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Abstract Cell membranes are structurally heterogeneous,

composed of discrete domains with unique physical and

biological properties. Membrane domains can form

through a number of mechanisms involving lipid–lipid and

protein–lipid interactions. One type of membrane domain

is the cholesterol-dependent membrane raft. How rafts

form remains a current topic in membrane biology. We

review here evidence of structuring of rafts by the cortical

actin cytoskeleton. This includes evidence that the actin

cytoskeleton associates with rafts, and that many of the

structural and functional properties of rafts require an intact

actin cytoskeleton. We discuss the mechanisms of the

actin-dependent raft organization, and the properties of the

actin cytoskeleton in regulating raft-associated signaling

events. We end with a discussion of membrane rafts and

the actin cytoskeleton in T cell activation, which function

synergistically to initiate the adaptive immune response.
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Introduction

Eukaryotic cell membranes consist of a heterogeneous but

regulated environment that serves as a dynamic platform for

cell functions. Membrane heterogeneity includes discrete

membrane domains that form through a combination of

protein and lipid interactions [1, 2]. Structurally, membrane

domains range from nanoscale structures to molecular

assemblies that are microns in size [3–6]. Research shows

that establishing and maintaining this membrane heteroge-

neity is important for cell viability [7–10]. Similarly, some

pathologies are associated with changes in the structure and

composition of membrane domains [11–13], and some

pathogens utilize membrane domains to gain entry or exit

from the target cell [14–17]. The functional properties of

membrane domains in cell viability and pathology under-

score the importance in understanding membrane structure

and the mechanisms by which it is established.

One important example of structural and functional

membrane domains is the cholesterol-dependent rafts

(Fig. 1) [6, 18, 19]. Many of the properties of rafts have

been inferred from detergent-resistant membranes (DRMs)

that occur in nonionic detergent lysates of animal cells [2,

20, 21]. In the membrane raft model, the DRMs represent

poorly solubilized rafts [20], and the composition of the

DRMs has served as a guide to the structural and functional

properties of rafts. For example, DRMs are enriched with

cholesterol and sphingolipids, and it is posited that these

lipids provide the structural framework by which the rafts

form. Experiments with model membranes show these

lipids interact to form a discrete liquid-ordered (Lo) phase

in the bilayer [22–24]. Furthermore, Lo phase lipids pro-

duced in liposomes exhibit many of the physical properties

evidenced for rafts in cell membranes, including resistance

to solubilization by nonionic detergents and enrichment

with proteins and lipids that occur in DRMs [2, 25]. DRM

studies have also identified the signals that target proteins

to rafts, and these include palmitoylation of a membrane-

proximal cysteine, and addition of a glycophosphatidy-

linositol (GPI) anchor [20, 26].
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One shortcoming of the DRM studies is that the deter-

gents are disruptive to membrane structure, and their

effects on cell membranes are too complex to draw sub-

stantive conclusions regarding the organization of lipids

and proteins in the native membrane. For example, deter-

gents used to generate DRMs have been shown to create

domains, and to cause mixing and retention of proteins and

lipids irrespective of their intrinsic affinity for ordered

lipids [27]. Despite the argument that DRMs are detergent

artifacts produced during cell lysis [28], in situ imaging

studies have provided compelling evidence of nonrandom

and clustered distributions for molecules that occur in

DRMs [1].

Imaging studies of DRM-associated proteins and lipids

show a hierarchical nature to membrane raft structure [1, 3,

4, 29, 30]. The smallest are raft nanoclusters that are

approximately 10 nm in diameter, and these are enriched in

larger domains that can be several hundred nanometers in

size. Even larger are micron-size raft macrodomains that

occur in activated cells. The raft macrodomains distinguish

themselves as large-scale raft structures by their specific

enrichment of proteins and lipids that occur in membrane

rafts, and by their resistance to solubilization by nonionic

detergents [30, 31]. Examples of raft macrodomains are:

the immunological synapse (IS), which forms in activated

lymphocytes where they bind to cells bearing antigen [32]; the

leading edge and uropod of motile cells [33–35]; and cyto-

skeleton-rich adhesion complexes [36, 37]. These include

both cell-to-cell and cell-to-matrix complexes, such as the

adherent junctions and focal adhesions [38, 39] [40–42].

Structuring of membrane rafts by the actin

cytoskeleton

Early descriptions of the membrane raft model evoked the

notion that interactions between cholesterol and the

sphingolipids generate a lipid platform with which specific

proteins associate [2, 21] (Fig. 1). Findings that are more

recent, however, suggest that the rafts form in part through

capture and stabilization of raft lipids by proteins. As one

example, measurements of protein distributions in the

plasma membrane showed that clustering of raft-associated

proteins was not saturable: the fraction of protein that

clustered remained constant with increasing protein

expression [43, 44]. This finding suggests that the rafts

come about through an ordering of lipids by membrane

proteins rather than the rafts occurring as pre-formed lipid

complexes with which specific proteins associate. Consis-

tent with this interpretation, protein-dependent ordering of

lipids to form Lo phase lipids has been demonstrated in at

least two separate studies: cholera toxin B subunit (CTB)

binding to liposomes that contain its ligand the ganglioside

GM1 [45, 46], and GAP-43 and MARCKS binding to

membranes that contain phosphatidylinositol 4, 5 bisphos-

phate (PIP2) [47].

Refinements of the lipid raft model now ascribe an

important role for membrane-associated proteins in form-

ing rafts [43, 48]. One example is the cortical actin

cytoskeleton, which is composed of a lattice network of

filaments that underlie and attach to the plasma membrane.

Proteomic studies show that DRMs are particularly enri-

ched with cytoskeletal proteins, indicative of interactions

between the actin cytoskeleton and membrane rafts that

could be important in forming and maintaining the rafts.

Figure 2 illustrates examples of cytoskeletal proteins that

are enriched in rafts, and these include actin, tubulin,

myosin, actinin, and supervillin [49–54].

In a recent study from our laboratory, we compared the

role of cholesterol and F-actin in the clustering of mem-

brane-targeted fluorescent proteins by imaging their

fluorescence resonance energy transfer (FRET) [29]. First,

we observed a co-clustering that was specific to where both

the donor and acceptor were associated with rafts. The co-

clustering of raft proteins occurred for probes that con-

tained entirely different membrane-targeting signals, thus

showing that it was not restricted to one type of raft-tar-

geting signal. As predicted from the membrane raft model,

Cytoplasm

Cholesterol

Raft

GPI-anchored protein

Glycosphingolipid

Raft - associated proteins

S-acylation   (palmitate) 

Fig. 1 Membrane raft model. Cholesterol associations with other

membrane lipids, such as sphingolipids, generate a discrete lipid

compartment or domain with unique physical and biological proper-

ties. The cholesterol confers an ordering on the lipids that imparts

changes in the physical properties of the bilayer, including an increase

in bilayer width. Through a poorly understood mechanism, the rafts

are coupled across the bilayer. Proteins that prefer an ordered lipid

environment associate with the domains, often through a discrete

targeting signal. A frequent raft-targeting signal for proteins is

S-acylation, represented by palmitoylation of a membrane-proximal

cysteine. Also enriched in rafts are GPI-anchored proteins. The blue
and gray circles represent raft and nonraft lipids, respectively
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treating the cells with the cholesterol-binding agent filipin

specifically inhibited the co-clustering of probes that

associate with DRMs. Interestingly, disrupting the actin

cytoskeleton with latrunculin B (Lat B) was in some

instances more effective than filipin in disrupting co-clus-

tering of raft-associated probes. Finally, co-treating cells

with Lat B and filipin resulted in an entirely random dis-

tribution of the donor and acceptor probes. Thus,

membrane cholesterol and the actin cytoskeleton were

sufficient to account for all co-clustering of the raft

markers.

Experiments with model membranes show that actin

filaments impart an ordering effect on bilayer lipids [55], a

property that may underlie structuring of membrane rafts

by the actin cytoskeleton. Similarly, environment sensitive

lipophilic fluorescent dyes show that the lipids in actin-rich

macrodomains of the plasma membrane are condensed in

relation to remaining regions of the plasma membrane [56].

This is consistent with the lipids occurring in a relatively

ordered state. In Fig. 3 are data that show a decondensation

of the plasma membrane in cells treated with Lat B, indi-

cating that an actin-dependent ordering of lipids is a global

property of the plasma membrane.

The model in Fig. 4 relates the nano- and micrometer

scale clustering of rafts to the structure of the actin cyto-

skeleton. The nanoclusters are dispersed as complexes

associated with filamentous actin. Activation signals bring

about an enrichment of actin filaments in the cortical

cytoskeleton, which drives the large-scale clustering of

rafts to form macrodomains. Also illustrated in Fig. 4 is a

network of compartments or corrals established by the

actin filaments. This produces a caging effect that can

transiently hinder the diffusion of proteins in the plasma

membrane. However, the caging is largely nonspecific in

nature [57–59], and this contrasts with the specific clus-

tering of raft proteins that actin filaments can generate. The

contribution of the caging or corralling in establishing rafts

is not known, but current evidence suggests that it repre-

sents a separate event that occurs on a time scale that is

much shorter than the lifetime of the rafts [58–60].

The notion of an actin-dependent structuring of mem-

brane rafts is an attractive model in that it merges the

dynamic properties of the actin cytoskeleton with the

important roles that rafts have in membrane functions.

Accordingly, signals that cause a localized enrichment and

membrane-attachment of actin filaments are predicted to

cause a co-enrichment of membrane rafts. This property is

exemplified by the raft macrodomains, which form as a

result of stimulatory signals that activate actin polymeri-

zation and attachment of actin filaments to the plasma

membranes [32, 33, 61–64]. The macrodomains in turn

have specific functions in cell signaling, adhesion, and

motility, and the interactions of rafts with the cytoskeleton

localize and maintain these functions to discrete regions of

the cell surface.

Compartmentalization of PIP2 signaling to membrane

rafts

Structuring of rafts by the actin cytoskeleton suggests that

proteins and lipids that tether actin filaments to cell

Arp2/3Arp2/3
PI3K

PIP3
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Myosin
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Fig. 2 Mechanisms of raft association with the actin cytoskeleton.

Measurements of DRMs show rafts are enriched with protein and

lipid effectors that function in tethering actin filaments to the plasma

membrane. One important example is the lipid cofactor PIP2, which

occurs in the cytoplasmic leaflet of the plasma membrane. Another

important lipid effector for raft-actin interactions is the phosphoin-

ositide 3-kinase (PI3K)–product PIP3. The PIP3 is necessary for

activation of the Rho family GEF Vav. The Rho GTPases activate

actin polymerization via Wiskott–Aldrich syndrome family protein

(WASP) and WASP family Verprolin-homologous protein (WAVE).

These in turn activate actin polymerization and branching through the

Arp2/3 complex. Other raft-associated proteins that bind actin

filaments are supervillin, myosin-IIA, and myosin IG. Ezrin–radix-

in–moesin (ERM) proteins link transmembrane proteins, such as

adhesion receptors, to the actin cytoskeleton. ERM proteins are

regulated by PIP2, which binds the FERM domain of the ERM

proteins. Activated integrins associate with membrane rafts. Talin

links integrins to the actin cytoskeleton either directly or indirectly by

interacting with another cytoskeletal protein vinculin. PIP2 regulates

talin interactions with integrins, actin, and vinculin
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membranes are also important for forming rafts. An

important regulator of membrane–cytoskeleton interactions

is the phosphoinositide PIP2, which serves as a co-factor

for many of the proteins that anchor actin filaments to the

plasma membrane [65, 66]. Protein binding to PIP2 often

occurs through a PIP2-specific recognition sequence, in

many cases represented by a PIP2-specific pleckstrin

homology (PH) domain [67–69]. PIP2-regulated proteins

include the ezrin–radixin–moesin (ERM) proteins and talin

(Fig. 2) [70–73] [74, 75]. The ERM proteins anchor F-actin

to membrane proteins that contain a FERM-binding

sequence. Talin tethers actin filaments to integrins. Related

to PIP2 is the PI3K product PIP3, which also regulates

interactions between the cytoskeleton and plasma mem-

brane [76, 77]. For example, PIP3 activates the guanine

nucleotide exchange factor (GEF) Vav [78]. Downstream

of Vav are the Rho GTPases Rho, Cdc42, and Rac. Cdc42

and Rac activate Wiskott–Aldrich syndrome family protein

(WASP) and WASP family Verprolin-homologous protein

(WAVE), respectively [79–81]. These in turn activate the

Arp2/3 complex, which binds F-actin and brings about

further actin polymerization and branching of actin fila-

ments [82, 83].

Although PIP2 is enriched in rafts [80, 84–86], the

notion of raft compartmentalization of its functions to rafts

has been controversial. For example, evidence of PIP2

compartmentalization has often been surmised based on an

inhibition of its functions by cholesterol-binding agents

such as methyl-b-cyclodextrin (MbCD). Drug treatment

such as this can produce nonspecific changes in membrane

structure that indiscriminately affect membrane functions.

Similarly, Jalink and co-workers failed to detect a choles-

terol-dependent clustering of PIP2 using FRET to measure

the proximity of labeled PIP2-specific PH domains [87].

One recent study from our group detected compart-

mentalization of PIP2 functions in intact cells by

expressing membrane-targeted forms of the PIP2-specific

phosphatase Inp54p [88]. Inp54p was targeted to either the

raft or nonraft membrane fractions using minimal mem-

brane-anchoring signals, and this selectively increased or

decreased the raft pools of PIP2 without changing the

global PIP2 content of the cell. Reducing raft PIP2 levels

produced cells that had a smooth morphology that was void

of the membrane ruffles and filopodia that occurred in

normal control cells. Another property was an increase in

the number of blebs that formed from the plasma mem-

brane, indicating disassociation of the plasma membrane

from the underlying actin cytoskeleton [89]. In contrast,

increasing raft PIP2 levels resulted in cells with a striking

morphology that included numerous filopodia and

Fig. 3 Global condensation of the plasma membrane by the actin

cytoskeleton. The lipophilic dye Laurdan is an environment sensitive

fluororophore that serves as a reporter of water penetration into

membrane bilayers [126]. Increased lipid packing due to lipid

ordering results in a blue shift in the Laurdan emission spectrum,

from centered at approximately 500 nm in fluid bilayers to 445 nm in

ordered membranes [127]. The normalized ratio of emission channels

centered on these wavelengths has been used as a measure of relative

membrane ordering [128]. T cells were treated with Laurdan before

disrupting the actin cytoskeleton by treating with latrunculin B (Lat

B). The samples were imaged in two separate channels, represented

by emission wavelengths 400–460 and 470–530 nm using a Leica

SP2 multi-photon confocal microscope. General polarization (GP),

which reflects the relative lipid condensation [128], is therefore an

indicator of lipid ordering. GP was calculated for each pixel in the

plasma membrane using the equation GP = I(400–460)-I(470–530)/

(I(400–460) ? I(470–530)) [56]. GP values range between -1.0 and

?1.0, and they are directly proportional to the relative membrane

condensation. a Images in the indicated channels of untreated control

and Lat B-treated T cells. The bottom row shows the calculated GP

image for each sample. b Average GP values of the plasma membrane

measured in approximately 50 separate untreated or Lat B-treated T

cells
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extensive membrane ruffling. Enrichment of raft PIP2 also

increased cell spreading on poly-L-lysine coated glass

surface. Both the cell morphology and cell spreading were

sensitive to the PI3K inhibitor wortmannin, suggesting

that the phenotype produced by increasing raft PIP2 was

due to compartmentalization of either PIP3 or production

PIP3-dependent signaling. Interestingly, expression of

dominant-negative and constitutively active forms of the

Rac generates cell morphologies similar to that which we

reported for the raft- and non-raft-targeted Inp54p molecules,

respectively [90]. Accordingly, the morphology that was

evidenced by increasing raft PIP2 may reflect activation of

signals in the Vav–Rac pathway (Fig. 2). This pathway

may also give rise to rafts by activating interactions

between the cytoskeleton and plasma membrane.

Protein regulation by raft-actin interactions

Membrane rafts in most cell types are enriched with sig-

naling molecules, and a wealth of biochemical and genetic

data have provided credence to the notion that rafts func-

tion as a specialized signaling platform in cell membranes

[26, 91–96]. Furthermore, data show that the actin cyto-

skeleton participates in regulating and activating raft-

associated signaling events [97–99]. For example, separate

studies have shown where protein activity and regulation

are tied directly to an intact actin cytoskeleton, and its

association with membrane rafts. Examples of this property

include G-protein coupled receptors (GPCRs) [100], ERK

[101], and Src family kinases (SFKs)[29].

The SFKs illustrate an actin-dependent compartmental-

ization of protein regulation through sequestering from an

important activator. As exemplified by the T cell specific

SFK p56lck (Lck), the raft-associated pool of SFK is down-

regulated relative to that in the nonraft membrane fraction

due to sequestering from its activator CD45 [102]. Addi-

tional regulation of SFKs by membrane rafts is achieved

through phosphorylation by Csk, which associates with

rafts by binding to Csk binding protein (Cbp) or phos-

phoprotein associated with GEMs (glycolipid-enriched

membrane) (PAG) [103]. Experiments from our group

showed that treating T cells with Lat B resulted in dereg-

ulation of Lck. Furthermore, the changes in Lck regulation

were CD45-dependent since the Lat B treatment had no

affect on Lck in CD45-deficient T cells [29]. These data

together with that regarding actin-dependent clustering of

raft proteins suggest a model where membrane-associated

actin filaments establish membrane rafts, which then

sequester Lck and other raft-associated SFKs from CD45

(Fig. 5). Accordingly, treating T cells with Lat B disrupts

the rafts and the sequestering of SFKs from CD45, leading

Actin filaments
Cytoplasmic

Cytoplasmic~50 - 200 nm

Raft nanodomain
Raft macrodomain

mn 005>mn 02 <

A

B

Fig. 4 Actin cytoskeleton-dependent raft organization. a Topography

of raft nanoclusters and macrodomains. Rafts occur as nanoclusters

that are less than 20 nm in diameter, but can cluster to larger

structures to include macrodomains that are microns in size. Both the

nanoclusters and larger assembles form in an actin-dependent manner

[29, 31, 129]. The macrodomains form as a result of signals that

activate actin polymerization and attachment of actin filaments to cell

membranes. Examples of raft macrodomains include immunological

synapses that form in activated lymphocytes, cell–cell adhesion

complexes, leading edge and uropod of migrating cells. b The cortical

actin cytoskeleton is tethered to the plasma membrane through protein

linkers, and these interactions likely structure rafts in the membrane.

The meshwork of cortical actin filaments also compartmentalizes the

membrane into areas approximately 50–200 nm in size. The

compartments represent areas of transient and nonspecific membrane

protein confinement by the underlying actin filaments
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to deregulation of the SFKs. Consistent with this model,

filipin treatment also deregulated Lck. The greatest Lck

deregulation occurred by co-treating the cells with Lat B

and filipin. FRET measurements showed these conditions

abolished all co-clustering of raft-associated probes.

Converse to the changes in raft structure and regulation

by the drug treatments, activation signals lead to clustering

of small raft structures to form large complexes such as the

IS [1]. This is predicted to lead to enhance sequestering of

CD45 from raft-associated complexes. In the case of T

cells, this sequestration is necessary to maintain activation

signals since the phosphatase activity of CD45 will quench

the TCR-dependent phosphotyrosine signals [104].

Accordingly, T cell activation consists of a choreography

where CD45 is first localized at the cell interface with the

APC, and then excluded as the IS matures. These proper-

ties may underlie interactions between CD45 and SFKs

that are first necessary for protein activation, and then

removed as the rafts accumulate to form an IS and maintain

the activation signals.

Membrane rafts, actin cytoskeleton, and T cell

activation

T cell receptor (TCR) signaling exemplifies the interplay

between membrane rafts, the actin cytoskeleton, and cell

signaling. T cells are activated by antigenic peptide that is

presented to the TCR in the context of major histocom-

patibility complex (MHC) by antigen presenting cells

(APCs). TCR signaling is compartmentalized to rafts, and

one of the earliest outcomes of these signals is actin

polymerization and an actin-driven clustering of rafts [95,

105]. Both the rafts and the signal-driven actin polymeri-

zation are necessary for T cell activation; disrupting either

the rafts or the actin cytoskeleton inhibits activation [105,

106]. The raft clustering following TCR engagement cul-

minates with formation of an IS where the T cell contacts

the APC [107–110]. The IS is necessary to sustain the TCR

signals [111–113]. Disrupting the IS inhibits activation-

dependent cell proliferation and cytokine secretion [32].

The co-stimulatory receptor CD28 [114], the integrin

LFA-1 [115], and the adhesion receptor CD2 [116] can

each provide signals that activate actin polymerization and

raft clustering independent of the TCR. In some cases,

these signals are sufficient to form an IS independently of

the TCR [117]. Furthermore, signals from the TCR alone

are often not sufficient to cluster rafts and form an IS. This

is particularly the case with naı̈ve T cells, which require a

co-stimulatory second signal for their raft clustering [94].

The requirement of TCR and co-stimulatory signals for raft

clustering coincides with the two-signal requirement for T

cell activation [94, 118]. CD28 is the principal co-stimu-

latory receptor in naı̈ve T cells, engagement of which is

necessary to stimulate IL-2 production [119]. Biochemi-

cally, CD28 has no intrinsic activity, but rather functions as

a linker protein that recruits specific effectors, including

PI3K, Lck, Itk, and filamin A [109, 110, 120, 121]. These

effectors also activate actin polymerization or actin-bind-

ing to the plasma membrane. However, the hierarchy

regarding those most important in providing signals for the

actin-dependent raft clustering is largely undefined.

Although the CD28-dependent properties of raft clus-

tering and co-stimulatory signals suggests these events are

related, the kinetics by which they occur suggest otherwise.

For example, CD28 co-stimulatory signals coincide tem-

porally with those from the TCR [122], which are facile

and occur within seconds of its engagement with peptide-

bound MHC (pMHC) [123]. However, the actin-driven

clustering of rafts takes tens of seconds or minutes [124],

indicating that it is too slow to participate proximal to the

TCR signaling. Nevertheless, T cell rafts undergo an Ag-

independent clustering during initial interactions with the

APC as they survey its surface for Ag. We term this early

clustering event raft clustering during T cell surveying

(RaCS). The RaCS occurs before evidence of TCR-

CD45

Y
PO4

Y
OH

Y Y
PO4 PO4

CD45

LckLck

Raft

Y
PO4

Y
OH

Y Y
PO4

Lat B/filipin

Activation
signals

OH

SFK activation

Fig. 5 Model for raft protein regulation by cholesterol and the actin

cytoskeleton. The Src family kinase (SFK) Lck is activated by the

membrane phosphatase CD45 through dephosphorylation of its

regulatory C-terminal tyrosine Tyr505. A significant fraction of Lck

associates with rafts, yet CD45 is restricted to the nonraft membrane

fraction. Raft association of Lck therefore sequesters it from CD45,

leading to reduced activity for the raft-associated pool of molecules.

Drug treatments that disrupt rafts, such as filipin and Lat B, eliminate

this sequestration, resulting in activation of Lck [29]. Conversely,

signals that activate actin polymerization and assembly of rafts, such

as that from the TCR in T cells, are predicted to enhance the

sequestration and down-regulation of raft-associated Lck
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dependent signals, such as TCR stop signals and Ca2? flux,

and it concentrates the CD4 co-receptor and TCR at the

APC [125]. Optimization of the T cell membrane envi-

ronment for TCR signaling by RaCS is predicted to lower

the threshold of Ag that is necessary to active the T cell,

which is also an important property of co-stimulation.

However, it is not known if the early raft clustering event

reflects co-stimulatory functions.

Conclusions and perspectives

Recent findings show a synergistic interaction between the

actin cytoskeleton and membrane rafts. Actin filaments

closely associate with the plasma membrane in many cel-

lular processes. Membrane rafts are enriched with the

modulators of cortical actin cytoskeleton and with factors

that anchor actin filaments to the plasma membrane. Fur-

thermore, the actin cytoskeleton regulates the clustering of

membrane raft proteins in a specific manner and at nano-

scale level of membrane structure. The actin cytoskeleton

is a highly dynamic structure, and its role in establishing

membrane rafts provides one avenue for tuning the mem-

brane microenvironment in a manner that favors or inhibits

discrete membrane functions. However, further studies are

necessary to better resolve the mechanism for the actin-

dependent structuring of membrane rafts.
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