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Abstract
We have developed an algorithm (“Lever”) that systematically maps metazoan DNA regulatory
motifs or motif combinations to the sets of genes that they likely regulate. Lever accomplishes this
by assessing whether the motifs are enriched within cis regulatory modules (CRMs), predicted by
our “PhylCRM” algorithm, in the noncoding sequences surrounding genes in a collection of gene
sets. When these gene sets correspond to Gene Ontology (GO) categories, the results of Lever analysis
allow the unbiased assignment of functional annotations to the regulatory motifs and also to the
candidate CRMs that comprise the genomic motif occurrences. We demonstrate these methods using
human myogenic differentiation as a model system, for which we statistically assessed greater than
25,000 pairings of gene sets and motifs / motif combinations. These results allowed us to assign
functional annotations to candidate regulatory motifs predicted previously, and to identify gene sets
that are likely to be co-regulated via shared regulatory motifs. Lever allows moving beyond the
identification of putative regulatory motifs in mammalian genomes, towards understanding their
biological roles. This approach is general and can be applied readily to any cell type, gene expression
pattern, or organism of interest.
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Of fundamental importance for understanding transcriptional regulatory networks is the
functional annotation of DNA regulatory motifs (typically ~6-15 bp in length) in terms of what
groups of target genes they regulate in a tissue- or temporal-specific manner in response to
environmental perturbations. While effective computational methods for mapping DNA
regulatory motifs exist in the yeast Saccharomyces cerevisiae, where the DNA binding sites
of regulatory transcription factors (TFs) typically occur within ~600 bp upstream of genes,
they cannot be applied to metazoan genomes, where genes in the same expression cluster are
not necessarily co-regulated by a common mechanism, and the regulatory elements can be far
from the transcription start site1.

In metazoans, regulatory motifs tend to co-occur within stretches of noncoding sequence,
referred to as cis regulatory modules (CRMs), that regulate expression of the nearby gene(s).
Numerous approaches have resulted in the successful identification of CRMs1-4, but such
approaches do not attempt to predict ab initio the gene expression patterns or functions of the
genes regulated by the CRMs. Although algorithms have been developed recently for
evaluating the regulatory significance of CRM binding site composition5,6, thus far they have
been unable to evaluate the vast sequence regions beyond the proximal promoter that must be
considered in mammalian genomes.

Because of these complications, analyses of transcriptional regulatory elements in mammals
have focused either on the prediction of CRMs starting with a collection of known co-
regulatory TFs whose DNA binding specificities are available and a set of genes that the TFs
may regulate2,3,7,8, or on the computational identification of `motif dictionaries'9-12.
However, with the advent of high-throughput methods for assembling motif dictionaries, from
either chromatin immunoprecipitations13 or protein binding microarrays14-16, the major
computational problem to solve will shift from motif prediction to identifying and associating
CRMs to both specific genes and biological processes17.

Therefore, we have developed a computational algorithm (termed “Lever”) that systematically
identifies the target gene sets that are likely to be regulated by a query collection of candidate
regulatory motifs. The ability to screen many gene sets with many motifs /motif combinations
allows us to tackle the difficulty in a priori identification of co-regulated gene sets. Lever does
not perform de novo motif discovery, but rather evaluates an input collection of motifs for
enrichment within candidate CRMs in the noncoding sequences flanking various input gene
sets (Figure 1a).

In this study, we considered 75 kb of noncoding sequence flanking each gene (50 kb upstream
to 25 kb downstream of transcription start site). Lever considers a collection of user-defined
gene sets; in this study, we considered GO categories and clusters of co-expressed genes as
our gene sets of interest. We examined differentiation of human myoblasts into myotubes, and
considered 101 myogenic gene sets and 174 candidate regulatory motifs. We define a “GM-
pair” to be the pairing of an individual gene set with a particular query motif or motif
combination. Specifically, for each GM-pair, Lever evaluates the degree to which the
noncoding sequences surrounding the transcription start sites of the genes in the gene set are
enriched for candidate CRMs comprising the given motif / motif combination under
consideration, as compared to a random background set of genes.

In order to predict candidate CRMs, we developed a new tool termed “PhylCRM” (pronounced
“fulcrum”), which quantifies both motif conservation18 and site clustering, across multiple
genomes. We experimentally validated a number of predicted novel CRMs from among the
most statistically significant GM-pairs in this study. In this study, only the highest scoring
candidate CRM for each gene (see Methods) was considered by Lever, as depicted in Figure
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1. Each such GM-pair can be thought of as an individual element of a gene set by motif / motif
combination matrix (Figure 1b). In this study, we assessed more than 25,000 GM-pairs.

Identification of significant GM-pairs from Lever analysis allows one to assign functional
annotation to motifs at the level of GO categories and gene expression patterns. Although prior
studies attempted to broadly annotate motifs at the level of tissue specificity9, Lever is the first
algorithm to assign specific functional annotation to metazoan motifs. Specific annotation is
needed in order to go beyond the identification of putative regulatory motifs, towards
understanding the biological roles of the motifs. Here, we identified the likely target gene sets
for many of the motifs, and found that numerous gene sets are likely to be co-regulated via
shared motifs. By identifying motifs / motif combinations that are important in co-regulating
target gene sets, Lever provides an entrée into targeted experimentation aimed at understanding
the logic of cis regulatory elements. Lever can be applied to any cell type, gene expression
pattern, or organism of interest to connect regulatory motifs to their biological functions, and
to gain insight into the architecture of transcriptional regulatory networks.

Results
Identification of CRMs by PhylCRM

Candidate CRMs are first identified and scored with a new tool termed
“PhylCRM” (pronounced “fulcrum”; Supplementary Figures 1-3 online), which scans the
genomes of interest for matches to an input set of regulatory motifs. PhylCRM combines data
for individual motif occurrences scored on an alignment using the previously described
MONKEY scoring scheme18 into a single CRM prediction (see Methods). PhylCRM can scan
very long (here, 75-kb) genomic sequences for candidate CRMs by quantifying both motif
clustering and conservation across arbitrarily many genomes using an evolutionary model
consistent with the phylogeny of the genomes. In the Lever analyses described in this study,
we utilized the phylogenetic tree containing all 8 sequenced mammalian genomes (human,
chimp, macaque, mouse, rat, dog, cow, and opossum) (Supplementary Figure 4 online)19.
Significantly scoring candidate CRMs of varying lengths, ranging from 20 to 500 bp, are
identified and scored to identify the maximum scoring window for each gene (“Step 1” in
Figure 1b; Figure 4a). PhylCRM can also be used as a stand-alone program for CRM prediction.

Scoring GM-pairs by Lever
CRM scores for all genes in the genome (predicted by PhylCRM), and a collection of gene
sets, are then input into Lever. In order to evaluate GM-pairs, Lever first assigns, to each gene
in the “foreground” gene set of interest, which is input by the user, and to each gene in the
automatically created, length-matched “background”, the PhylCRM score of the best scoring
CRM. Considering all the genes in the foreground gene set and all background genes, the genes
are then ranked according to the PhylCRM score of each gene's single best scoring candidate
CRM (“Step 2” in Figure 1b). Then, for each entry in the GM-pair matrix, Lever calculates
both the value of the corresponding area under the curve in a receiver operator characteristic
(ROC) plot (“AUC score”) (“Steps 3 and 4” in Figure 1b) and its corresponding Q-value (“Step
5” in Figure 1b). The AUC score indicates the probability that a randomly chosen member of
the foreground gene set will rank higher than a randomly chosen background gene, while the
Q-value indicates the false discovery rate (Figure 1b; see Methods). In initial positive control
analyses, we considered the four well-known myogenic TF binding site motifs for the
transcriptional activators20 MEF2, Serum Response Factor (SRF), Tead, and the myogenic
regulatory factors (MRFs) MyoD, Myogenin, Myf5 and Myf6, and showed that a statistically
significant motif enrichment can be detected when scanning 75-kb regions of genomic
sequence (Supplementary Figure 4 online).
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Identification of myogenic gene sets to be examined by Lever
We considered two sources of gene sets: (1) clusters of co-expressed genes, and (2) GO
categories. To identify appropriate gene expression clusters for examining the functions of
motifs during myogenic differentiation, we first performed expression profiling over a time
course of the differentiation of primary human skeletal myoblasts into myotubes at -24, -12,
0, +12, +24, and +48 hours relative to stimulation of differentiation (see Methods). We
discovered 591 up-regulated and 1,070 down-regulated genes at a false discovery rate (FDR)
of 5% (see Methods). Using k-means clustering, we partitioned these genes into 14 expression
clusters (Figure 2a; Supplementary Table 1 online; see Methods), many of which showed
enrichment for GO annotation terms consistent with myogenic differentiation (Supplementary
Table 2 online). We excluded cluster C13 from Lever analyses because it contained only 12
genes. As additional gene sets to be examined by Lever, we identified the GO categories that
were significantly enriched within either the up- or down-regulated genes during the time-
course of myogenic differentiation, and took their intersection with either the up- or down-
regulated genes, yielding a final total of 101 gene sets (see Methods). We did not utilize Gene
Ontology categories alone as gene sets in this study.

Evaluation of Lever using four myogenic motifs and gene expression clusters
We first applied Lever to systematically analyze each of the myogenic differentiation
expression clusters considering all four of the myogenic motifs MRF, MEF2, SRF and Tead
individually, and also in Boolean (“AND”, “OR”, and “NOT”) combinations (see Methods).
In evaluating the degree of enrichment for motifs within gene sets, we simultaneously
considered the AUC and Q-value. For example, when we examined the collection of all ~500
up-regulated genes (i.e., “C0-C5” in Figure 2a) using all four myogenic motifs, we observed
only slight but significant enrichment (Figure 2b, AUC = 0.57 ± 0.01; Q ≤ 0.001). Thus, we
can be highly confident that targets of these four motifs exist within the set of all up-regulated
genes, yet finding specific target genes within this set would be difficult. Conversely, when
we examined the set of all down-regulated genes (“C6-C13”), we observed no enrichment at
all with the 4-way OR combination of these four motifs (AUC = 0.50 ± 0.01; Q > 0.05; Figure
2c). We observed strongest enrichment for these four motifs among the most up-regulated
genes (cluster C0) (AUC = 0.71 ± 0.05; Q ≤ 0.001; Figure 2d). Within cluster C0, the MRF
motif alone showed slightly greater enrichment (AUC = 0.72 ± 0.04; Q ≤ 0.001; Figure 2e)
than all four motifs together, indicating that most of the enrichment from the 4-way “OR”
combination of motifs was likely due to the MRF motif.

We generally observed greatest enrichment of these four motifs within up-regulated expression
clusters (Supplementary Figure 5 online; Supplementary Table 3a online), with the notable
exception of the C12 cluster of down-regulated genes which contains many genes involved in
cell cycle function (Supplementary Table 2 online). The enrichment observed here is consistent
with an observation from another group suggesting the existence of MRF targets involved in
cell cycle progression and proliferation21. Results of additional Lever analysis controls are
shown in Supplementary Results online.

Lever screen of 174 candidate regulatory motifs across 101 myogenic gene sets
In order to identify additional motifs that might be involved in the regulation of myogenic gene
sets, we performed a Lever analysis of the 101 myogenic gene sets (Figure 3a) using a
dictionary of 174 candidate human regulatory motifs computationally predicted by Xie et al.
9 considering 4-kb proximal promoter regions. Out of these 17,574 GM-pairs, we observed a
total of 173 statistically significant (Q ≤ 0.05) GM-pairs, involving a total of 45 distinct motifs
and 61 distinct gene sets (Figure 3b-c; Supplementary Table 3c online). These 45 motifs could
be broadly classified into 3 categories: 1) 21 motifs enriched among only up-regulated gene
sets (Figure 3b-c), 2) 10 motifs enriched among both up-regulated and down-regulated gene
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sets (Figure 3b-c), and 3) 14 motifs enriched among only down-regulated gene sets (Figure
3b-c).

Several of the motifs that were part of statistically significant GM-pairs resulting from this
Lever analysis correspond to the DNA binding site motifs of TFs known to function during
myogenesis, including AP-1 (ref. 22), Elk-1 (ref. 23), and Pitx2 (ref. 24). We note that this
dictionary of candidate regulatory motifs contained matches to the MRF, MEF2 and Tead
motifs, all of which were again observed to be statistically significantly enriched in various
gene sets (see Supplementary Table 3 online). For example, all of the motifs that we observed
to be enriched within the sarcomeric gene set corresponded to discretized versions of either
the MRF (CAGCTG, GCAnCTGnY), MEF2 (YTATTTTnR, TAAWWATAG,
CTAWWWATA) or Tead (WGGAATGY) motifs.

In examining the results from this Lever analysis, we identified some interesting connections
between gene sets. For example, we found that the motif GATTGGY (corresponding to the
NF-Y motif) is enriched among the up-regulated lipid biosynthesis genes, the down-regulated
chromatin genes, various down-regulated organelle gene sets, and a number of down-regulated
gene sets involved in the cell cycle. Likewise, we found that the down-regulated plasma
membrane genes appear to be co-regulated via the motif TGAnTCA (corresponding to the
AP-1 motif) with a number of gene sets including response to stress, cell proliferation, and
regulation of cell proliferation, and the up-regulated plasma membrane genes appear to be co-
regulated via the motif CTAWWWATA (corresponding to the MEF2 motif) with a number of
up-regulated gene sets involving structural properties of muscle cells, including cytoskeletal
protein binding, contractile fiber, structural constituent of muscle, and actin cytoskeleton.

Interestingly, we see that certain motifs appear to regulate a large cohort of gene sets. For
example, we see that the motif GATTGGY (corresponding to the NF-Y motif) co-regulates a
rather large number of gene sets involved in the cell cycle. The suppression of NF-Y function
has been shown previously to be important for the inhibition of several cell cycle genes and
the induction of the early muscle-specific program in post-mitotic muscle cells25. Similarly,
the motif TGAnTCA (annotated by Xie et al.9 as the AP-1 motif) co-regulates a number of
gene sets pertaining to cell proliferation and the plasma membrane. AP-1 complexes previously
have been shown to be involved in the control of duration of myoblast proliferation and fusion
efficiency22.

Validation of novel CRMs that drive expression during human myogenesis
We experimentally tested 6 CRMs predicted by PhylCRM (schematized in Supplementary
Figure 7 online) and consisting of the MRF AND MEF2 motif combination (Figure 4a;
Supplementary Figure 6 online). We sampled CRMs from various genomic locations relative
to transcriptional start, with a range of PhylCRM scores. Four of these six candidate CRMs
were adjacent to genes with known or predicted sarcomeric function; two of these predicted
CRMs (ACTA1 and PDLIM3/ SORBS2) are more than 17 kb away from their predicted target
transcripts. Since Lever analysis identified significant enrichment (AUC = 0.82 ± 0.04; Q ≤
0.001) for the Boolean motif combination MRF AND MEF2 in the set of sarcomeric genes
(Supplementary Figure 6 online), choosing two of the six candidate CRMs to be adjacent to
genes not involved in sarcomeric function also allowed us to explore whether CRMs containing
this particular motif combination might function for non-sarcomeric genes.

The seven genes adjacent to these six predicted CRMs were up-regulated during differentiation
(Supplementary Figure 8 online), and myogenic TFs were differentially expressed at the
protein level during differentiation (Supplementary Figure 9 online). Chromatin
immunoprecipitation assays followed by region-specific quantitative PCR (see Methods)
showed that four of the six candidate CRMs were significantly enriched for binding by MEF2
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(P ≤ 0.05), MyoD (P ≤ 0.05) and myogenin (P ≤ 0.005) (Figure 4b). Interestingly, of the six
tested CRMs, the four that showed significant binding by MEF2, MyoD, and myogenin were
the ones that are located next to genes involved in sarcomeric function, whereas the two that
did not show significant binding by these factors are not. Although this does not tell us what
sequence features distinguish the active from the inactive CRMs, it does suggest that the choice
of the likely target gene sets is important in predicting CRMs that are active in a given condition
(here, myogenic differentiation).

We performed luciferase assays for the four novel, candidate CRMs that were enriched for in
vivo TF binding. All four of these candidate CRMs resulted in statistically significant (P ≤
0.05) activation of luciferase expression during myogenic differentiation, but not in either
fibroblasts or lens epithelial cells (Figure 4c). ShRNA knockdowns of MEF2D, myogenin, or
SRF (Supplementary Figure 10 online) confirmed that these four candidate CRMs drive
expression specifically in response to myogenic differentiation (Supplementary Figure 11a-c
online). Results for a synthetic CRM suggest that there are further sequence requirements aside
from the MRF and MEF2 motifs (Supplementary Figure 12 online). A detailed description of
these experimental validations is provided in Supplementary Results online.

Functional annotation of regulatory motifs
The identification of statistically significant GM-pairs involving GO categories allowed us to
assign to a regulatory motif the functional annotation of the GO categories within which it
shows statistically significant enrichment. For example, we see that a discretized form of the
MEF2 DNA binding site motif) is enriched among many GO categories related to muscle
contraction, including contractile fiber, muscle contraction, and actin cytoskeleton, consistent
with recently published ChIP-chip results21. Importantly, Lever was able to identify these
regulatory associations using only sequence data and gene expression data. In addition, while
that ChIP-chip study21 identified surprisingly few MEF2/MyoD/Myogenin targets to be
involved in cell cycle progression, our Lever results not only agreed with these findings, but
also identified additional motifs, including AP-1, that are likely to be involved in the down-
regulation of the cell cycle during myogenesis. A number of known regulatory interactions
were missed because of the stringency of our statistical analyses, primarily because of our need
to correct for the many hypotheses tested (over 17,500 GM-pairs) in our large Lever analysis
of 174 motifs across 101 gene sets (Supplementary Table 3 online).

We can also apply this annotation method to the 13 motifs, belonging to 30 statistically
significant GM-pairs, for which the trans factors that may bind them have not yet been
discovered (Supplementary Table 3 online). For example, we found that the putative regulatory
motif TGACATY can be annotated as being involved in the regulation of plasma membrane
genes. Importantly, this level of functional annotation is much more specific than just indicating
the tissue-specificity of the genes upstream of which the motif is found9. We note that these
annotations indicate the functions of the motifs during myogenic differentiation, and that the
motifs may serve other functions in other cell types or in response to other environmental
stimuli.

Discussion
We have presented a systematic method for the unbiased inference of regulatory motif function
by examining a large collection of gene sets with a dictionary of known or predicted regulatory
motifs. We have shown that our algorithm is effective in a mammalian setting, where distal
CRMs can exist at great distances from the transcription start sites of the genes they regulate.
Importantly, our approach goes beyond recent efforts at metazoan CRM identification by
identifying motifs / motif combinations and their target gene sets in an automated manner. Our
approach was able to identify known myogenic regulatory motifs when examining 75-kb
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regions rather than just proximal promoter regions, and was also able to identify several
additional motifs as enriched in muscle-related gene sets.

This level of functional annotation is an important step in moving from a listing of candidate
regulatory motifs, towards a functional understanding of the biological roles of such motifs.
Our approach also allows for de novo reconstruction of transcriptional regulatory networks,
without any prior knowledge of the functions of the examined regulatory motifs. We anticipate
that this method will also be useful for the analysis of candidate regulatory motifs and gene
sets from other biological systems, including other metazoans. Indeed, with motif dictionaries
being derived either computationally or experimentally by high-throughput methods for
identifying TFs' DNA binding sites, the next major challenges will be the identification of the
CRMs that contain those motifs and the mapping of those motifs and CRMs to the biological
processes that they regulate. Lever analyses could be performed using any gene sets of interest.
The utility of our computational framework will greatly increase in the coming years as
expanded genome-wide motif dictionaries are both predicted computationally11 and also
experimentally derived13,16 using genome-scale techniques.

In this study, we were able to choose an appropriate subset of species to consider in scoring
phylogenetic conservation, based on the evaluation of Lever on a positive control set of
myogenic CRMs. However, the choice of the most suitable set of species to use will not always
be determined as readily, particularly in the absence of a positive control set of CRMs. Future
work on identifying the gene expression patterns of orthologous TFs will provide useful data
for choosing the appropriate set of species to consider in evaluating phylogenetic conservation
of their corresponding DNA binding site motifs. However, even with conservation of
expression of the orthologous TFs, the binding site composition and locations of CRMs may
still diverge rapidly26.

This method represents a major genome-wide step in moving from a motif dictionary to
understanding the language of cis regulation. Although Lever analysis does not directly inform
us of what sequence features within the candidate CRMs distinguish the active from the inactive
CRMs, it does suggest that the choice of the likely target gene sets is important in predicting
CRMs that are active in a given condition (here, myogenic differentiation). Improved
computational methods and experimental testing of both native and synthetic CRMs will be
important for deciphering the `grammar' of how regulatory motifs must be organized within
sequence windows in order to construct CRMs that are active in a given cellular and
environmental context.

Methods
Genomic sequences utilized in this study

We obtained all genomic sequences for any scans utilized in this paper from the University of
California Santa Cruz (UCSC) Genome Browser Hg17 assembly. For alignments, we utilized
all genomes and alignments available at the time we began our study, corresponding to the
“Multiple alignments of 8 vertebrate genomes with Human”, along with pairwise alignments
for macaque, cow and opossum. For annotation of gene coordinates, we used the UCSC
“refGene” and “all_mrna” files. All sequences were repeat masked using the RepeatMasking
provided by UCSC. We also masked out all exonic regions (exon coordinates were obtained
from the refGene files).

We obtained from the supplementary data of Wasserman et al.27 a collection of 27 muscle
CRMs containing matches to at least one of the MRF, MEF2, SRF, or Tead DNA binding site
motifs (we note that our “Tead” motif is the same as their “Tef” motif). Genomic coordinates
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of positive control CRMs, negative control regions, and PhylCRM predicted CRMs are
provided in Supplementary Table 4.

PhylCRM: A computational approach for finding CRMs by quantifying motif clustering and
evolutionary conservation

Briefly, PhylCRM takes as input a set of pre-defined DNA motifs, a set of aligned genomic
sequences within which to search for candidate CRMs comprising a particular group of motifs,
and a tree indicating the phylogeny of the genomes. PhylCRM scans for the presence of TF
binding site motifs using sliding windows of continuously varying sizes, since CRMs span a
wide range of lengths. For each motif, it scans the aligned sequences and quantifies the degree
to which each position is a phylogenetically conserved motif match, utilizing the MONKEY
scoring model18 to evaluate the degree to which that position is both a conserved and a high
affinity match to the TF binding site motif (depicted as colored spikes in Figure 4a). Then, for
each TF binding site motif and for each window within a user-defined size range, the
summation of these motif match scores is computed, and its statistical significance is evaluated
using an empirically derived probability distribution of the window scores to give a motif
output score. This probability distribution depends on the TF binding site motif and on the
window size and is generated by inspecting all of the genomic sequences (here, 50 kb upstream
and 25 kb downstream of transcription start site) with a sliding window of fixed size (see
Supplementary Methods). The motif output scores from all of the motifs are combined into
one output score. This output score is computed differently depending on the Boolean motif
combination that is considered. This score simultaneously reflects motif over-representation
and evolutionary conservation when scoring entire windows of sequence containing multiple
TF binding site motifs. Because PhylCRM provides a continuous (i.e., non-binary) measure
of motif enrichment within a flanking region, we sought a similarly continuous set of logical
AND, OR and NOT logical operations when combining several motifs. Therefore we utilized
concepts from Fuzzy logic28, where statements have a gradual assessment of being either
“true” or “false”. A complete description of the PhylCRM scoring scheme is provided in
Supplementary Methods and Supplementary Figures 1-3 online.

Lever
The statistical framework of Lever is based upon principles used by other groups for gene set
enrichment analysis29 and utilizes permutation-based adjustment for multiple hypothesis
testing. However, in contrast to gene set enrichment analysis, in the Lever framework genes
are ranked by a sequence-based, rather than an expression-based, scoring function, and each
combination of motifs gives rise to a distinct scoring function. For each gene set and scoring
function, the ranking power of the function is statistically assessed by calculating the
enrichment for highly scoring genes within the gene set. Thus, Lever simultaneously calculates
and assesses the enrichment for many gene sets across many motif combinations (i.e., GM-
pairs).

Noncoding foreground and background sequence regions examined by Lever
For each gene in each of these foreground gene sets, we obtained 75 kb of genomic sequence
overlapping transcription start (50 kb upstream of transcriptional start and 25 kb downstream
of transcriptional start). As a background set, we obtained a collection of non-overlapping, 75-
kb genomic sequences for genes that were observed to be “present” in the expression
microarray data but not up- or down-regulated at a FDR less than 0.1. For each foreground
gene set we selected a length-matched background set17 in order to remove the possibility that
any observed enrichment for high scoring candidate CRMs could be solely due to a larger
search space. For each foreground gene set a background gene set is automatically built that
is as large as possible (usually 10 to 40 times as large as the foreground) so that the overall
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distribution of lengths in the foreground and background sets is well-matched (see
Supplementary Methods).

Statistical analyses in data processing
Over-representation of GO annotation terms in various gene sets was determined using
FuncAssociate, a web-based program that corrects for multiple hypothesis testing30.
Significant changes in luciferase reporter arrays and ChIPs were determined by Student's
unpaired two-tailed t-tests.

Additional methods
Detailed descriptions of all methods can be found online in Supplementary Methods, including:
construction of length-matched background sets against which foreground gene sets are
evaluated in Lever; description of PhylCRM scoring scheme; evaluation of ability of PhylCRM
to identify CRMs; comparison of PhylCRM to other CRM prediction methods; Lever; further
discussion of interpretation of CRM enrichment results from Lever; position weight matrices
utilized in this study; details of all experimental protocols, including primer sequences.

Accession numbers
MIAME-compliant microarray data in SOFT format and complete protocols have been
deposited in the Gene Expression Omnibus (GEO) database under series GSE4460.

Software availability
Upon acceptance of this manuscript for publication, the PhylCRM and Lever programs will
be made publicly available by download from the Bulyk lab webpage
(http://the_brain.bwh.harvard.edu).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lever schema
(a) Lever simultaneously identifies: 1) motifs or motif combinations, 2) their sets of co-
regulated genes, and 3) cis regulatory modules containing the enriched motifs or motif
combinations. (b) Schematic depiction of the Lever scoring scheme. Step 1: For each gene set
and motif combination pairing (“GM-pair”), search for candidate CRMs. Step 2: For each GM-
pair and all corresponding background genes, rank the genes according to the PhylCRM score
of each gene's single best scoring candidate CRM. Step 3: Evaluate the enrichment (AUC
statistics) of a given GM-pair. Step 4: Repeat for all other GM-pairs (shown as a red and yellow
matrix). Step 5: The statistical significance of each AUC (indicated by a Q-value, shown as a
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blue matrix) is calculated by permutation approach for multiple hypothesis correction (see
Methods).
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Figure 2. Analysis of time course of human skeletal muscle differentiation
(a) Expression clusters from gene expression profiling data for human adult primary skeletal
muscle cells at the indicated time points with respect to stimulation of differentiation,. Arcsinh
values are relative to the -48 hrs time point. Shown here are the genes that are differentially
expressed at a false discovery rate of 5%. (b-e) Evaluation of enrichment using as a foreground
sequence set the 75-kb regions surrounding transcription start for the (b) MRF OR MEF2 OR
SRF OR Tead motifs for all genes in clusters C0 through C5, (c) MRF OR MEF2 OR SRF
OR Tead motifs for all genes in clusters C6 through C13, (d) MRF OR MEF2 OR SRF OR
Tead motifs for all genes in cluster C0, (e) MRF motif for all genes in cluster C0.
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Figure 3. Lever screen of 101 myogenic gene sets using a dictionary of 174 motifs
(a) Median signal intensity throughout the time-course of gene expression profiling for each
of 101 gene sets. (b) AUC scores for each GM-pair when considering each of the 174 motifs
from Xie et al.9. (c) FDR Q-value for each GM-pair. We note that in the heat maps shown in
(b) and (c), only the 45 motifs with statistically significant enrichment (Q ≤ 0.05) in at least
one of the 101 myogenic gene sets are displayed. The columns of matrices (b) and (c) are sorted
by decreasing overall correlation with gene expression at time +48 h. The rows of the heat
maps shown in (a-c) were sorted in order of decreasing median expression arcsinh values at
time point +48 h (relative to -48 h).
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Figure 4. Experimental validation of computationally predicted CRMs
(a) Predicted human CRMs. PhylCRM scores are -log10(PhylCRM P-value) of the given
sequence window and the MRF AND MEF2 motif combination, which showed greatest
enrichment among the sarcomeric gene set. Window locations are relative to transcriptional
start or transcriptional stop of the nearest gene(s); intronic window locations are relative to
transcription start (b) Predicted CRMs are enriched for TF occupancy during myogenic
differentiation. Anti-MEF2, anti-MyoD, anti-myogenin, and anti-SRF antibodies were used in
biological triplicate ChIP assays. Fold-enrichment was calculated relative to mock ChIPs using
anti-IgG. * P ≤ 0.05; ** P ≤ 0.005. “ACTA1 prom” is a previously described muscle CRM;
“ACTA1 PhylCRM” was newly predicted. (c) Luciferase reporter assays for predicted novel
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CRMs indicate activity in myotubes. MGLL and BDKRB2 are negative control regions;
DMD is a positive control muscle CRM; CSRP3, ACTA1, PDLIM3/SORBS2, and HSPB3 are
four predicted novel CRMs. ** significant (P ≤ 0.005) increase in luciferase activity relative
to the empty vector negative control.
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