 or PTN18 on
ALK [59]. Thus the physiological significance of ALK activation
via PTN and MK is still a matter of debate and investigation within
the field.

One hypothesis concerning ALK activation via PTN comes
from the observation that PTN can indirectly lead to
phosphorylation of ALK via binding to, and inactivation of, the
phosphatase RPTPβ/ζ [61]. In this scenario, phosphorylation
of ALK is independent of the ALK extracellular region, since
a membrane-bound construct containing the ALK intracellular
region is phosphorylated as effectively as the full-length protein
[61].

MK and PTN display no obvious homology toward the dALK
ligand Jeb, or the C. elegans ligand Hen-1 [19,25]. Jeb harbours a
signal peptide and an LDLa domain [19], whereas MK and PTN
are composed of two domains, one N-terminal N-domain and
one C-terminal C-domain [62,63], which contain heparin-binding

modules important for their activity [63,64]. In Drosophila the
homologues for MK and PTN are the orphan ligands Miple1
and Miple2 (where Miple is Midkine and Pleiotrophin) [65].
Although the combined expression pattern of Miple1 and Miple2
complement the expression pattern of dALK, suggesting that a
role as activating ligands for dALK is possible, this has yet to be
tested at the gene level [65].

Finally, a novel dependence receptor function for ALK has
recently been reported, suggesting that ALK may have an
activation independent function [60]. In this study [60], cleavage
of ALK by caspase 3 was found to expose a pro-apoptotic
intracellular domain of ALK, resulting in increased apoptosis
in Jurkat and 13.S.1.24 cells treated with apoptosis-inducing
agents. Moreover, this pro-apoptotic function was counteracted
by activation of ALK (Figure 2). The relevance of these intriguing
results in an in vivo context remains to be explored.

ALK IN THE MOUSE

Throughout the literature a number of comments have been made
regarding ALK mutant mice generated by the Morris group,
stating that they are viable without any gross alterations [66].
This is in agreement with observations from the Palmer and
Hallberg groups, who have also generated ALK mutant mice
(E. Vernersson, R.H. Palmer and B. Hallberg, unpublished work).
A recent study describes a third independently generated mouse
ALK knockout, which displays increased hippocampal progenitor
proliferation, increased performance in hippocampal-associated
tasks, as well as increased levels of dopamine within the basal
cortex [67]. Interestingly, the authors observed an increase in
the number of calretinin-positive cells within the hippocampus, a
phenotype also noted in MK-knockout animals [67,68].

MK and PTN exhibit similar expression patterns in rodents
[69–72], and studies of MK mutant mice embryos, which display
a strong up-regulation of PTN expression, suggest that PTN and
MK are functionally redundant [73]. Indeed, the MK/PTN double
mutant shows a more severe phenotype than either of the single
knockouts. These phenotypes include female infertility [74] and
hearing impairments [75]. The closest ALK relative, LTK, is
expressed in pre-B-cells and adult neurons in the hippocampus
and cerebral cortex [76]. Given that the ALK mutant phenotype
is hippocampus related, the idea that LTK might compensate
for ALK loss is intriguing and relevant [67]. It is known
that LTK is able to promote neuronal differentiation of PC12
cells, underscoring the fact that ALK and LTK may potentially
compensate for one another [77]. Thus far, however, mouse
LTK appears only to be expressed in the adult and not during
development [76], suggesting a clear distinction from ALK,
which is extensively expressed during embryogenesis [3,4,27].
Furthermore, whereas LTK and ALK share a highly similar
intracellular tyrosine kinase domain, there are notable differences
in the extracellular region, with LTK lacking several domains
found in ALK, such as the MAM and LDLa domains (Figure 1).
To date, there is no published mouse LTK knockout to suggest a
role for this RTK in vivo, and therefore the question of whether
or not LTK might substitute for loss of ALK must await future
investigation.

ALK IN HUMANS

The human ALK appears to exist as a 140 kDa protein, as well
as the 220 kDa full-length ALK species [3]. The 140 kDa ALK
species is thought to be the result of a cleavage within the
extracellular region of full-length ALK, generating an 80 kDa
form of unknown function [32]. The 140 kDa ALK protein is
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phosphorylated in response to activation of ALK [33,36,59].
In addition, the presence of an 85 kDa ALK protein which is
phosphorylated in response to activating ALK antibodies has
been observed in NIH 3T3 cells expressing full-length ALK [33].
Interestingly, a recent report suggests that an as yet unidentified
factor secreted by Schwann cells can prevent ALK cleavage [29].
As yet no physiological function has been reported for these
shorter ALK variants, and it is possible that the shorter forms
of ALK are generated after activation of the receptor as part of
down-regulation/degradation processes within the cell. However,
future studies should lead to the definition of the cleavage sites,
as well as the functional relevance of these forms of ALK in vivo.

ALK IN DISEASE

Since the initial discovery of the NPM–ALK fusion protein in
patients suffering from ALCL [1,2], ALK fusion proteins have
also been described in IMTs (inflammatory myofibroblastic
tumours) [78], NSCLC (non-small cell lung cancer) [79,80],
DLBCLs (diffuse large B-cell lymphomas) [81], and SCC
(squamous cell carcinoma) of the oesophagus [82,83]. Further-
more, full-length ALK has also been reported to be expressed
in cell lines and tumours suggesting oncogenic progression
via overexpression [30,55,58,84–92] or gain-of-function muta-
tions, as has recently has been reported in cases of neuroblastoma
[93–97].

ALCL

ALK has been most extensively studied in the context of ALCL, a
disease first described in 1985 [98]. ALCL is a non-Hodgkin’s
lymphoma arising from T-cells, and is characterized by the
expression of CD30. ALK-positive ALCL is most commonly
observed in young adults and children, accounting for 3%
of adult non-Hodgkin’s lymphoma and 10–30% of all non-
Hodgkin’s lymphoma in children [99–101]. ALK expression is
an important prognostic factor used to predict clinical outcome
for patients presenting with ALCL, since ALK-positive patients
have a significantly higher 5-year survival rate as compared with
ALK-negative cases [101–105]. ALK-positive ALCL occurs to a
higher extent in children and young adults [101]; however, ALK
expression in ALCL is a positive prognostic factor independent
of patient age [103]. Currently, combinatorial chemotherapy
treatment, CHOP [cyclophosphamide, hydroxydaunorubicin
(doxorubicin), oncovin (vincristine) and prednisone] is applied
for treatment of ALCL patients as a first approach. In addition,
radiation therapy can be employed as an important complement
to CHOP therapy [103,105,106]. Currently, there is no treatment
for ALK-positive ALCL aimed at directly targeting ALK.

Besides ALK, active caspase 3 expression is also used as a
prognostic indicator for favourable outcome in ALCL. In fact,
caspase 3 activity is strongly correlated with the expression
of ALK [107]. The presence of STAT3 (signal transducer and
activator of transcription 3) in both ALK-positive and ALK-
negative ALCL has led to the suggestion that activated STAT3 may
be a negative prognostic factor independent of ALK expression
in ALCL [108]. Survivin [109] and MUC-1 (mucin-1) [110]
are two additional markers that indicate a poorer outcome in
ALCL regardless of ALK status. Within ALK-positive ALCL,
expression of MUC-1 is indicative of a poorer prognosis with
a decrease in overall survival [110]. The exact mechanism of
MUC-1 in the modulation of ALK-positive ALCL is not fully
understood. However, MUC-1 is commonly overexpressed in
oncogenic processes, and via its adhesive properties is thought

to modulate both metastatic capacity and provide hindrance for
immune cells trying to access the tumour cells [111].

There have been a number of intriguing reports concerning
expression of ALK-fusion proteins in healthy individuals. Indeed,
NPM–ALK transcripts have been detected in blood from healthy
donors [112], as well as in healthy lymphoid tissue via RT (reverse
transcriptase)–PCR [113]. Such reports raise the relevant question
of whether the fusion transcript on its own is enough for inducing
oncogenic transformation or whether secondary events are also
required.

ALK fusion proteins in ALCL

In ALCL the kinase domain of ALK is fused to NPM, creating the
constitutively expressed fusion protein NPM–ALK [1]. NPM is a
multifunctional protein which serves as a molecular chaperone
involved in the shuttling of pre-ribosome subunits from the
nucleus to the cytoplasm during ribosome biogenesis, in addition
to playing a role in DNA repair, transcription and genomic stability
[114]. In the NPM–ALK fusion protein, oligomerization mediated
via NPM juxtaposes two ALK tyrosine kinase domains, resulting
in autophosphorylation and activation of ALK kinase activity
[115,116]. The subcellular localization of NPM–ALK, which is
present both in the cytoplasm and the nucleus, seems not to be
critical for NPM–ALK-mediated transformation [116]. Besides
the dimerization ability of NPM, the kinase activity of NPM–
ALK is an absolute requirement for transforming activity, since
mutation of the ATP-binding site (K219R) renders NPM–ALK
kinase dead and eliminates transformation [116].

In addition to NPM, numerous other fusion partners exist for
ALK in ALCL namely ALO17 (ALK lymphoma oligomerization
partner on chromosome 17) [117], TFG (TRK-fused gene)
[118,119], MSN (moesin) [120], TPM3 and 4 (tropomyosin 3
and 4) [121–123], ATIC (5-aminoimidazole-4-carboxamide
ribonucleotide formyltransferase/IMP cyclohydrolase) [124–
126], MYH9 (non-muscle myosin heavy chain) [127] and CLTC
(clathrin heavy chain) [128] (Table 1). These fusion partner
proteins of ALK share several common characteristics: (i)
the transcription of the fusion protein is driven via the promoter
of the ALK partner protein; (ii) the localization of the fusion
protein is determined by the ALK partner protein and; (iii)
oligomerization via the ALK partner protein induces autophos-
phorylation and thereby activation of the ALK kinase domain.

As discussed above, NPM is responsible for the dimerization
essential for autophosphorylation of, and downstream signalling
via the NPM–ALK tyrosine kinase domain [115,116]. The TPM3
and TFG fusion partners contain dimeric α-coiled-coil structures
that are hypothesized to mediate the dimerization of TPM3–ALK
[121] and TFG–ALK [119] respectively. Since ATIC exists as a
homodimer [129], this property is assumed to be responsible for
the activation of ATIC–ALK [124–126]. For MSN, MYH9 and
CLTC, the means of dimerization seems to be more complex.
It is believed that clathrin coat formation activates the kinase
domain of ALK via the close proximity of the CLTC–ALK fusion
proteins, since CLTC is a component of clathrin-coated vesicles.
In agreement with this suggestion, CLTC–ALK is localized in a
punctuated pattern within the cell, consistent with clathrin-coated
vesicles [128]. The theory of ‘close proximity’ as a means of
activating the ALK tyrosine kinase domain also applies to MSN–
ALK, which is thought to be activated via the ability of MSN to
crosslink the plasma membrane with the actin cytoskeleton [120].
Myosin heavy chain is also known to form a dimer, however the
MYH9 sequence that is fused to ALK is missing the dimerization
domain present in the full-length protein. In spite of this, the
MYH9–ALK fusion protein is phosphorylated in vivo, indicating
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Table 1 Fusion partners of ALK in disease

Disease Fusion protein Chromosomal abnormality References

ALCL NPM–ALK t(2;5)(p23;q35) [1,2]
ALCL ALO17–ALK t(2;17)(p23;q25) [117]
ALCL TFG–ALK t(2;3)(p23;q21) [118,119]
ALCL MSN–ALK t(2;X)(p23;q11-12) [120]
ALCL TPM3–ALK t(1;2)(q25;p23) [121,122]
ALCL TPM4–ALK t(2;19)(p23;p13) [123]
ALCL ATIC–ALK inv(2)(p23;q35) [124–126]
ALCL MYH9–ALK t(2;22)(p23;q11.2) [127]
ALCL CLTC–ALK t(2;17)(p23;q23) [128]
IMT TPM4–ALK t(2;19)(p23;p13) [174]
IMT TPM3–ALK t(1;2)(q25;p23) [174]
IMT CLTC–ALK t(2;17)(p23;q23) [176,177]
IMT ATIC–ALK inv(2)(p23;q35) [175]
IMT SEC31L1–ALK t(2;4)(p23;q21) [180]
IMT RANBP2–ALK t(2;2)(p23;q13) [179]

inv(2)(p23;q11-13)
IMT CARS–ALK t(2;11;2)(p23;p15;q31) [117,178]
NSCLC EML4–ALK inv(2)(p21;p23) [79,80]
NSCLC TFG–ALK t(2;3)(p23;q21) [80]
DLBCL NPM–ALK t(2;5)(p23;q35) [204]
DLBCL CLTC–ALK t(2;17)(p23;q23) [237]
SCC TPM4–ALK t(2;19)(p23;p13) [82,83]

either an uncharacterized dimerization domain or that MYH9
potentially interacts with other proteins leading to multimerization
and consequent activation of ALK [127].

Oncogenic signalling via ALK-fusion proteins

The most studied ALK-fusion protein, NPM–ALK, signals via the
PLCγ , PI3K, RAS/MAPK and JAK (Janus kinase)/STAT path-
ways. PLCγ has been shown to directly interact with NPM–ALK
via its SH2 (Src homology 2) domain. This interaction is of
importance for the transforming potential of NPM–ALK, since
mutation of the NPM–ALK/PLCγ interaction site abrogates
transformation in transfected cell culture models [11]. A
systematic analysis of NPM–ALK tyrosine to phenylalanine
mutants (Figure 3), has identified Tyr664 (corresponding to Tyr1604

in human full-length ALK; Tyr1604 is present in human ALK but
not in mouse ALK) as responsible for the PLCγ interaction.
Interestingly, all other mutants (except the kinase dead Y338F,
Y342F and Y343F mutants) retained their ability to confer
IL-3 (interleukin-3)-independent growth of Ba/F3 cells [11],
indicating a key role for the PLCγ pathway in ALK-dependent
transformation.

NPM–ALK interacts with PI3K thereby activating the catalytic
subunit of PI3K, and leading to the phosphorylation of
PKB/Akt and subsequent downstream signalling events [130].
This interaction has been reported to occur via both the SH2
and SH3 domains of the p85 subunit of PI3K [130,131].
Furthermore, an indirect interaction of p85 and NPM–ALK via
other adaptor molecules must also be considered. Inactivation of
the PI3K pathway induces apoptosis in NPM–ALK-positive cells
[130,132], indicating a role for the PI3K/PKB/Akt pathway in
anti-apoptotic signalling. Moreover, PKB/Akt activation appears
to be critical for transformation by NPM–ALK, since mice
inoculated with NPM–ALK-positive cells expressing a dominant-
negative PKB/Akt display impaired oncogenic growth and
delayed tumour formation [132].

NPM–ALK regulates the FOXO3a (forkhead box O 3a)
transcription factor via the PI3K/PKB/Akt pathway. Active
PKB/Akt phosphorylates FOXO3a, leading to retention of

Figure 3 Tyrosine residues phosphorylated in the intracellular regions of
human and mouse ALK

The intracellular regions of human and mouse ALK (hALK and mALK respectively) contain
the PTK domain. Potential autophosphorylation sites are shown within human and mouse
ALK [11]. Note that there is no equivalent tyrosine residue in mouse ALK for human Tyr1604.
Tyrosine residues within the activation loop are shown in bold. In italics is a profiling of
putative phosphorylated tyrosine residues in NPM–ALK from ALCL cancer cells [166]. Four
tyrosine sites, marked with ∗ , have been tested by mutagenesis in NPM–ALK for interaction
with signalling proteins such as PLC-γ (Tyr1604 in hALK) [11], Shc (Tyr1507 in hALK) [115],
Src (Tyr1358 in hALK) [157], IRS-1 (Tyr1096 in hALK) [115] and SNT (Tyr1096 and Tyr1507 in
hALK) [37]. Localization of tyrosine residues within the intracellular region is not to scale. TM,
transmembrane domain.

FOXO3a in the cytoplasm. This has been shown to result in
alterations at the level of transcription of several FOXO3a target
genes in NPM–ALK-expressing lymphoma, including cyclin D2,
Bin-1 and p27kip1[133]. In agreement, inactivation of PKB/Akt
activity in ALCL cell lines, employing small molecule inhibitors,
results in up-regulation of p27kip1 levels and induction of cell-cycle
arrest [134]. An additional target for PI3K/PKB/Akt signalling in
ALK-positive ALCL cell lines is mTOR (mammalian target of
rapamycin), which displays reduced levels of phosphorylation
in response to inhibition of PKB/Akt [135]. In addition, the
RAS/MAPK pathway has also been reported to be important for
mTOR activation in NPM–ALK-expressing cells [136].

NPM–ALK interacts with IRS-1, Shc and Grb2 (growth-factor-
receptor-bound protein 2), thus implicating the RAS/MAPK
pathway as a downstream target of NPM–ALK activity [115].
Interaction with IRS-1 and Shc are non-essential for trans-
formation, given that NPM–ALK mutants unable to interact with
Shc and IRS-1 are still able to transform NIH 3T3 cells [115].
Previous reports suggest that NPM–ALK may be able to activate
MEK directly [137,138]. Furthermore, simultaneous depletion
of ERK1 and ERK2 impairs cell proliferation, whereas ERK1
depletion alone induces apoptosis in an ALCL-derived ALK-
positive cell line, indicating that ERK1/2 are involved in survival
and pro-apoptotic functions [138].

The last major pathway engaged by NPM–ALK is the JAK/
STAT pathway. Several reports have demonstrated a correlation
between NPM–ALK expression and STAT3 phosphorylation
status and activation [139–141]. In agreement, inactivation
of NPM–ALK with small molecule ALK inhibitors results
in reduced STAT3 phosphorylation [142–144]. The observed
interaction of NPM–ALK with JAK3, the receptor-associated
tyrosine kinase responsible for STAT3 activation [140,145],
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provides a possible explanation for the effect of NPM–ALK
on STAT3, given that inhibition of JAK3 leads to a reduction
of STAT3 activation by NPM–ALK together with increased
cellular apoptosis [145,146]. Although the precise mechanism
of NPM–ALK induced activation of STAT3 is still a matter of
investigation, it is clear that JAK3 activity is strongly associated
with ALK expression and STAT3 phosphorylation in vivo [147]. It
is also clear that down-regulation of active STAT3 is incompatible
with the ALK-positive ALCL-transforming phenotype, as STAT3
compromised cells display increased apoptosis and cell-cycle
arrest [143,145,148,149]. This finding is further supported by
gene-targeting experiments which support a role for STAT3 in
NPM–ALK-induced tumour growth in vivo [150].

Several groups have provided additional information concern-
ing the importance of the JAK/STAT pathway in ALCL. Loss of
the JAK/STAT pathway negative regulator Shp1 (SH2 domain-
containing phosphatase 1) as a result of DNA methylation has
been reported in ALK-positive ALCL [151]. Indeed, restoring
Shp1 levels in NPM–ALK-expressing cell lines inactivates the
JAK/STAT pathway and blocks cell-cycle progression [149]. In
addition, protein phosphatase 2A, a STAT3-interacting protein
necessary for sustained STAT3 phosphorylation, is overexpressed
in ALK-positive ALCL [141].

Another member of the STAT family, STAT5, plays a less clear
role in the pathogenesis of ALK-positive ALCL. Although several
reports have been unable to detect activation of STAT5 in ALK-
expressing cell lines [140,141], an interaction between STAT5B
and NPM–ALK has been observed by others [152]. Furthermore,
expression of dominant-negative STAT5B induces apoptosis and
cell-cycle arrest in ALCL-derived cell lines expressing NPM–
ALK [152]. In ALK-positive ALCL cell lines, STAT5A is silenced
via methylation in a STAT3-dependent manner. Up-regulation
of STAT5A by inhibition of methylation, results in decreased
transcription of NPM–ALK due to the ability of STAT5A to
interact with the NPM–ALK promoter region, indicating a tumour
suppressor function for STAT5A in ALK-positive ALCL-derived
cell lines [153]. Future investigations should clarify the role of
STAT5A and B in NPM–ALK-induced tumorigenesis.

Besides the above mentioned players there are a number of other
proteins implicated in NPM–ALK-mediated malignancy. The
small GTPases Rac1 (ras-related C3 botulinium toxin substrate 1)
and Cdc42 (cell division cycle 42) are regulated by NPM–ALK
in ALCL and other cell lines [154,155]. Furthermore, upon
depletion of Cdc42, cell-cycle arrest and apoptosis are induced
[154]. In addition, loss of p130Cas (Crk-associated substrate)
modifies cell shape and inhibits cellular transformation by NPM–
ALK. This dependency on p130Cas has been suggested to be
modulated via Grb2 in NPM–ALK-positive ALCL cells [154].
Moreover, knockdown of Shp2 reduces the migratory capacity of
cells expressing NPM–ALK [156] and Src kinases, in particular
pp60Src, have been suggested to be important for the proliferative
capacity of NPM–ALK-positive ALCL cells [157].

Yeast two-hybrid screening has led to the identification of
NIPA (nuclear interacting partner of ALK) as a novel downstream
target of NPM–ALK that has been shown to interact with NPM–
ALK, as well as other ALK fusions, in a tyrosine kinase-
dependent manner. NIPA has been characterized as an F-box-
containing protein that defines the multisubunit ubiquitin E3
ligase complex SCFNIPA (where SCF is stem cell factor), which
targets nuclear cyclin B1 for ubiquitination during interphase, thus
contributing to the timing of mitotic entry [158]. Overexpression
of NIPA protects Ba/F3 cells from apoptosis induced by IL-3
withdrawal. Furthermore, apoptosis triggered by wortmannin
treatment in NPM–ALK-transformed Ba/F3 cells is enhanced by
overexpression of dominant-negative NIPA mutants, implying an

anti-apoptotic role for NIPA in NPM–ALK-mediated signalling
events [159].

Activation of JNK (c-Jun N-terminal kinase) in ALK-
transformed cells has also been reported. Utilizing the Vav pro-
moter to drive NPM–ALK expression in mice results in develop-
ment of lymphomas which display a robust increase in JNK
phosphorylation relative to controls [160]. Subsequent work has
reported activation of JNK and c-Jun in ALCL cell lines as well
as primary tumour cells. Similar activation was also observed
upon introduction of NPM–ALK, but not a kinase-dead mutant
NPM–ALK, into HEK (human embryonic kidney)-293T cells,
suggesting that NPM–ALK is indeed capable of activating JNK
[161].

Elevation of SHH (sonic hedghog) expression in ALK-positive
ALCL has recently been reported [162]. This increase of SHH
expression is apparently dependent on NPM–ALK-induced PI3K
activity, since inhibition of PI3K leads to a concentration-
dependent decrease of SHH protein levels. Inhibition of SHH
pathway activity results in decreased cell viability, colony
formation and cell-cycle arrest in ALK-positive ALCL cell lines
[162].

A number of studies have used high-throughput approaches
to identify novel ALK targets [80,137,163–168]. Immunoprecip-
itation of phosphotyrosine peptides from ALCL cell extracts
followed by LC–MS/MS (liquid chromatography tandem MS)
analysis identifies ALK as the sole tyrosine kinase phosphorylated
within the activation loop, together with tyrosine phosphory-
lated signalling molecules such as dok2 (docking protein 2),
IRS-1, Shc, Crk, CrkL and STAT3 among others [166]. A similar
global survey of phosphotyrosine signalling in lung cancer found
up-regulation and activation of full-length ALK, and independ-
ently identified the EML4 (echinoderm microtubule-associated
protein like 4)–ALK oncogene, as well as identifying a number
of potential ALK downstream signalling proteins [80]. Immuno-
precipitation of NPM–ALK from the Karpas 299 cell lines with
monoclonal and polyclonal antibodies led to the identification
of 36 NPM–ALK binding partners, including both known and
novel ALK-interacting proteins [137]. Recent results employing
a proteomics approach with NPM–ALK have moreover defined
a set of phosphorylated proteins, including VASP (vasodilator-
stimulated phosphoprotein) and ATIC, as ALK targets [163].
In addition, analysis of the transcriptomes of ALCL cell lines
has established a number of ALK-regulated genes, including the
transcription factor C/EBPβ (CCAAT/enhancer-binding protein
β) and the anti-apoptotic protein BCL2A1 (B-cell lymphoma
2A1) which are required to sustain the growth and survival
of ALK-positive ALCL cells [164]. A further study comparing
ALK-positive and ALK-negative ALCL led to the identification
of a number of ALK transcriptional targets, of which BCL-
6, serpinA1 and C/EBPβ were also confirmed at the protein
level [165]. Finally, using a tandem-affinity purification approach
several novel interaction partners for ALK were isolated including
MCM6, MSH2, Nup98, Importin 8, 82Fip and Bag2 [168].

None of the other known ALK-fusion proteins have been
studied as extensively as NPM–ALK with respect to downstream
signalling. Nevertheless they are assumed to function in a similar
manner as NPM–ALK. This assumption is supported by studies
on the ATIC–ALK and TFG–ALK fusion proteins, in which
ATIC–ALK was shown to associate with Grb2 and Shc [125], and
TFG–ALK with Grb2, Shc and PLCγ [118].

An extensive evaluation of the oncogenic potential of
NPM–ALK, TPM3–ALK, TFG–ALK, CLTLC–ALK and ATIC–
ALK both in vivo and in vitro suggests that TPM3–ALK-
expressing cells display a higher migratory and invasive capacity
in vitro as compared with the other ALK-fusion proteins
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examined. However, when grafting transfected NIH 3T3 cells
subcutaneously into nude mice, NPM–ALK- and TFG–ALK-
mediated tumours were readily detected 6 days after inoculation,
whereas TPM3–ALK-induced tumours were detected a few
days later [169]. The invasive properties of the ALK-fusion
proteins were further evaluated by an in vivo lung metastasis
assay, in which TPM3–ALK displayed an increased capacity to
form metastases in comparison with other ALK-fusion proteins
[169]. However, whether this increased ability of TPM3–ALK-
transfected cells to induce metastases has clinical relevance
is currently unclear. In patient samples, the observation that
activated STAT3 is expressed in 84% of ALK-positive ALCL
cases has been speculated to be due to differences in signalling via
the different ALK-fusion proteins [108]. Indeed, this hypothesis
is supported by reports of efficient STAT3 phosphorylation in
cells by NPM–ALK, TPM3–ALK, TFG–ALK and ATIC–ALK,
but not by CLTLC–ALK [169,170].

IMT

IMT is a benign malignancy of mesenchymal origin with a
prominent inflammatory component consisting of plasma cells
and lymphocytes [171]. Although IMT mostly affects young
individuals, it can develop at all ages. First described in the lung,
these ‘inflammatory pseudotumours’ were considered a post-
inflammatory condition rather than a malignant process [172].
IMTs can manifest in almost any anatomical site [171], although
they are most common in tissues such as the lung, abdomen
and retroperitoneum [173]. In 1999, Griffin et al. [78] reported
an association between the 2p23 chromosomal rearrangement
and expression of ALK with IMTs; the first indication that
IMTs, or a subpopulation of IMTs, were neoplastic in origin
rather than reactive [78]. Further studies have confirmed the
presence of several different ALK-fusion proteins in IMTs, all
containing the kinase domain of ALK together with one of a
variety of partner proteins responsible for dimerization (Table 1).
Those fusion partners described to date are TMP3–ALK [174],
TMP4–ALK[174], ATIC–ALK [175], CLTC–ALK [176,177],
CARS (cysteinyl-tRNA synthetase)–ALK [117,178], RANBP2
(Ran-binding protein 2)–ALK [179] and SEC31L1 (SEC31
homologue A)–ALK [180]. In fact, 35–60% of all IMTs appear
to exhibit ALK rearrangements [181,182], with ALK-positive
IMTs preferentially affecting young individuals [174,181,182].
Interestingly, ALK-positive IMT reoccurs in approx. 50% of
cases, although no metastasis was detected in this group [183].
This pattern of occurrence is similar to that noted for ALK-
positive ALCL. Moreover the prognosis appears to be better
for ALK-positive IMTs [184], as is the case for ALK-positive
ALCL. However, no obvious ALCL prognostic factors correlate
with IMT [183] and the difference between ALK-positive and
ALK-negative IMTs is still unclear. Thus we do not presently
understand the functional relevance and consequences of ALK
signalling in ALK-positive IMT.

NSCLC

Lung cancer is the most common cause of cancer death in
the world. Of the annual 1.3 million cases worldwide, NSCLC
accounts for approx. 80% of all lung cancers [185,186]. In 2007
a novel gene fusion between ALK and EML4 was reported
in NSCLC [79,80]. Studies from over 1900 NSCLC cases
suggest a frequency of EML4–ALK fusion in the range 0.1–
7.9%, encompassing a number of different translocation variants
[79,80,187–193]. Extrapolation would suggest that approx. 3.5 %
of all NSCLC cases contain an EML4–ALK translocation,

equivalent to over 45000 patients worldwide. Furthermore, the
EML4–ALK translocation seems to be uninfluenced by ethnic
differences, in contrast with point mutations in the EGFR observed
in NSCLC [194]. EML4 does not appear to be exclusive as
the fusion partner for ALK in NSCLC, since Rikova et al.
[80], also identified TFG as an ALK-fusion partner in one
NSCLC sample [80]. Also unclear is the issue of whether
EML4–ALK is causative in NSCLC, and whether EML4–
ALK will be an effective clinical marker/therapeutic target.
However, cells expressing oncogenic variants of ALK or EML4–
ALK fusion proteins show reduced growth upon treatment with
ALK inhibitors, such as PF-2341066 or NVP-TAE684 [195–
198]. Furthermore, mice overexpressing EML4–ALK (variant 1)
develop tumours with malignant characteristics, which are
treatable with administration of a small specific ALK inhibitor,
NVP-TAE684 [142], confirming the potent oncogenic activity of
the fusion kinase [195].

Although an attractive diagnostic marker, some caution should
be employed when considering EML4–ALK as a diagnostic
marker for NSCLC. A recent study by Martelli et al. [193]
observed a subset (7.5%) of EML4–ALK translocations in
NSCLC samples from European patients. However, the presence
of EML4–ALK was also detected in non-tumour lung samples,
where the EML4–ALK transcript was not detected in matching
tumour samples from the same patient [193]. This observation
raises some important questions concerning the role of EML4–
ALK in the development of NSCLC, and further work is required
to clarify this important issue.

ALK-positive DLBCL

Among diffuse DLBCLs there is an ALK-positive subpopulation,
which shows features of plasmablastic morphology. ALK-positive
DLBCL usually expresses markers such as EMA (epithelial
membrane antigen), CD138 and cytoplasmic Ig, together with
ALK. Furthermore, ALK-positive DLBCL lacks expression of
B-cell markers (CD20, CD79a), the T-cell marker CD3 and is
typically negative for CD30 expression [85,199]. To date, 41
cases of ALK-positive DLBCL have been reported, spanning
all age groups and displaying an overall predominance in males
(male/female ratio, 5:1). In addition, ALK-positive DLBCL is
correlated with an aggressive clinical outcome as well as a
poor response to treatment [170,199–202]. The most frequent
chromosomal rearrangement in ALK-positive DLBCL is the
t(2;17)(p23;q23) translocation which generates CLTLC–ALK,
although a few cases of NPM–ALK fusions have also been
described [203,204]. Recently, a third variant of DLBCL was
reported with a cryptic insertion of the 3′-ALK sequence at
chromosome 4q22-24, displaying immunohistochemical staining
characteristic of a DLBCL and focal granular cytoplasmatic
staining of ALK [200], although the ALK-fusion partner in this
case has not been identified. As previously discussed NPM–ALK
translocation induces activation of STAT3 [140,141], and this
also seems to occur in CLTC–ALK-driven DLBCL, but not in
ALK-negative DLBCL [170]. These observations again indicate a
close connection between deregulated ALK and phosphorylation
of STAT3, suggesting that STAT3 inhibitors might be useful
therapies for DLBCL.

Overexpression of ALK in cancer

Several groups have examined overexpression of ALK in different
tumour materials, reporting excessive ALK expression in thyroid
carcinoma, NSCLC, breast cancer, melanoma, neuroblastoma,
glioblastoma, astrocytoma, retinoblastoma, ewing sarcoma and
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rhabdomyosarcoma [58]. Besides these tumour types, ALK
expression has also been described in leiomyosarcoma and malig-
nant peripheral nerve sheath tumours, as well as malignant fibrous
histocytoma [86]. Some of these, NSCLC, glioblastoma and neuro-
blastoma, have also been evaluated with respect to ALK activa-
tion. However, the significance of ALK overexpression in many
of these cancer types is uncharacterized at the molecular level.

In the case of rhabdomyosarcoma, leiomyosarcoma and
malignant fibrous histocytomas, increased copy number of the
chromosomal region 2p23 may lead to the overexpression of ALK
[86].

PTN has been reported to induce ALK phosphorylation and
subsequent downstream PKB/Akt activation in glioblastoma. In
agreement, glioblastoma cell lines depleted of ALK grow at
a reduced rate compared with parental cell lines [55]. Similar
observations have also been reported in U87MG glioblastoma
cell lines stimulated with MK [45]. Combined targeting of ALK
and PTN in U87 glioblastoma cells significantly impairs tumour
growth in an in vivo xenograft model [205].

A clear role for ALK in breast cancer has not been firmly
established; however, several lines of evidence suggest a role
for ALK in this disease. First, ALK is strongly expressed in
several different subtypes of human breast cancers, in a pattern
not consistent with normal tissue [84]. Secondly, PTN, the
proposed mammalian ALK ligand, is extensively expressed in
breast cancer [206,207], and expression of truncated PTN in a
human breast cancer cell line abrogates tumour formation in
nude mice [208]. Thirdly, the PTN receptor RPTPβ/ζ is strongly
expressed in different subtypes of human breast cancer [61]. Taken
together with the hypothesis that ALK is indirectly activated via
PTN/RPTPβ/ζ signalling [61], it is possible that ALK harbours
oncogenic potential in breast cancer development.

ALK gain-of-function mutations in neuroblastoma

Neuroblastoma is derived from neural crest cells of the sympa-
ticoadrenal lineage and can therefore arise throughout the
sympathetic nervous system. It is the most common solid tumour
in childhood and accounts for 15% of all paediatric oncology
deaths [209]. Neuroblastoma tumours show heterogeneous bio-
logical and clinical features and a subset may undergo spon-
taneous differentiation or regression with little or no therapy,
whereas the majority are difficult to cure with current regimes. The
most common genetic features of neuroblastoma are amplification
of the proto-oncogene MYCN (v-Myc myelocytomatosis viral-
related oncogene, neuroblastoma derived), deletions of parts of
chromosome arms 1p and 11q, gain of parts of 17q and triploidy
[210]. Expression of full-length ALK in neuroblastoma was first
demonstrated in 2000 [88], and is supported by subsequent studies
showing that the ALK locus is amplified in neuroblastoma cell
lines, as well as in primary patient samples [89,90]. A physical
association between ALK and ShcC has also been demonstrated
[89]. In agreement, silencing of ALK in NB-39-nu and Nagai
neuroblastoma cell lines results in the down-regulation of ShcC
phosphorylation, as well as PKB/Akt activation, with concomitant
apoptosis [90].

During 2008, five groundbreaking studies reported the presence
of activating ALK mutations in both familiar [96,97] and
sporadic [93–97] cases of neuroblastoma. Interestingly, all
mutations (except one) are localized within the kinase domain
of ALK and are assumed to be activating in nature (Table 2).
Furthermore, neuroblastoma patients who are positive for ALK
mutations appear to have a worse prognosis [93–97]. In line
with an oncogenic role for ALK in neuroblastoma, a number
of neuroblastoma cell lines were also shown to harbour activating

Table 2 Activating mutations within the ALK kinase domain in
neuroblastoma patients

Nucleotide changes Amino acid mutation Targeted region References

3260 C → T T1087I Juxtamembrane domain [94]
3271 G → A D1091N Juxtamembrane domain [97]
3383 G → C G1128A P loop [97]
3452 C → T T1151M Kinase domain [95]
3497 T → G M1166R C helix [97]
3512 T → A I1171N C helix [97]
3520 T → A F1174I End of C helix [93,97]
3521 T → G F1174C End of C helix [94,96]
3520 T → G F1174V End of C helix [94]
3522 C → A/G F1174L End of C helix [93–95,97]
3575 G → C R1192P β4 strand [97]
3700 G → A A1234T Catalytic loop? [95]
3733 T → G F1245V Catalytic loop [97]
3733 T → A F1245I Catalytic loop [93]
3735 C → A/G F1245L Catalytic loop [93,94]
3734 T → G F1245C Catalytic loop [95,97]
3749 T → C I1250T Catalytic loop [97]
3824 G → T R1275L Activation loop [96]
3824 G → A R1275Q Activation loop [93–97]
3833 A → C Y1278S Activation loop? [96]

ALK mutations, and knockdown of ALK in these cell lines
resulted in an inhibition of proliferation [97]. Two of these
activating ALK mutants, F1174L and K1062M, can indeed induce
rapid formation of subcutaneous tumours in nude mice, thus
displaying transforming potential in vivo [94].

The work described above highlights the relevance of
understanding ALK-mediated signalling in a physiological
context, since ALK ligands, as well as mutations in downstream
ALK signalling pathway components, are obvious candidates
with potential roles in the progression of neuroblastoma. The
identification of a role for a drug targetable RTK, such as ALK
in neuroblastoma development, provides a real hope for future
therapeutic treatments for this devastating disease.

MOUSE MODELS FOR ALK-DRIVEN ALCL

NPM–ALK has been established as the causative protein in
ALCL by a number of groups both in vitro and in vivo. Bone
marrow-expressing human NPM–ALK is able to induce lymphoid
malignancies in lethally irradiated mice, providing in vivo support
for NPM–ALK as an oncogenic agent [211,212]. Moreover,
transgenic animals expressing NPM-–ALK under the control
of the CD4 promoter develop CD30-positive NPM–ALK T-cell
lymphomas, as well as plasma cell tumours [213]. Utilization of
the haematopoietic cell-specific Vav promoter [160] and the Lck
promoter [214] to overexpress NPM–ALK in mice further confirm
a role in the development of lymphomas. Additional strategies
of investigating NPM–ALK in the development of ALCL using
animal models have been reported and recently reviewed [215].

POTENTIAL TREATMENT STRATEGIES FOR ALK-POSITIVE CANCERS

The development of tyrosine kinase inhibitors for use in cancer
therapy has proven effective in several cases. Most well-known
is Gleevec which targets the BCR-Abl (breakpoint cluster
region-Abl) fusion protein in CML (chronic myeloid leukaemia)
[216,217]. In addition to inactivating Abl, Gleevec also targets
the c-Kit RTK, as well as the PDGFR (platelet-derived growth
factor receptor) [218,219]. c-Kit is highly expressed in GISTs
(gastrointestinal stromal tumours) [220] and clinical trials have
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established Gleevec as a treatment for GIST patients [221–223].
Other examples of RTK inhibitors are Gefitinib and Erlotinib,
monoclonal antibodies which selectively inhibit EGFR (ErbB1),
and are used in treatment of NSCLC [224].

A screen of more than 600 different human cancer-derived cell
lines with the ALK inhibitor TAE684 identified a number of ALK-
positive ALCL, neuroblastoma and NSCLC cell lines in which
proliferation was inhibited [198]. TAE684 is a 5-chloro-2,4-
diaminophenylpyrimidine which targets the ATP-binding pocket
of ALK thereby blocking ATP binding [142]. Furthermore,
administration of TAE684 in mice after injection of NPM–ALK-
positive ALCL cells (Karpas 299 cell line) prevented development
of disease and induced regression of pre-induced ALCL [142].

Neuroblastoma cell lines harbouring different activating ALK
mutations appear to respond differently to inhibition of ALK via
the inhibitor TAE684. For example, the ALK mutant F1174L
observed in SH-SY5Y and KELLY neuroblastoma cell lines
is sensitive to TAE684, whereas the R1275W ALK mutant
observed in the SMS-KCNR cell line is unaffected. ALK-
silencing experiments in these cell lines support the previous
inhibitor TAE684 results, since growth inhibition and increased
apoptosis were noted in SH-SY5Y and KELLY cells, but not in
SMS-KCNR cells [95,97]. It should be noted that these ALK
mutants were also tested in a Ba/BF3 cells, where both mutants
exhibited transforming ability and were sensitive to TAE684 [95].
The reasons behind this differential response to TAE684 are
presently unclear, but may indicate differences in genetic
background, or reflect complex genetic predispositions acquired
by these cells.

An additional ALK inhibitor is PF-02341066, also an ATP
competitor, which targets both c-Met and ALK [196]. PF-
02341066 has been shown to reduce ALK-positive ALCL
development in an animal model [197], and is currently in phase I
trails for patients with advanced anaplastic large cell lymphomas
(www.ClinicalTrials.gov). UCN-01 (unco-ordinated 1),
a staurosporine derivative, which inhibits PKC (protein
kinase C) [225] and chk1 [226], has been reported to cause
disease regression in one patient with ALK-positive ALCL [227].
However, others have been unable to confirm a direct relationship
between UCN-01 and ALK [228]. Presently a phase I clinical
trial using UCN-01 in patients with relapsed or refractory
systemic ALCL or mature T-cell lymphoma is underway
(www.ClinicalTrials.gov). Although several PTK inhibitors are
used successfully in the clinic, ALK inhibitors are not yet so well
developed. This active area of research should hopefully produce
effective and clinically relevant compounds [229,230].

Besides small-molecule chemical inhibitors, ALK has also been
the target of a number of strategies aimed at reducing mRNA
levels, thus depleting the ALK protein. In glioblastoma, PTN
and ALK appear to be up-regulated and functionally relevant,
since ALK and PTN ribozyme-expressing glioblastoma cell lines
show reduced signalling potential. Moreover, in xenograft models,
silencing of either ALK or PTN results in reduced tumour growth
[55,231]. A double knockdown of PTN and ALK completely
inhibited xenograft tumour growth over a 60-day experimental
period [205]. Similar ribozyme-mediated silencing was observed
for NPM–ALK in ALCL and Hodgkin’s lymphoma-derived cell
lines [232]. Finally, Piva et al. [233] have reported induction of
cell death in ALK-positive ALCL cell lines by ALK silencing
in vitro as well as in in vivo mouse models of ALCL tumour
growth. In this case silencing was achieved by injection of
adenovirus-expressing an shRNA (small hairpin RNA)-targeting
ALK [233].

Interestingly, DNA vaccination of animals against human ALK
prior to challenge with ALK-expressing lymphoma cells provides

protection against disease. Furthermore, in already diseased
animals ALK vaccination in combination with standard treatment
increased the cure rate [234].

Although the direct targeting of ALK may be preferential
for treatment of ALK-positive malignancies, other approaches
may provide a beneficial complement. By targeting different
ALK-interacting proteins, several reports have demonstrated
reduced viability and tumour-forming capacity of NPM–ALK-
positive cell lines. For example, NPM–ALK interacts with the
chaperone Hsp90 (heat-shock protein 90), and inactivation of
Hsp90 with 17-AAG (17-allyl-amino-demethoxygeldanamycin)
results in degradation of NPM–ALK and subsequent apoptosis in
ALCL cell lines [235]. Another example of possible downstream
targets in ALK-positive ALCL is PKB/Akt. Injection of mice
with cells expressing NPM–ALK, together with dominant-
negative PKB/Akt results in a severely impaired tumour-forming
capacity as compared with animals receiving control NPM–ALK-
expressing cells [132].

Inhibitory antibodies are also a feasible alternative to small
molecules. One such example is Trastuzumab (Herceptin),
a monoclonal antibody, which binds to the extracellular
juxtamembrane domain of HER2 and prolongs life in patients
with human epithelial cancer [236]. Inhibitory antibodies to
human ALK have been described, which reduce the level
of phosphorylation of ALK, and consequently also the basal
activity of MAPK in constitutively active ALK-expressing
HEK-293 cells. Furthermore, these blocking antibodies are able
to reduce the basal differentiation of ALK-transfected PC12
cells [32]. The authors suggest that this monoclonal antibody
may function by blocking dimerization of ALK receptors,
since stimulation with activating antibodies is abrogated by
the inhibitory antibody. Whether this antibody indeed blocks
ligand(s)-mediated receptor dimerization of ALK remains to be
seen, and it is possible that this blocking antibody against ALK
will display inhibitory activity towards the recently discovered
activating ALK mutants in neuroblastoma [93–97]. Such blocking
antibodies are potential therapeutics for cancers displaying
overexpression or activating mutations of the full-length ALK
RTK, and not the translocation-generated fusion oncogenes, and
may indeed have the capacity to prolong life and increase the
therapeutic effects of other treatments.

OUTSTANDING QUESTIONS IN ALK RESEARCH: SPECULATION
FOR THE FUTURE

One of the most disputed areas in the ALK research field at the
present time is the issue of PTN and MK as ligands of ALK in vivo.
To date, there is no genetic evidence to support this from model
systems, in spite of the fact that a number of organisms in which
ALK signalling has been studied (such as Drosophila and zebra
fish) have clear homologues. The possibility exists that different
ligands for ALK are utilized in different developmental processes,
and that indeed PTN/MK function as ALK ligands, but that as
yet unidentified ‘Jeb-like’ vertebrate ligands also exist. In the
absence of ‘Jeb-like’ vertebrate ligands, the spatial and temporal
relevance of the PTN/MK–ALK interaction in vivo needs to be
addressed. The issue of ALK ligands is of particular relevance
in neuroblastoma, since it follows that any misregulation of an
ALK ligand may influence neuroblastoma progression even in
the absence of activating ALK mutations. Structural information
regarding ALK is also lacking, and would be an invaluable
treasure trove of information. The unique organization of ALK
in the extracellular region suggests that important information
will be gleaned from solving the ALK structure, with or without
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PTN/MK. A simpler task would be elucidation of the crystal
structure of the intracellular domain of ALK, in the presence
or absence of inhibitors, or indeed in the active or inactive
conformation. In this regard it would be important to consider
crystallization of the human ALK in order to understand the
relevance, if any, of the Tyr1604 residue which is lacking in the
mouse ALK.

Much work is ongoing concerning generation of specific
ALK inhibitors, which would surely be simplified by intricate
knowledge of the ALK kinase domain structure. This is an obvious
area of importance to be pursued over the coming years. A
number of different ALK inhibitors may be needed for therapeutic
use, if the paradigm of BCR-Abl and CML inhibitors will
also apply to ALK-driven neoplasms. Further development and
exploration of monoclonal antibodies to ALK may also provide
important therapeutic approaches, particularly in neuroblastoma,
and potentially offers the opportunity to interrupt the interaction
between ALK and its ligand(s) in vivo. While frustrating for
those who have painstakingly developed and analysed the ALK-
knockout mice, the lack of obvious phenotypes observed in these
animals offers hope that side effects of ALK inhibition may be
minimal.

Although a wealth of information exists concerning NPM–
ALK signalling, it is less clear whether this information can be
directly translated over to the many other ALK fusion proteins.
Even less clear is the signalling mediated by the full-length ALK
receptor. Further work will hopefully address these issues. We
are currently unclear on the mechanisms of down-regulation of
full-length ALK, and also of the physiological relevance of the
different ALK cleavage products. The functional relevance of
the potential ALK-dependence receptor in vivo also needs to
be clarified. While considering the in vivo importance of the
full-length ALK, it should be noted that RTK loss-of-function
is often associated with developmental syndromes, and whereas
no connection has been made to date, future work may implicate
ALK in a human syndrome perhaps involving the nervous system.

A large number of studies have identified ALK-interacting
proteins as well as molecules which are transcriptionally
modulated in response to ALK activation. Only a handful of
these have been investigated in detail. The difficult task of
functional characterization and identification of biologically and
clinically relevant molecules in these data sets lies in the future.
However, the value of these data sets will not be realised without
corresponding biological context.

Further insight into ALK function, in terms of signalling
pathways and developmental context, may come from genetic
screens and analysis in the model organism systems such as
C.elegans, Drosophila, zebrafish and mouse. The function of
the second zebrafish ALK family member is of interest, as is
the question of a function for the MK/PTN homologues in the
fruitfly.

Many clinically relevant questions are also outstanding, such
as whether ALK is capable of driving tumours alone in humans,
or whether there are particular molecular partners that function
with ALK in tumour progression. Difficult issues such as genetic
predisposition seem to be especially important in neuroblastoma
development. It is intriguing to consider why the ALK genetic
locus is so sensitive to translocation events, and, in this regard,
very little is known. Bearing in mind the recent gain-of-function
ALK mutations in neuroblastoma, it is obvious to wonder whether
these gain-of-function mutant ALK RTKs are ligand independent,
either partially or completely. Furthermore, will we in the future
find mutations in ALK ligands implicated in neuroblastoma
progression? One area of research which we will most surely hear
more of in the near future is the development of mouse models to

investigate ALK-driven neuroblastoma, which will allow a deeper
analysis of ALK action in neuroblastoma in a more in vivo context.

CONCLUDING REMARKS

Currently, there are no clinically approved treatments for
oncogenic malignancies caused by aberrant ALK activation
that directly target ALK or the downstream ALK-activated
signalling pathways. The accumulating body of work concerning
ALK signal transduction pathways in both physiological and
pathological states has provided a number of very real candidate
targets for the development of clinical therapeutics. Outstanding
questions surrounding the ALK ligand(s) and their mode of
action in vivo are issues which need to be addressed. The future
holds great hope for more tailoured therapeutic approaches for
those suffering from ALK-driven cancers. Such ALK-directed
treatments should benefit a number of different cancer patient
populations, from ALCL patients to children with neuroblastoma,
as well as NSCLC sufferers.
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