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Oral squamous cell carcinoma (OSCC) remains one of the
most common cancers worldwide, and the mortality rate
of this disease has increased in recent years. No molec-
ular markers are available to assist with the early detec-
tion and therapeutic evaluation of OSCC; thus, identifica-
tion of differentially expressed proteins may assist with
the detection of potential disease markers and shed light
on the molecular mechanisms of OSCC pathogenesis. We
performed a multidimensional 16O/18O proteomics analy-
sis using an integrated ESI-ion trap and MALDI-TOF/TOF
MS system and a computational data analysis pipeline to
identify proteins that are differentially expressed in micro-
dissected OSCC tumor cells relative to adjacent non-
tumor epithelia. We identified 1233 unique proteins in mi-
crodissected oral squamous epithelia obtained from three
pairs of OSCC specimens with a false discovery rate of
<3%. Among these, 977 proteins were quantified between
tumor and non-tumor cells. Our data revealed 80 dysregu-
lated proteins (53 up-regulated and 27 down-regulated)
when a 2.5-fold change was used as the threshold. Immu-
nohistochemical staining and Western blot analyses were
performed to confirm the overexpression of 12 up-regu-
lated proteins in OSCC tissues. When the biological roles
of 80 differentially expressed proteins were assessed via
MetaCoreTM analysis, the interferon (IFN) signaling path-
way emerged as one of the most significantly altered
pathways in OSCC. As many as 20% (10 of 53) of the
up-regulated proteins belonged to the IFN-stimulated
gene (ISG) family, including ubiquitin cross-reactive pro-
tein (UCRP)/ISG15. Using head-and-neck cancer tissue

microarrays, we determined that UCRP is overexpressed
in the majority of cheek and tongue cancers and in several
cases of larynx cancer. In addition, we found that IFN-�
stimulates UCRP expression in oral cancer cells and en-
hances their motility in vitro. Our findings shed new light
on OSCC pathogenesis and provide a basis for the future
development of novel biomarkers. Molecular & Cellular
Proteomics 8:1453–1474, 2009.

Oral cancer is one of the most common cancers worldwide.
In Taiwan, it remains the sixth most prevalent cancer overall
and the fourth most common cancer to afflict males. Over the
past 2 decades, the overall incidence and morbidity rates of
patients with oral cancer have increased continuously. Epide-
miological studies show that �50–70% of patients who un-
dergo surgery for oral cancer die within 5 years (1–6). This
poor prognosis predominantly reflects late stage presenta-
tion, secondary cancer occurrence, local recurrence, and me-
tastasis (7) as well as the lack of suitable markers for cancer
detection. Therefore, there is an urgent need to identify pro-
teins that are dysregulated in patients with oral cancer. Such
proteins would serve as a valuable resource to find markers
for the early diagnosis and disease monitoring of patients with
oral cancer.

Oral cancer, a subtype of head-and-neck squamous cell
carcinoma (HNSCC),1 can form at various locations within the
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oral cavity, including the lips, tongue, buccal surfaces, gin-
giva, palate, floor of mouth, and oropharynx. Tongue and
buccal cancers are the most common and most serious types
of oral squamous cell carcinoma (OSCC) especially in south-
east Asia (2, 8). Alcohol abuse, smoking, and betel nut chew-
ing are the main risk factors for OSCC. Genome-wide ap-
proaches have revealed many epigenetic and genetic
alterations in patients with OSCC, including several biochem-
ical pathways (9–11). However, these studies have provided
little information regarding alterations in the protein profiles of
patients with OSCC. Recently state-of-the-art proteomics
technologies have revealed alterations in protein abundance,
posttranslational modification and turnover, and spatial and
temporal distribution within tumor specimens. Using pro-
teomics approaches, aberrantly expressed proteins have
been identified in body fluids (12–14), frozen or paraffin-em-
bedded tissues (15–18), and cultured cell lines (19–22). The
fold changes in protein expression in samples from healthy
and cancerous states as well as the roles of each protein in
disease progression must be determined to identify potential
candidates for biomarkers and therapeutic targets.

Blood samples are often used in clinical studies because
they are less invasive and more convenient than other types of
bodily samples and can be analyzed using automatic and high
throughput techniques. Unfortunately the extremely dynamic
range of protein concentrations in serum and plasma impedes
the direct discovery of potential biomarkers (23, 24). Proteins
can be released into the blood from diseased tissues during
cell death or via secretory pathways. To counteract this prob-
lem, serum and plasma biomarkers are sometimes identified
by analyzing differential protein expression in tumors and
adjacent normal tissues (25).

Like many other types of solid tumors, OSCCs often contain
heterogeneous cell populations. Laser capture microdissec-
tion (LCM) is a common technique used to dissect a particular
tumor cell type from heterogeneous cell populations, thereby
reducing the tissue complexity and facilitating the discovery
of tumor-associated molecules in small samples (9, 26–28).
Several laboratories have studied differential protein expres-
sion in microdissected tissue specimens from patients with

head-and-neck cancer in efforts to discover novel tumor
markers (15, 17, 29–31). However, the semiquantitative ap-
proaches used in these studies may have limited the number
of potential markers identified as well as the reliability of the
protein quantification. To minimize technical variations and
improve the reliability of protein quantification, a variety of
sophisticated stable isotope labeling techniques have been
developed for MS-based proteomics analysis, including
chemical (32, 33), metabolic (34, 35), and enzymatic (36–38)
labeling techniques. Improvements in the quality and accu-
racy of quantitative proteomics analysis via such stable iso-
tope labeling strategies have facilitated the discovery of po-
tential tumor markers in malignancies such as OSCC/HNSCC
(16, 39, 40).

Here we describe a strategy consisting of LCM, 18O label-
ing, two-dimensional (2D) LC separation and an integrated
ESI-MS/MS and MALDI-TOF/TOF MS (ESI-MALDI tandem
MS) system. This strategy was used to identify differentially
expressed proteins in OSCC cells microdissected from oral
cancer tissue biopsies. A computational data analysis pipeline
was also developed to calculate the relative abundances of
16O- and 18O-labeled peptides (similar to that described in a
previous report (26)) and to assist with multidimensional pro-
tein identification and quantification. Using three pairs of
OSCC specimens, we identified 1233 unique proteins with a
false discovery rate less than 3%. Of these, we quantified 977
non-redundant proteins in which 80 proteins displayed �2.5-
fold changes in expression in microdissected tumor cells
versus non-tumor cells. We validated these results in 12 se-
lected targets via immunohistochemical staining and Western
blot analysis of OSCC tissues. Our findings reveal that the
interferon (IFN) signaling pathway is significantly altered in
OSCC lesions.

EXPERIMENTAL PROCEDURES

Clinical Specimens

Three pairs of specimens of surgically resected primary OSCC
lesions and adjacent non-tumorous tissues were obtained from three
male patients for use in LCM. The specimens were immediately
embedded in O.C.T. (Optimal Cutting Temperature) compound (Tis-
sue-Tek� O.C.T., Sakura Finetek) and stored at �70 °C until use.
Before conducting the LCM experiments, the tissue sections were
stained with hematoxylin/eosin and evaluated by a pathologist. All of
the tissue samples were collected from patients who had signed
informed consent forms prior to participation in the study, which was
approved by the Institutional Review Board of Chang Gung Memorial
Hospital at Lin-Ko, Taiwan. Clinicopathological data from paired
specimens used in LCM, immunohistochemical (IHC) staining, and
Western blot analyses are summarized in supplemental Table S1.
Head-and-neck tumor tissue microarrays (BC34011, head-and-neck
squamous cell carcinoma tissue arrays) containing 60 head-and-neck
squamous cell carcinoma tissues and three normal gingival tissues
were obtained from US Biomax, Inc. (Rockville, MD).

Cell Culture

The OC3 cell line (a derivative of the OSCC cell line derived from
the cheek of an areca chewing/non-smoking male patient (41)) was

filamin; FSCN1, fascin; SODM, mitochondrial superoxide dismutase;
GBP, interferon-induced guanylate-binding protein; ANXA3, an-
nexin A3; CAH2, carbonic anhydrase II; T, tumor; N, non-tumor; GO,
Gene Ontology; TENA, tenascin; FINC, fibronectin; GP, glycoprotein;
ISG, IFN-stimulated gene; ISGylation, posttranslational modification
with ISG15; CK, cytokeratin; LDHA, L-lactate dehydrogenase A chain;
EPIPL, epiplakin; EVPL, envoplakin; PEPL, periplakin; 6PGD, 6-phos-
phogluconate dehydrogenase; SERA, D-3-phosphoglycerate dehy-
drogenase; SYWC, tryptophanyl-tRNA synthetase; AMPL, cytosol
aminopeptidase; PML, probable transcription factor PML; ACTN1,
alpha-actinin-1; BIGH3, transforming growth factor beta-induced 68
kDa protein; IFM1, interferon-induced transmembrane protein-1;
K1C, type I cytokeratin; MX1, interferon-induced GTP-binding protein
Mx1; NDRG1, N-myc downstream regulated gene 1; TSP1;
thrombospondin-1.

Quantitative Proteome Analysis of Microdissected OSCC

1454 Molecular & Cellular Proteomics 8.7

http://www.mcponline.org/cgi/content/full/M800460-MCP200/DC1


kindly provided by Dr. Kuo-Wei Chang (School of Dentistry, National
Yang-Ming University, Taiwan). The SCC4 tongue squamous cell
carcinoma line was derived from a 55-year-old male (ATCC number
CRL-1624), and the OEC-M1 oral epidermal carcinoma cell line was
derived from the gingiva of a Chinese patient (42). The OC3 cells were
cultured in a medium composed of DMEM (Invitrogen) containing
10% fetal calf serum and Keratinocyte-SFM (Invitrogen) (at a 1:2
ratio), and the SCC4 and OEC-M1 cells were grown in RPMI 1640
medium containing 10% fetal bovine serum, 25 mM HEPES, and
antibiotics at 37 °C in 5% CO2.

LCM and Protein Extraction for LC-MS/MS Analysis

In preparation for LCM, 8-�m cryosections were mounted onto
membrane slides. The slides were fixed with 70% ethanol for 30 s,
washed with 25% ethanol for 45 s, placed in Mayer’s hematoxylin
solution for 30 s, rinsed with 75% ethanol, dehydrated once in 95%
ethanol, cleared twice in 100% xylene for 30 s each, and thoroughly
air-dried. Laser capture microdissection was performed using the
Veritas Laser Capture Microdissection and Laser Cutting Systems
(Arcturus, Mountain View, CA). Briefly the tissue surrounding the
selected area was cut using a UV laser, and the internal areas were
irradiated via soft IR laser pulses to dissociate the cut sections from
the membrane slides. Several selected areas were then adhered to a
CapSure LCM Cap (Arcturus) and immediately transferred to a 0.5-ml
microcentrifuge tube for protein extraction. All captured cells were
dissolved in 50–100 �l of lysis buffer (7 M urea, 2 M thiourea, 1% Triton
X-100, and 50 mM Tris-HCl, pH 8.0) by vortexing at room temperature
for 30 min, briefly sonicating the samples in an ice bath, and centri-
fuging at 20,000 � g for 10 min to remove insoluble debris. The
concentrations of the protein extracts were measured via a modified
Bradford assay (Bio-Rad), and the proteins were further examined by
SDS-PAGE and silver staining as described previously (43, 44). We
extracted �60–80 �g of protein from 1.0 � 106–1.5 � 106 microdis-
sected cells.

Postdigestion 18O Labeling

The extracted proteins were diluted 6-fold in 100 mM ammonium
bicarbonate and digested twice with trypsin (1:50, w/w) at room
temperature for 12 h each. Detergent and salts were removed via
sequential strong cation exchange (Luna SCX, 5 �m, Phenomenex)
and C18 reverse phase (LiChroprep RP18, 5–20 �m, Merck) microtip
columns. After drying the peptides under a vacuum, the samples were
added to 16O or 18O labeling solutions containing 1 �g of trypsin, 20
mM CaCl2, and 50 mM Tris-HCl, pH 8.0, in H2

16O or H2
18O (Sigma-

Aldrich). Trypsin-catalyzed 16O or 18O labeling was performed over-
night at 37 °C. Trypsin was inactivated by incubation in a boiling water
bath for 15 min and acidification with formic acid to a final concen-
tration of 3% (similar to that described in a previous report (26)).

2D LC Separation

Equally mixed 16O- and 18O-labeled peptides (derived from 20 �g
of proteins/sample) were injected into a BioBasic SCX column (5 �m,
2.1 � 150 mm, ThermoElectron) on an HPLC system (Waters Breeze
HPLC instrument) and eluted on a 60-min ammonium chloride gradi-
ent in the presence of 25% acetonitrile, pH 3.0 (adjusted using formic
acid). The effluents were pooled into 20 fractions, dried, and redis-
solved in 3% acetonitrile containing 0.01% TFA. Each fraction was
loaded into a NanoEase C18 trapping column (5 �m, 0.18 � 23.5 mm,
Symmetry300TM) and separated on a 60-min acetonitrile gradient
(ranging from 3 to 40%) on a capillary RP18 column (3.5 �m, 0.15 �
150 mm, Symmetry300, Waters). In preparation for integrated ESI and
MALDI MS analysis, the effluent was split with a Nano Y-connector

(Upchurch Scientific, Oak Harbor, WA) that diverted the flow by a ratio
of 1:3 to the ESI source and to a 384-well target plate attached to a
ProBot spotting robot (LC Packings/Dionex) with a 10-s collection
time. The samples were mixed with �-cyano-4-hydroxycinnamic acid
matrix (2 mg/ml in 80% ACN and 0.1% TFA) containing 3 fmol of
internal standards in the 384-well target plate as previously described
(45). The samples were then analyzed using a MALDI-TOF/TOF
(Ultraflex TOF/TOF, Bruker Daltonics, Bremen, Germany) MS system
under the management of FlexControl (version 2.2) and WarpLC
(version 1.0) software (Bruker Daltonics).

LC-ESI-MALDI Tandem MS Analysis

ESI-IT data acquisition was performed using the Esquire3000plus
(Bruker Daltonics) with EsquireControl 5.2 software. Peptide fragment
spectra were acquired from one MS scan followed by six MS/MS
scans of the most abundant parent ions. Each precursor ion was
analyzed twice and then excluded in the following minute. Automatic
and intelligent MALDI-TOF/TOF data acquisition was performed using
WarpLC software (Bruker Daltonics) with an LC-ESI-MALDI work
flow, which performs a low redundancy parent ion selection by ex-
cluding peptides already identified by ESI-MS/MS analysis. Com-
pounds spanning more than 60% of the MALDI-TOF MS spectra in a
384-well plate were considered background signals and were ex-
cluded from the parent precursor list. In each spectrum, eight of the
most abundant peaks with signal-to-noise ratios higher than 30 were
selected as parent precursors and were used in tandem MS assays
in laser-induced fragmentation technique (LIFTTM) mode with Flex-
Control 2.2 software.

MS Data Processing and Database Search

The emerging spectra identified via ESI-MS/MS and MALDI-TOF/
TOF MS were analyzed using DataAnalysis 3.4 and FlexAnalysis 2.4
peak picking software (Bruker Daltonics), respectively, and used in
searches of the Swiss-Prot_51.6 database (selected for Homo sapi-
ens, 15,720 entries) assuming trypsin as the digestion enzyme. The
MASCOT search engine (version 2.2.03, Matrix Science, London, UK)
was used with one missing cleavage site; MS tolerance values of 2.5
and 0.8 Da for ESI-IT and WARP-ESI-MALDI data sets, respectively;
MS/MS tolerance values of 0.6 Da for both data sets; and variable
modifications of peptide including methionine oxidation and double
18O labeling of the carboxyl terminus. Protein identification was per-
formed using probability-based Mowse (molecular weight search)
scores (p � 0.05) and the MudPIT algorithm of the MASCOT search
engine. Information derived from MS spectra and database searches
was exported into Microsoft Excel and XML file formats, respectively,
for further 16O/18O quantification analysis. The false discovery rate of
protein identification was determined by searching the MASCOT-
generated decoy database (using the same parameters described
above) and was adjusted to false discovery rate �3% for each ex-
periment. The resulting list of distinguishable proteins was generated
by excluding identifications obtained solely from shared peptides and
by including proteins containing at least one distinct peptide with a
score higher than the identity threshold in MASCOT (but that was not
shared with other identified proteins). Protein quantification was per-
formed using the resulting distinguishable protein data set.

Protein Quantification Pipeline

The quantification pipeline is shown in Fig. 1B. This pipeline in-
volves three main steps.

Step 1: Localization of Identified Peptides on the MALDI Plate—
From the exported MASCOT search results (XML files), each rank 1
peptide with an ion score �15 was analyzed to locate the well
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corresponding to the MALDI MS spectra. The correspondent wells for
peptides identified in the MALDI-TOF/TOF analysis were defined as
the wells where TOF/TOF measurements were performed. The cor-
respondent wells of peptides detected via ESI were determined from
the ESI chromatographic retention times. In general, the retention
time of each identified peptide, minus the delay time for sample
collection on the MALDI plate (chromatographic offset time), was
divided by 10 (because of the 10-s collection time per well) to trans-
late the retention time into the well information. The well with the
maximum ion intensity for a particular compound was identified by
scanning forward and backward in 4-well regions surrounding the
correspondent well and submitted as the apex of a particular ion
chromatography (the submitted well).

Step 2: Peak Pairing, Relative Abundance Calculation, and Sum-
mation of Three Consecutive Well Fractions—The m/z values and
intensities of the paired monoisotopic peaks (I0, I2, and I4 for the
16O2-, 16O/18O-, and 18O2-labeled peptides, respectively) were deter-
mined for each located well. Only paired peaks containing all isotopic
peaks (I0, I2, and I4) were selected for further analysis. To minimize
interference from overlapping peaks in the peptide quantification, the
paired peaks with front neighbor ions (I�1 or I0 � 1) displaying more
than 30% of the intensity of I0 were filtered out. Finally, we determined
the sum of the peak areas spanning �1 well surrounding the submit-
ted well for a particular ion displaying a 0.2-Da mass tolerance of the
calculated mass of the identified peptide. The relative abundance of
the identified peptide was then calculated based on the theoretical
isotopic distribution, which was computed using the Isotopic Pattern
Calculator as described previously (26).

Step 3: Protein Grouping and Abundance Evaluation—Peptides
that had been identified and quantified via multidimensional fraction-
ations were then combined and grouped by Swiss-Prot entry name.
To improve the reliability of protein identification and quantification,
shared and carboxyl-terminal peptides were filtered out during quan-
titative analysis. A Dixon’s test (using a critical Q value corresponding
to a 95% confidence level) was applied to remove the outlier ratios of
peptides. Protein abundance ratios and standard deviations were
then calculated. For proteins containing only one or two quantified
distinct peptides, the protein ratios and their associated deviations
were directly averaged without further consideration. To account for
errors in sample preparation, the protein abundance ratios for each
experiment were readjusted via global median normalization in which
the individual protein ratios were divided by the median value of all
quantified protein ratios in each experiment.

Immunohistochemical Staining

IHC staining analyses were performed using an automatic immu-
nohistochemical staining device according to the manufacturer’s in-
structions (BondTM, Vision Biosystems, Mount Waverley, Victoria,
Australia) and as reported previously (46). Consecutive sections (5 �m
thick) of formalin-fixed, paraffin-embedded specimens from 10 OSCC
patients were stained with various antibodies using the Envision kit
(Dako Corp., Carpinteria, CA). Immunohistochemical analyses were
performed using specific antibodies against ubiquitin cross-reactive
protein (UCRP) (a rabbit polyclonal antibody; kindly donated by Dr.
Leroy F. Liu, University of Medicine and Dentistry of New Jersey,

FIG. 1. The 16O/18O quantitative proteomics strategy for analyzing microdissected OSCC tissue specimens. A, the 16O/18O labeling
process and integration of the ESI and MALDI tandem MS techniques. WarpLC refers to a software platform developed by Bruker Daltonics
for assistance with the generation and integration of ESI and MALDI data. WB, Western blot analysis. B, a schematic illustration of the
computational pipeline for 16O/18O quantitative proteomics analysis. Briefly the pipeline started from exporting all MASCOT search results
generated in ESI and MALDI tandem MS measurements. And then the MALDI MS spectrum of target ion corresponding to a particular peptide
query was found based on the calculated mass (�0.2 Da) and retention time (�45 s or 4 wells) of the identified peptide. The relative abundance
of paired peptides was then calculated using the peak area of the paired 16O/18O signals (I0, I2, and I4 ions) considering the theoretical isotopic
distribution of the chemical elements in a particular peptide. Finally the abundance ratios of peptides determined in all LC-MS runs were put
together to calculate the relative abundance of their corresponding proteins. See “Experimental Procedures” for details.
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Robert Wood Johnson Medical School, Piscataway, NJ; 1:250), ser-
pin H1/heat-shock protein of 47 kDa (SERPH/HSP47; Santa Cruz
Biotechnology sc5293; 1:100), transforming growth factor �-induced
68-kDa protein (BIGH3; homemade anti-rabbit polyclonal antibody;
1:300), signal transducer and activator of transcription 1 (STAT1-�/�;
BD Biosciences; 1:100), thymidine phosphorylase (TYPH; Lab Vision
clone PGF.44C; 1:500), filamin B (FLNB; Chemicon ab9276; 1:20),
filamin A (FLNA; Chemicon mab1680; 1:250), fascin (FSCN1; Santa
Cruz Biotechnology sc21743; 1:300), mitochondrial superoxide dis-
mutase (SODM; Santa Cruz Biotechnology sc30080; 1:200), interfer-
on-induced guanylate-binding protein 1 (GBP1; Santa Cruz Biotech-
nology sc53857; 1:300), annexin A3 (ANXA3; Abcam; 1:200), carbonic
anhydrase II (CAH2; Chemicon ab1828; 1:200), and IFN-� (R&D Sys-
tems mab814; 1:150). The intensities and percentages of positive
staining of the target cells were determined by pathologists (Ying
Liang and Chuen Hsueh) and used for quantitative scoring. Staining
intensity was graded using four scores with 0 representing a negative
stain and 1, 2, and 3 indicating weak, moderate, and strong staining,
respectively. Scores were then multiplied by the percentage of pos-
itively stained cells to obtain the final protein expression score. The
final expression scores were classified into four groups, including
negative staining (scores of 0), weak staining (scores of 10–70),
moderate staining (scores of 80–170), and strong staining (scores
�180).

Western Blot Analysis

Cell extracts were prepared as described previously (47), and
protein concentrations were determined using the Bradford protein
assay reagent (Bio-Rad). Samples (30 �g of protein/lane) were sep-
arated by 8 or 15% SDS-PAGE, transferred to PVDF membranes
(Millipore Corp.), and probed using primary antibodies against the
candidates of interest as described previously (43, 44). For analyzing
IFN-stimulated gene expression by Western blot, the OC3 or SCC4

cells were washed twice with PBS and then incubated in fresh me-
dium with or without IFN-� (PeproTech Inc.) for 24 h.

Functional Annotation and Network Analysis

Differentially expressed proteins detected via quantitative pro-
teomics analysis were functionally classified according to Gene On-
tology biological process using ProteinCenterTM (Proxeon Biosys-
tems, Odense, Denmark). Network analyses of protein candidates
and the ratios of their expression in tumor and non-tumor cells (ob-
tained from five independent experiments) were performed using the
MetaCoreTM analytical suite version 4.7 (GeneGo, Inc., St. Joseph,
MI) and compared using p values �0.01 as statistical metrics. The
statistical significance of the identified networks was based on p
values, which are defined as the probability that a given number of
proteins from the input list will match a certain number of gene nodes
in the network.

Cell Proliferation Assay

Cell proliferation was evaluated using a 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide assay as described in supple-
mental Fig. S5.

Transwell Migration Assay

Cell migration was assayed in 24-well Transwell chambers (using
an 8-�m-pore filter) (Costar, Corning Inc., NY). The OC3 cells were
suspended in 300 �l of serum-free DMEM and Keratinocyte-SFM in
a 1:2 ratio and were treated with or without IFN-� (20 units/ml)
(PeproTech Inc.). The cells were then inserted into the upper cham-
ber, while the lower chambers were filled with 600 �l of serum-free
DMEM and Keratinocyte-SFM in a 1:2 ratio containing 10 �g/ml
fibronectin (Sigma). After a 6-h incubation at 37 °C, the chambers
were gently washed twice with PBS, fixed in methanol, and stained

FIG. 2. LCM-assisted dissection of OSCC epithelial cells and SDS-PAGE analysis of proteins extracted from microdissected cells.
A, tissue cryosections were fixed and stained with hematoxylin/eosin (HE) in preparation for pathological analysis. Tissue specimens were
stained with hematoxylin (H) for use in LCM experiments. B, protein samples (5 �g) extracted from three paired microdissected tumor (T) and
adjacent non-tumor (N) epithelial cells were resolved by SDS-PAGE and examined via silver staining. The region within the oral cavity and the
differentiation status of each OSCC specimen used for LCM analysis and protein extraction are indicated at the top of the figure. MDSCC,
moderately differentiated squamous cell carcinoma; WDSCC, well differentiated squamous cell carcinoma. Lane M, molecular weight markers
in kDa.
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with Giemsa. The numbers of cells that traversed the filter to the
lower chamber were counted at a 400� magnification in six fields
per filter using NIH Image J software (version 1.4g, National Insti-
tutes of Health, Bethesda, MD). Results were expressed as means
of cell number � S.D. Statistical analysis was performed using
two-sided, unpaired Student’s t test with p values less than 0.05
considered significant.

RESULTS

Experimental Design and Sample Preparation—We de-
signed an 18O labeling-based protein identification and quan-
tification approach with two integrated MS systems to identify
dysregulated proteins in OSCC tumor cells and adjacent non-
tumor epithelia (Fig. 1A) in which a computational pipeline for
integration of the ESI and MALDI tandem MS data was de-
veloped (Fig. 1B). The epithelial cells of the primary OSCCs
and their adjacent non-tumorous tissues were dissected by
LCM and used for protein extraction. Fig. 2A shows repre-
sentative images of tumor and non-tumor epithelia sections
before and after LCM. The quality and quantity of proteins
extracted from the three pairs of microdissected samples
(T1/N1, T2/N2, and T3/N3) were examined by SDS-PAGE
followed by silver staining (Fig. 2B). The results revealed that
although the T2/N2 pair seems similar, a difference in protein
bands ranging from 36.5 to 66 kDa could be detected in the
tumor and non-tumor parts of T1/N1 and T3/N3 pairs. For
example, when compared with T1, N1 shows an additional
prominent band around 50 kDa and the lack of a band around
45 kDa. In addition, the protein profiles of the three pairs are
not similar to each other, indicating the heterogeneous nature
of the patient sample pairs. Equal amounts of extracted pro-
teins were then trypsin-digested and labeled in 16O or 18O
buffer solution. Two pairs of samples containing sufficient
amounts of extracted proteins were swap-labeled (16T1/18N1
versus 16N1/18T1 and 16T3/18N3 versus 16N3/18T3), and
another sample containing a lower amount of extracted pro-
teins was analyzed via 16O labeling of tumor cells and 18O
labeling of non-tumor cells (16T2/18N2) only.

Protein Identification by Multidimensional Separation and
Integrated ESI-IT-MS/MS and MALDI-TOF/TOF MS Analy-

sis—The first dimension contained equally mixed 16O/18O-
labeled peptides separated by SCX chromatography into 20
fractions (Fig. 3A, upper panel). These fractions were then
subjected to simultaneous second dimensional on-line LC-
ESI and off-line LC-MALDI analyses. Protein identification
was performed using WarpLC software. In each SCX fraction
of sample 1, the number of proteins identified using the MAS-
COT algorithm (by ESI alone or by integrated ESI-MALDI
analysis) are summarized in Fig. 3A, lower panel. The number
of unique proteins identified using the integrated ESI-MALDI
strategy increased by �45–100% in each SCX fraction as
compared with the number of proteins identified using ESI-IT
alone. Approximately 33–60% of the total unique peptides
identified in ESI-MALDI mode (in six independent experi-
ments) could only be determined by MALDI-TOF/TOF analysis
(Fig. 3B). The benefit of using MALDI-TOF MS spectra to
obtain quantitative information is that this technique gener-
ates less complex spectra and higher impurity tolerance than
the ESI MS system (48–50). In addition, the femtomolar sen-
sitivity and the 1:10 dynamic range of quantification can be
achieved by 18O labeling in MALDI-TOF MS measurement
(51). Therefore, the abundance of peptides identified using
integrated ESI and MALDI MS systems was calculated using
MALDI-TOF MS spectra, thereby generating more accurate
mass measurements and higher resolution than is possible
with conventional ESI-IT MS.

Quantification of ESI-MALDI-identified Peptides by the
MALDI-TOF MS Spectra—The reliability of MS-based quan-
tification, especially for 16O/18O-labeled peptides, depends
highly on the resolution and accuracy of the MS spectrum
(52). As mentioned earlier, the spectra generated in MALDI-
TOF MS are of sufficient quality for quantifying 16O/18O-la-
beled peptides in contrast to the spectra generated in tradi-
tional ESI-IT MS (52). However, the integrated ESI-MALDI MS
system can be challenging with regard to the alignment of ion
features generated from the ESI and MALDI MS peptide
measurements (using MALDI MS spectra). To address this
issue, we developed a computational pipeline to determine

FIG. 3. Performance of the integrated ESI and MALDI tandem MS system. A, comparison of proteins identified via ESI and ESI/MALDI
tandem MS. The 16O/18O-peptides were separated by SCX chromatography, pooled into 20 fractions, and subjected to LC-ESI/MALDI MS/MS
analysis. A representative SCX chromatogram of 16N1/18T1 is shown in the upper panel. The numbers of unique proteins identified in
16N1/16T1 (black bar) and 16T1/18N1 (gray bar) using the ESI and integrated ESI/MALDI MS systems are shown in the lower panel. B,
complimentary peptide identification using the integrated ESI/MALDI platform. The percentage of total unique peptides identified by ESI,
MALDI, and the two MS systems (in six independent experiments) is shown inside the bar graph. More than 85% of the identified unique
peptides were quantified using MALDI MS spectra (blank bars refer to percent of quantified peptides (Q)). C, the accuracy of each 16O/18O
labeling experiment was evaluated using an equally mixed 16O/18O-sample prepared from a specific tumor specimen (16T1/18T1). The log2

ratio distributions of the 283 quantified proteins were fitted with a Gaussian function using OriginPro 7.5 software (OrignLab Corp.,
Northampton, MA). The mean (xc) and the two standard deviation (w) values were calculated from the formula: y � y0 � (A/�	�w2/2)e(�2((x �
xc)/w)2). D, the reliability of protein quantification was examined in paired tumor and non-tumor samples that had been reciprocally labeled with
16O or 18O (16N1/18T1 and 16T1/18N1). The linear correlation of quantification in the swapped samples was demonstrated using a correlation
coefficient of 0.87. “N” refers to the number of proteins simultaneously identified and quantified in the swapped samples. E, representative MS
spectra obtained in MALDI and ESI MS systems demonstrate differences in the resolution of each MS system. Reduced (left panel), unaffected
(middle panel), and increased (right panel) 16O ion features (as compared with 18O-labeled features) are indicated. AU, arbitrary units.
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FIG. 4. Identification and quantification of proteins in microdissected oral epithelia using the 16O and 18O labeling and integrated
ESI/MALDI tandem MS techniques. A, number of unique (dotted bars) and distinct (gray bars) proteins and number of proteins (stacked and
slashed bars) quantified. The number of proteins quantified using one, two, or �3 peptides in each experiment is indicated inside each bar.
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the matched MALDI-TOF MS spectra of all identified peptides
(Fig. 1B). The performance of this alignment-and-quantifica-
tion pipeline was first evaluated by calculating the percentage
of the quantified peptides. As shown in Fig. 3B (blank bar),
more than 85% of the identified peptides (with ion scores
�15) could be quantified. The accuracy of protein quantifica-
tion was then evaluated using equally mixed model samples
of 16T1/18T1 (a mixture containing equal amounts of 16O-
and 18O-labeled peptides prepared from the microdissected
tumor cells of sample 1). In this experiment, 283 proteins were
quantified, and their log-transformed protein ratios could be
fitted into a Gaussian distribution with a mean of 0.0661
(about 1.05 in original scale) and two standard deviations of
0.70267 (Fig. 3C). Wherein �95% of the proteins displayed
fold changes in the range of �0.64 to 0.77 (mean � 2S.D.;
equal to 0.64–1.7 in original scale). The correlation between
protein identification and quantification was then assessed
using a swap-labeled sample set (16T1/18N1 and 16N1/18T1)
in which 388 proteins were simultaneously identified and
quantified in both samples with a linear correlation coefficient
of �0.87 (Fig. 3D). The representative MALDI-TOF MS spectra
and the corresponding ESI spectra obtained via LC-ESI/
MALDI MS analysis of a specific SCX-separated fraction from
16T1/18N1 are shown in Fig. 3E. These findings illustrate the
different resolutions of the two MS systems while simulta-
neously indicating the change in 16O ion features relative to
the 18O-labeled features. In summary, these results demon-
strate the feasibility of our integrated ESI-MALDI strategy for
use in 16O/18O-labeled protein identification and quantifica-
tion. This method was subsequently used to identify differen-
tially expressed proteins among the three pairs of microdis-
sected OSCC samples.

Identification of Differentially Expressed Proteins in OSCC
Tissue Specimens—Using MudPIT scoring (the MASCOT al-
gorithm), 747, 787, 524, 626, and 600 unique proteins were
identified within 16N1/18T1, 16T1/18N1 (sample 1), 16T2/
18N2 (sample 2), 16N3/18T3, and 16T3/18N3 (sample 3),
respectively, with corresponding false determination rates of
2.72, 1.06, 2.19, 1.39, and 1.39 (Fig. 4A). With regard to the
reliability of protein identification, proteins identified by pep-
tides with scores higher than the identity threshold that were
not shared with other proteins were selected as distinguish-
able proteins and included in further quantification analysis. In
all, 572, 593, 386, 439, and 466 proteins (of the 615, 648, 406,
466, and 486 distinguishable proteins, respectively) were
quantified (Fig. 4A). In summary, 1233, 1035, and 977 unique,
distinguishable, and quantified proteins, respectively, were
identified from the three pairs of OSCC specimens (as deter-
mined by five independent experiments). Detailed identifica-

tion and quantification information for the 977 quantified pro-
teins is available in supplemental Tables S2-1 (protein list) and
S2-2 (peptide list). The MS/MS spectra and the correspon-
dent fragment assignments of the single distinct peptide-
based protein identifications are summarized in supplemental
Fig. S1. Distributions of the normalized protein ratios are
displayed as box plot diagrams in Fig. 4B. The 95% distribu-
tion of protein ratios determined in the equally mixed model
sample (16T1/18T1) fall within the 0.64–1.7 range (Fig. 3C);
thus, proteins displaying an average T/N ratio higher than 2 or
lower than 0.5 were selected for further consideration. Among
these proteins, those displaying an average fold change of
�2.5 in tumor versus non-tumor parts in at least three exper-
iments were chosen as potential candidates for future analy-
sis. Considering the limited identification rate of shotgun pro-
teomics as well as the inherent heterogeneity of OSCC,
distinguishable proteins that were detected in two of the five
experiments but that displayed average fold changes greater
than 5 or less than 0.2 were also selected as potential candi-
dates. After analysis of the 977 quantified proteins, 53 up-
regulated and 27 down-regulated candidates were identified
and were classified by biological process category using
Gene Ontology (GO) (Tables I and II). Details regarding the
identification and quantification of these 80 proteins are
shown in supplemental Table S3. Among the 53 up-regulated
proteins, 71.7% were involved in cell proliferation (8 of 53;
15.1%), defense (8 of 53; 15.1%), communication (8 of 53;
15.1%), cell motility (7 of 53; 13.2%), or cell organization/
biogenesis (7 of 53; 13.2%), consistent with the well known
biological properties of tumor cells. The majority of the 27
down-regulated candidates were involved in metabolism (11
of 27; 40.7%) and epidermal development (6 of 27; 22.2%). A
literature search revealed that nine of the 53 up-regulated
proteins (K1C16, FSCN1, TYPH, TENA, SERPH, SODM,
FINC, TSP1, and NDRG1) are known to be overexpressed in
OSCC. In addition, 18 of the 53 up-regulated proteins and
four of the 27 down-regulated proteins are known to be dys-
regulated in other cancer types (Table I and references cited
therein).

Validation of Candidates by Immunohistochemical Staining
and Western Blotting—Commercially available antibodies
were used in Western blot analyses to examine the expression
of eight up-regulated candidates in three paired oral biopsies.
The results revealed increased expression of seven proteins
(UCRP, fascin, GBP1, ANXA3, HSP47, STAT1, and FLNA) in
two of the three tumor biopsies (Fig. 5A). We then examined
the expression of the eight up-regulated candidates and four
additional proteins (thymidine phosphorylase, mitochondrial
superoxide dismutase, filamin B, and carbonic anhydrase II) in

The number of total proteins identified is shown at the top of each bar. B, the ratio distributions of proteins quantified in each experiment are
presented as box plot diagrams. The mean value of all ratios (E), the percentages of ratio data points, and the minimum and maximum data
points (�) are indicated.
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10 paired OSCC specimens by immunohistochemical staining
(supplemental Fig. S2). The staining results were evaluated by
two pathologists and scored as either negative, weak, mod-
erate, or strong expression. The specificity of each antibody
was verified by Western blot analysis using protein extracts
from an oral cancer cell line (supplemental Fig. S3). A repre-
sentative staining pattern for one paired tissue section (case
9) per protein as well as the scoring results for the 12 candi-
dates are shown in Fig. 5, B and C, respectively. Comparison
of staining scores from tumor and non-tumor counterparts
revealed that, with the exception of ANAX3, 11 of the 12
candidates were significantly overexpressed (in more than
eight of the 10 paired specimens) in tumor cells. The repre-
sentative MS and MS/MS spectra used for the identification
and quantification of these validated proteins are shown in
supplemental Fig. S4. Collectively these observations dem-
onstrate the consistency in results obtained from MS-based
identification/quantification and our immunohistochemical
validation. In addition, these results indicate the feasibility of
using this technology platform to discover aberrantly ex-
pressed proteins in microdissected OSCC cells.

MetaCore Analysis of Altered Signaling Pathways in
OSCC—To determine which biological networks are affected
by the dysregulated proteins, the 80 MS-identified candidates
were analyzed using MetaCore (version 4.7) (53). The analysis
revealed six significantly altered pathways (p � 0.001) in
OSCC lesions, including pathways related to keratin filament
remodeling, IFN-�/� signaling, non-junctional endothelial cell
contact, antiviral actions of IFNs, GPIb-IX-V-dependent plate-
let activation, and tetraspanin contributions to integrin-medi-
ated cell adhesion (Table III). Data obtained for two promi-
nent pathways (keratin filaments involved in cytoskeleton
remodeling (�logp value � 19.364) and type I IFN signaling
(�logp value � 5.695)) are shown in Fig. 6.

Up-regulation of IFN-�-mediated Signaling Pathway in
OSCC—The results described above suggested that the type
I IFN signaling pathway was significantly altered in OSCC
lesions. We determined that 10 of the 53 up-regulated candi-
dates were members of the IFN-stimulated gene (ISG) family
(54–56), including SYWC, IFM1, STAT1, TYPH, UCRP, MX1,
GBP1, GBP2, PML, and AMPL (Table I). Therefore, it is pos-
sible that an upstream regulator of this pathway (e.g. IFN-�)
would be up-regulated in OSCC as well. This notion was
confirmed by immunohistochemical staining, which clearly
revealed the overexpression of IFN-� in all 10 pairs of OSCC
tissue sections (Fig. 7A). To explore the possible biological
role of IFN-� in OSCC, the effects of IFN-� on cell proliferation
and expression of two ISGs (UCRP and STAT1) were inves-
tigated in OSCC cells. Our results revealed that IFN-� treat-
ment for 1–3 days had a marginal effect (�10–20%) on the
growth of OC3 cells (supplemental Fig. S5). In contrast, IFN-�

treatment significantly enhanced the expression of UCRP and
STAT1 in OC3 cells (Fig. 7B), consistent with the prediction
generated by GeneGo Map. The UCRP protein, also referred
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to as ISG15, is known to play a critical role in the IFN-
mediated immune response against antiviral infection (57, 58).
Through a mechanism called ISGylation, UCRP, like ubiquitin,
conjugates with a variety of cellular proteins that modulate
diverse cellular functions such as RNA processing, stress
response, metabolism, cytoskeleton organization, and regu-
lation (59, 60). We found that IFN-� treatment also stimulated
UCRP expression in another OSCC cell line (SCC4) and sig-
nificantly enhanced the conjugation of UCRP with cellular
proteins (via ISGylation) (Fig. 7C). Notably ISGylation was

concomitantly enhanced in three OSCC tumor tissues that
overexpressed UCRP as compared with adjacent non-tumor
controls (Fig. 7C). Finally the cell motility of OC3 oral cancer
cells increased significantly in response to IFN-� treatment
(Fig. 7D). Collectively these results demonstrate that the IFN-
�-mediated signaling pathway was up-regulated in OSCC
lesions studied and that IFN-� stimulates UCRP expression,
ISGylation, and migration of OSCC cells.

Tissue Microarray Analysis of UCRP Expression in Head-
and-neck Cancer—To analyze the UCRP expression in oral

FIG. 5. Confirmation of up-regulated proteins in OSCC tissue specimens by Western blot analysis and IHC staining. A, Western blot
analysis of eight up-regulated proteins in three paired tumor (T) and non-tumor (N) OSCC specimens. The actin signal was used as a loading
control. The 3�, 2�, and 1� designations indicate that the candidate proteins were overexpressed in three, two, and one sample, respectively.
B, the IHC staining scores for 12 up-regulated candidates in 10 paired OSCC tissue sections. “9/10” indicates that the candidate was
overexpressed (T � N) in nine of the 10 tumor epithelia tested. The T/N ratio and overexpression frequency (T � N) of the target candidates,
as determined via MS-based analysis, are shown for comparison. C, representative IHC staining patterns for each validated candidate
(magnification, 200�). Scale bar, 200 �m.
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cancer in more detail, a larger cohort comprising 49 paired
OSCC specimens (17 buccal cancers, 18 tongue cancers, 10
gum cancers, three hard palate cancers, and one mouth floor
cancer) was surveyed by immunohistochemical staining
again. The results showed that 48 of 49 (98.0%) were neg-
ative and 44 of 49 (89.8%) were moderately or strongly
positive for UCRP staining in adjacent normal and tumor
parts, respectively (supplemental Table S4). As OSCC is a
subtype of head-and-neck cancer, thus we further exam-
ined UCRP expression using a head-and-neck tissue mi-
croarray chip containing 60 head-and-neck squamous cell
carcinoma tissues and three normal gingival tissues. As
shown in Fig. 8, UCRP was not detected in normal gingival
tissues; however, moderate to strong staining of UCRP was
detected in nine of 12 tissue sections from patients with
cheek cancer, nine of 15 tissue sections from patients with
tongue cancer, and six of 18 tissue sections from patients
with larynx cancer. In addition, all three tissue sections from
patients with upper jaw cancer exhibited weak UCRP stain-
ing, whereas UCRP was not detected in tissue sections
from patients with nose cancer. These results indicate that
UCRP is highly expressed in OSCC lesions at different sites
within the oral cavity.

DISCUSSION

Laser capture microdissection is often used in conjunction
with MS-based protein identification technology to assist with
the discovery of tumor-associated molecules in tissue spec-
imens containing various types of cells (27, 31, 61–64). How-
ever, relatively few studies have used these techniques to
identify OSCC/HNSCC-associated proteins in tissue speci-
mens from patients with OSCC/HNSCC (15, 17, 29). For
example, Melle et al. (29) used ProteinChip technology and 2D
gel electrophoresis to examine the up-regulation of annexin V
in microdissected HNSCC tissues. In addition, Baker et al.
(17) used LC-MS/MS to identify �100 unique proteins in sets
of normal and cancerous microdissected tongue specimens
and used immunohistochemistry to demonstrate the down-
regulation of cytokeratin (CK) 13 and the up-regulation of
heat-shock protein 90 in tumor cells. Another recent study

used LC-MS/MS to analyze the proteins extracted from mi-
crodissected formalin-fixed, paraffin-embedded tissue sec-
tions of normal oral epithelium as well as well, moderately,
and poorly differentiated oral cancers. The authors identified
391 and 866 total proteins in the normal oral epithelia and in
well differentiated oral cancer tumors, respectively (15). This
study explored the relative distribution of identified proteins in
tissue samples by counting the peptide numbers of each
protein detected. In addition, the authors validated the ex-
pression of cytokeratins 4 and 16, desmoplakin, desmoglein
3, and vimentin proteins using immunohistochemistry (15).
Although these studies identified and confirmed several
OSCC/HNSCC-associated proteins, a more global view of the
changes in protein expression in microdissected OSCC cells
and adjacent non-tumor epithelial cells can be achieved using
a precise quantification approach. Here we describe a quan-
titative technology platform that combines 18O labeling, com-
prehensive 2D LC separation, and integrated ESI-MALDI
MS/MS measurements. This technique was successfully used
to identify and quantitate 977 proteins in microdissected sam-
ples from three pairs of freshly resected OSCC specimens.
Among the MS-quantified proteins, we identified 53 up-regu-
lated and 27 down-regulated proteins with fold changes �2.5.
The reliability of the MS-based protein identification/quantifi-
cation platform was confirmed via immunohistochemical val-
idation experiments, which revealed that more than 90% of
the 12 up-regulated proteins were overexpressed in OSCC
tumor cells (Fig. 5 and supplemental Fig. S2). In addition, the
reliability of this platform was confirmed by other immunohis-
tochemical studies showing that five additional candidates
(K1C16, TENA, FINC, TSP1, and NDRG1) were overex-
pressed in OSCC tissues (Table I). Finally 12 of the 53 up-
regulated proteins (SYWC, K1C16, STAT1, TYPH, LDHA,
K1C17, GRP78, SODM, ITB4, TPM4, K1C14, and GTR1) ap-
peared to be overexpressed in OSCC tissues as determined
by counting the peptides detected in microdissected OSCC
samples from formalin-fixed, paraffin-embedded tissues sec-
tions (Table I and Ref. 15). To our knowledge, this is the
largest quantitative proteomics data set of microdissected
OSCC specimens reported to date.

TABLE III
Biological networks in which the 80 differentially expressed proteins participate

GeneGo map �log
p value

Features (Swiss-Prot ID)

1. Cytoskeleton remodeling, keratin filaments 19.364 EPIPL, EVPL, PEPL, K2C4, K2C6A, K2C6E, K1C13, K1C14, K1C15,
K1C16, K1C17, K1C19

2. Immune response, IFN-�/� signaling pathway 5.695 STAT1, UCRP/ISG15, PML
3. Cell adhesion, endothelial cell contacts by

non-junctional mechanisms
5.265 FINC, ITA6, ITB4, ACTN1

4. Immune response, antiviral actions of
interferons

4.151 SYWC, STAT1, MX1, 2DRA, HB2G, HLAG

5. Blood coagulation, GPIb-IV-V-dependent
platelet activation

3.286 FLNA, FLNB, ACTN1, COCA1, FIBA, FIBB

6. Cell adhesion, role of tetraspanins in the
integrin-mediated cell adhesion

3.087 FINC, COCA1, ACTN1
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FIG. 6. MetaCore analysis of altered signaling pathways in OSCC samples. A, the cytoskeleton remodeling-keratin filaments pathway.
B, the type I IFN signaling pathway. Bars labeled in red and blue denote up- and down-regulated target proteins, respectively. Numbers on the
bar indicate the experiment in which the target was quantified. 1, 16N1/18T1; 2, 16N3/18T3; 3, 16T1/18N1; 4, 16T2/18N2; 5, 16T3/18N3. JNK,
c-Jun NH2-terminal kinase; MAPK, mitogen-activated protein kinase; IFNAR, IFN-alpha/beta receptor. Interaction mechanism is marked with
a symbol in the hexagon in the middle of the interaction arrow. CF, complex formation; Cm, covalent modifications; Tr, transcription regulation;
B, binding; �P, phosphorylation; �P, dephosphorylation; Tn, transport; CS, complex subunit.
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At present, we cannot exclude the potential bias of our
findings due to the inclusion of only male subjects in this study
(16 patients; three for MS experiments, 10 for IHC staining,

and three for Western blotting) (supplemental Table S1) and
the small number of patients (n � 3) for the MS-based bi-
omarker discovery. It is noted, however, that the majority of

FIG. 7. Alterations in the IFN signaling pathway. A, IHC staining of IFN-� in 10 pairs of OSCC specimens. B, IFN-� stimulates the
expression of UCRP and STAT1 in OC3 oral cancer cells. C, enhanced expression of UCRP and conjugated proteins in IFN-�-treated SCC4
cells and in three pairs of OSCC tissue specimens as detected by Western blotting. The �-actin signal was used as a loading control. D, IFN-�
treatment enhanced the migration of OC3 cells in Transwell migration assays. The data correspond to mean values of cell number obtrained
from six independent fields per well. Error bars denote the standard deviations.
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oral cancer patients in Taiwan are male (85–93%) (65, 66). In
addition, among the 53 up-regulated candidates identified
from the three pairs of OSCC samples used here, more than
20 candidates have been confirmed and/or rediscovered to
be overexpressed in OSCC tissues using a larger number of
samples in the present study or by other groups (Ref. 15 and
Table I and references cited therein). This observation indi-
cates that, although potential bias may result from using
specimens from a limited number of male patients, the quan-
titative proteome data set generated here can be useful for
searching potential OSCC biomarkers.

Recently Siu and co-workers (16, 39) used an isobaric mass
tag (iTRAQ (isobaric tags for relative and absolute quantita-
tion)) labeling method and LC-MS/MS to identify several dif-
ferentially expressed proteins in OSCC. The authors identified
a total of 811 non-redundant proteins in tumor tissues and
described a panel of proteins displaying consistently differ-
ential expression in tumors relative to non-cancerous con-
trols. Several up-regulated candidates (e.g. FSCN1, LDHA,
SODM, S10A2, and K1C14) were also identified in this study
(Table I and Ref. 16). The authors also used immunohisto-
chemistry analysis to identify a panel of up-regulated proteins
(e.g. 14-3-3 � (stratifin), 14-3-3 �, and calcium-binding protein
S100A7) that could serve as potential markers for discrimi-
nating OSCC from non-cancerous tissues (16, 39). In our
study, 14-3-3 � and 14-3-3 � (but not S100A7) were shown in
five independent experiments to have T/N ratios ranging from
1.9 to 3.68 and from 1.33 to 3.14, respectively, in three of five
experiments (supplemental Table S2). When a more stringent
filter (T/N �2 in three of five experiments and an average ratio
�2.5) was applied, these proteins were not included in our
final candidate list. The differential protein expression pat-
terns determined using different stable isotope labeling tech-
niques were consistent, suggesting that stable isotope-de-
pendent quantitative proteomics methods are reliable and
feasible quantitative platforms.

Most (38 of 53) of the proteins that were up-regulated in
tumor cells contributed to tumor-related biological processes

such as cell proliferation, communication, defense, organiza-
tion and biogenesis, and cell motility. The biological implica-
tions of these differentially expressed protein candidates were
extracted using the MetaCore data mining suite. The most
significant biological network identified in this analysis was
the cytoskeleton remodeling-keratin filament pathway with a
�logp value of 19.364. The EPIPL and CK 6, 14, 16, and 17
proteins of this pathway were found to be up-regulated in oral
cancer cells, whereas the EVPL, PEPL, and CK 4, 13, 15, and
19 proteins of this pathway were found to be down-regulated
(Table III). Previous studies have shown that the transcription
of CK6/16/17 can be induced in keratinocytes during wound
healing (67, 68). In patients with OSCC, the loss of CK 13 or
19 expression may increase recurrence and enhance inva-
siveness (69). Although the molecular mechanisms of CK
expression and regulation in tumor development remain un-
clear, the alterations in CK expression were consistent among
different analytical platforms, highlighting the importance of
keratin expression and regulation in oral cancer progression.
A systematic investigation of keratin filament regulation may
shed light on the development of epithelia and on the relative
malignancy of tumor cells.

The second significant network identified in this study was
the type I IFN signaling pathway (�logp value of 5.695). Two
key downstream regulators of this pathway (STAT1 and
UCRP/ISG15) were identified and quantified in all five exper-
iments with fold changes in expression in tumor and non-
tumor cells ranging from 3.94 to 8.37 (STAT1) and 8.71 to
38.99 (UCRP/ISG15), respectively. Hundreds of ISG proteins
have been previously determined using genomics and pro-
teomics approaches (54, 55). Our current study showed that
10 of the 53 up-regulated candidate proteins belong to the
ISG family (Table I), and increased mRNA or protein levels of
seven proteins (SYWC, IFM1, STAT1, TYPH, UCRP, MX1, and
GBP2) have been detected in OSCC via previous genomics or
proteomics studies (9, 10, 70). Of these up-regulated ISG
proteins, four (STAT1, UCRP, GBP1, and TYPH) were con-
firmed to be overexpressed in OSCC tissues via immunohis-

FIG. 8. Tissue microarray analysis of
UCRP/ISG15 in head-and-neck can-
cer. A, IHC staining of UCRP/ISG15 us-
ing a head-and-neck tumor tissue mi-
croarray containing 60 tumor tissue
sections (including 12 cheek, 15 tongue,
18 larynx, 12 nose, and three upper jaw
tumors) and three normal gingival tissue
sections. B, enlarged images of the
stained sections shown in A.
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tochemical staining (in at least eight of the 10 tissue pairs
examined) (Fig. 5B). Most notably, IFN-� (the key upstream
regulator of this pathway) was also confirmed to be overex-
pressed in the tumor cells of all OSCC tissue pairs (Fig. 7A).
Although previous genomics and proteomics studies have
confirmed the dysregulation of type I IFN signaling compo-
nents in OSCC/HNSCC (9, 10, 70), it remains unclear whether
the components of this pathway are systemically altered in
OSCC/HNSCC and whether this pathway contributes to
OSCC/HNSCC progression. Our use of quantitative proteom-
ics approaches, biological network analyses, Western blot
analyses, and immunohistochemistry analyses provides
strong evidence that this pathway is significantly enhanced in
OSCC tumor cells.

Interferons are categorized as two types (type I (IFN-� and
IFN-�) and type II (IFN-�)). These molecules are multifunc-
tional cytokines that possess antiviral, antiproliferative, and
immunomodulatory activities (71–73). Type I IFNs are known
to inhibit the growth of a variety of cancer cells, and this
inhibition can be mediated, at least in part, by the Jak-STAT-
mediated cell death pathway (74, 75). However, other studies
have shown that some cancer cells are resistant to IFN-�/�-
mediated antiproliferation, which may be attributed to the
deregulation of the Jak-STAT, NF-	B, and phosphatidylinosi-
tol 3-kinase/AKT pathways in these cells (76–78). In this
study, we found that OSCC cells respond to IFN-� by acti-
vating downstream target genes and increasing protein
ISGylation but that these cells are resistant to IFN-�-mediated
inhibition of cell growth (Fig. 7, B and C, and supplemental
Fig. S5). Interestingly we also found that the migration ability
of OSCC cells was enhanced after exposure to IFN-� (Fig.
7D). Collectively these observations suggest that the overex-
pression of IFN-� in OSCC tissues may have unexpected and
profound effects on OSCC cells. This intriguing possibility
warrants further investigation.

The TYPH protein is overexpressed in a wide variety of
solid tumors. This protein can be induced by several cyto-
kines, including IFNs, and contributes to angiogenesis (79,
80). In addition, STAT1 is a key regulator of the IFN signaling
pathway and is known to be overexpressed in OSCC tissues
(70, 81). UCRP/ISG15, a critical molecule in the IFN-medi-
ated immune response against antiviral infection, was re-
cently identified as a novel tumor marker candidate in blad-
der and breast cancers (82, 83). We show here that UCRP/
ISG15 was highly expressed in OSCC lesions at different
sites of the oral cavity (Figs. 7 and 8, supplemental Fig. S2,
and supplemental Table S4). Previous studies have shown
that UCRP/ISG15 interferes with the ubiquitin/proteasome
pathway and alters the sensitivity of tumor cells to camp-
tothecin, an antitumor drug. This interference presumably
involves ISGylation, which modifies the functions of various
cellular proteins (83–85). We detected increased levels of
UCRP/ISG15 and its protein conjugates in IFN-�-stimulated
OSCC cells as well as in three oral tumor tissues studied

(Fig. 7C). Approximately 200 ISG15-conjugated proteins
(ISCPs), which are known to participate in modulating di-
verse cell functions, have been identified in eukaryotic cells
using a combination of double affinity purification and MS-
based proteomics approaches (59, 60). In addition, we de-
tected 16 differentially expressed ISCPs in OSCC tissues,
including 13 up-regulated (SYWC, STAT1, FLNA, FLNB,
MX1, GBP1, EPIPL, LDHA, ANXA3, HSP47, PML, ACTN1,
and AMPL) and three down-regulated (HSP71, SERA, and
6PGD) proteins (Tables I and II). Collectively these findings
raise the intriguing possibility that overexpressed IFN-�,
UCRP/ISG15, and ISCPs might modify certain properties of
OSCC cells, such as their sensitivity to chemotherapy. Fur-
ther studies are needed to explore this possibility.
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