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Gyroid cuticular structures in butterfly
wing scales: biological photonic crystals
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We present a systematic study of the cuticular structure in the butterfly wing scales of some
papilionids (Parides sesostris and Teinopalpus imperialis) and lycaenids (Callophrys rubi,
Cyanophrys remus, Mitoura gryneus and Callophrys dumetorum). Using published scanning
and transmission electron microscopy (TEM) images, analytical modelling and computer-
generated TEM micrographs, we find that the three-dimensional cuticular structures can be
modelled by gyroid structures with various filling fractions and lattice parameters. We give a
brief discussion of the formation of cubic gyroid membranes from the smooth endoplasmic
reticulum in the scale’s cell, which dry and harden to leave the cuticular structure behind
when the cell dies. The scales of C. rubiare a potentially attractive biotemplate for producing
three-dimensional optical photonic crystals since for these scales the cuticle-filling fraction is
nearly optimal for obtaining the largest photonic band gap in a gyroid structure.
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1. INTRODUCTION

The colour of an animal’s body is due to spectrally
selective reflection of incident light (Fox & Vevers
1960). The body’s reflectance spectrum is determined
by the presence of absorbing pigments, and/or by
submicrometre structural variations causing
interference, diffraction or scattering. In the first case,
the colours are referred to as pigmentary (chemical)
colours and, in the second case, as structural (physical)
colours. Although pigmentary colours are by far the
most common, several recent studies have demon-
strated that physical colours are widely employed in the
animal kingdom (Srinivasarao 1999; Tayeb et al. 2003;
Vukusic & Sambles 2003; Kinoshita & Yoshioka 2005;
Welch 2005; Prum et al. 2006).

If the structural variations are periodic with a
periodicity of the order of the wavelength of visible
light, then they are often called biological photonic
crystal structures. In insects, the most frequently found
simple photonic crystal type is the multilayer. This one-
dimensional photonic crystal consists of layers of
alternating high and low variable refractive index.
Multilayers are responsible for the metallic colours of
the cuticle of body and elytra of many beetle species
(Neville & Caveney 1969; Caveney 1971; Schultz &
Rankin 1985; Parker et al. 1998; Kurachi et al. 2002).
More complex multilayer structures, showing struc-
tural variations within the layers, occur in the ridges of
wing scales of many butterfly species, specifically
morphos (Ghiradella et al. 1972; Ghiradella 1991;
Vukusic et al. 1999; Kinoshita et al. 2002; Wickham
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et al. 2006). Three-dimensional photonic crystals,
having a three-dimensional periodic distribution of
refractive indices, are found in the scales of weevils
(Welch 2005) and butterflies (Morris 1975; Ghiradella &
Radigan 1976; Argyros et al. 2002; Bir6é et al. 2003;
Vukusic & Sambles 2003; Kertész et al. 2006; Prum
et al. 2006).

Measured reflectance spectra of the butterfly scales
with a periodic three-dimensional cuticle/air structure
have been explained with qualitative and approximat-
ing approaches (Morris 1975; Bir6 et al. 2003; Kertész
et al. 2006; Prum et al. 2006), but so far an adequate
electromagnetic treatise has not been forwarded for any
biological three-dimensional photonic crystal. One
reason for the lack in progress is the uncertainty
about the detailed structure of the insects’ cuticle. In
the case of the lycaenid species Callophrys rubi, first, a
simple cubic (SC) network (SC ordering of air spheres
in a matrix of cuticle) was assumed for the structure
(Morris 1975), but later it was argued that it was more
like a face-centred cubic (FCC) network (Ghiradella &
Radigan 1976); a woodpile structure has been assumed
in Polyommatus (Biré et al. 2003); and an FCC inverted
opal structure (FCC ordering of air spheres in a matrix
of cuticle) was argued to exist in the ventral wing scales
of another lycaenid, Cyanophrys remus (Kertész et al.
2006). A cuticle of tetrahedral structure is assumed to
exist in the papilionid species Parides sesostris
(Vukusic & Sambles 2001) and Teinopalpus imperialis
(Argyros et al. 2002).

In this paper we present an analysis of the cuticular
structures of a number of butterflies, which will provide
us with a solid basis for further electromagnetic
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calculations of the photonic crystal properties of
butterfly wings. We show that several of the three-
dimensional cuticular structures in the lycaenid
and papilionid species, including C. rubi, C. remus,
P. sesostris and T. imperialis, can be modelled by a
gyroid structure, a bicontinuous triply periodic struc-
ture with a body-centred cubic (BCC) Bravais lattice
symmetry. In the wings of these butterfly species, the
gyroid structures have two unequal continuous
subvolumes, the largest one filled with air and the
smallest one filled with cuticle. We demonstrate that
extensive combined transmission electron microscopy
(TEM) and scanning electron microscopy (SEM)
studies together with computer modelling are crucial
for the characterization of the three-dimensional
cuticle/air structures. Cross-checking of the infor-
mation obtained by each of these three methods is
inevitable to avoid erroneous structure analyses.

The paper is organized as follows. In §2, we discuss
triply periodic minimal surfaces, since they are an
important tool in describing cubic phases. In §3, we
elaborate on cubic phases observed in lipid—water
systems and biomembranes, and on the scale develop-
ment in the olive hairstreak, Mitoura gryneus. Section 4
describes how we characterize the cubic cuticular
structures in butterfly wing scales by comparing
TEM micrographs from the literature with computer-
generated projections modelled by level surfaces. We
present a detailed analysis of the sesostris cattleheart,
P. sesostris, and the green hairstreak, C. rubi, and for
other members of the Papilionidae and the Lycaenidae
we provide a brief summary of our results. We find that
the cuticular structure in the wing scales of these
butterflies can be modelled by gyroid structures with
various cuticle-filling fractions and lattice parameters.
In §5, we propose to use the scales of C. rubi as a
biotemplate to produce a three-dimensional photonic
crystal with a large photonic band gap (PBG) in the
optical wavelength range.

2. BICONTINUOUS CUBIC STRUCTURES

In mesoscopic self-assembled bicontinuous cubic
structures, interfaces separate adjacent regions of
different composition. These interfaces, often called
intermaterial dividing surfaces (IMDS), are triply
periodic, i.e. they are periodic along the three spatial
coordinates. In bicontinuous structures, one IMDS
divides the space into two distinct volumes. Each
volume, or region, forms a continuous network in the
system. Also, multicontinuous structures exist, but
they will not be considered here. The two regions
defined by the bicontinuous IMDS are not simply
connected. They interpenetrate each other in a
complicated way. The two regions may differ in shape
or there may exist symmetry operations mapping one
region onto the other. The symmetry properties of the
structures are therefore described by either the
crystallographic space group that does not include
symmetry operations that would interchange the
different regions or the space group that does include
these symmetry operations.

J. R. Soc. Interface (2008)

IMDS can be approximated by constant mean
curvature surfaces that can be modelled by level
surfaces (Wohlgemuth et al. 2001). Single level surfaces,
dividing space into two infinite, connected but disjunct
regions, are defined by (Wohlgemuth et al. 2001)

f(m, y,2) =Y |F(hkD)|cos(hX + kY + 12— aypy) =
hkl

(2.1)

where X=2nx/a, Y=2my/a, Z=27z/a; (x, y, z) are the
positions in the crystal structure; a denotes the length
of the cubic unit cell; |F(hkl)| denotes the structure
factor amplitude, reflecting the symmetry of the
structure, and «ay;; denotes the phase angle, where
(h k1) are the positions in the reciprocal lattice; and
the parameter ¢ determines the volume fraction of the
two regions. For t=0, equation (2.1) defines the nodal
surfaces (von Schnering & Nesper 1991). Nodal
surfaces are used as approximations to the triply
periodic minimal surfaces, surfaces for which the mean
curvature is zero at every point. The term ‘minimal
surface’ originates from experiments conducted by the
nineteenth century physicist Plateau. He immersed
various metal frames, which were not necessarily
planar, in soap solutions. The soap films spanned in
the frames are such that the surface free energy is
minimal, that is, such that the area of the films is
minimal (Plateau 1873).

There are three fundamental cubic (minimal)
surfaces: the primitive or P-surface; the diamond or
D-surface; and the gyroid or G-surface, with space
groups Im3m, Pn3m and Ia3d, respectively. The level
(nodal) surfaces modelling these cubic (minimal)
surfaces are given by (von Schnering & Nesper 1991;
Wohlgemuth et al. 2001)

P : cos X +cos Y +cos Z =t (2.2)

D :cosZsin(X+Y)+sinZcos(X—Y) =1t (2.3)

G :sinXcosY +sin Ycos Z+cos XsinZ =t
(2.4)

These surfaces divide the cubic structure into two
regions, forming two distinct interpenetrating net-
works. In the P-structure, the channels in a particular
network are sixfold connected, in the D-structure they
are tetrahedrally connected and in the gyroid the
channels join as triads. The gyroid is chiral, the two
channels have different handedness, which are related
by an inversion. The unit cells of the P, D and G nodal
surfaces (t=0) together with the skeletal graphs,
showing the connectivity of the channels in the
network, are depicted in figure 1.

The level surfaces only subdivide space into two
continuous subvolumes for a certain interval of t-values
(Lambert et al. 1996). At the boundaries of this
interval, the surfaces ‘pinch-off’, i.e. they become
disconnected and reduce to a lattice of closed-packed
units with a given symmetry (Anderson et al. 1990;
Lambert et al. 1996).
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Figure 1. (a—c) Unit cells of the P, D and G nodal surfaces constructed from equations (2.2)—(2.4), respectively, with ¢=0.
These surfaces divide the cubic structure into two regions forming two continuous interpenetrating networks in the system.
(d—f) Skeletal graphs for one of the two distinct networks formed by the P, D and G nodal surfaces. The skeletal graphs show
the connectivity of the channels in the network. In the P-, D- and G-structures, these channels are six-, four- and threefold

connected, respectively.

There also exist more complex cubic surfaces (von
Schnering & Nesper 1991; Wohlgemuth et al. 2001), but
so far there is no convincing evidence for their existence
in mesoscopic self-assembled bicontinuous structures.

3. SELF-ASSEMBLY, MEMBRANES AND CELL
BIOLOGY

Before discussing the processes that might lead to the
formation of cubic lattice structures in butterfly wings,
we first elaborate on the cubic phases observed in lipid—
water systems and biomembranes.

3.1. Lipid—water systems

Lipid bilayers are ubiquitous in biological membranes,
including plasma membranes. If the constituent mono-
layers in the lipid bilayer are made up of identical
molecules, based on geometrical constraints, the mid-
surface of the bilayer is expected to be a quasi-
homogeneous minimal surface (Hyde et al. 1997). The
simplest examples of these minimal surfaces are the
triply periodic minimal surfaces having cubic symmetry
(Hyde et al. 1997). Among them are the P-surface, the
D-surface and the gyroid (or G-surface), which can be
formed with the least bending energy cost, that is, they
minimize the curvature energy (Hyde et al 1997).
Hence, as a result of self-assembly, a structure is made in
which the lipid bilayer separates two water channels. If
the water channels on both sides of the bilayer are
different, or the lipid bilayer contains constituent
monolayers of different curvature, an asymmetric
bicontinuous cubic phase having constant but non-zero
mean curvature results. Although these triply periodic
structures can be difficult to express in rigorous
mathematical terms, they can be well approximated by
level (nodal) surfaces (§2).
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Geometrical constraints are not sufficient to predict
the occurrence of bicontinuous cubic phases in lipid—
water systems. Also, the temperature and the concen-
tration of the mixture play a role. In lipid—water phase
diagrams (e.g. Larsson 1989), in general, three types of
phases, having respectively one-, two- and three-
dimensional periodicity, can be identified, namely the
lamellar phase in which water layers are alternating
with lipid bilayers, the hexagonal phase in which
infinite water cylinders are arranged in a hexagonal
array and are separated by lipid bilayers, and the cubic
phase consisting of curved infinite lipid bilayers. Upon
sufficient heating or increasing the water content, a
transition occurs from the lamellar to the cubic phase
and finally to the hexagonal phase (Larsson 1989).

Bicontinuous cubic phases in pure lipid—water
systems were first detected by Luzzati and co-workers
(Luzzati & Spegt 1967; Luzzati et al. 1968). Longley &
McIntosh (1983) have shown that in lipid—water
systems, both gyroid- and D-surface structures can be
observed. At lower water contents, the G-surface
structure is formed and at higher water contents the
D-surface structure is formed. The same type of cubic
phase has been observed in ternary lipid—protein—water
systems (Ericsson et al. 1983). In these systems, the
protein molecules are located in the water channels.
Later, it was shown that with further increasing water
content the P-surface structure also exists in these
ternary lipid—protein—water systems (Buchheim &
Larsson 1987).

More detailed information about cubic phases in
lipid-containing systems and their possible biological
relevance can be found in, for example, Lindblom &
Rilfors (1988), Mariani et al. (1988), Larsson (1989),
Fontell (1990), Luzzati et al. (1993) and Hyde et al.
(1997).
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3.2. Cubic membranes

Cytomembranes contain a variety of lipids and proteins.
Most simply, we could think of the lipids being in a
planar bilayer state. Changing physico-chemical con-
ditions (temperature and/or changes in local solution
environment) may however lead to a curved cubic
phase. In contrast to pure lipid—water mesostructures,
cytomembranes have an inherent bilayer asymmetry.
Hence, the resulting cubic membranes will have a
constant but non-zero mean curvature.

Cubic membranes have a widespread occurrence
throughout the animal and plant kingdoms (e.g. Hyde
et al. 1997). Cubic membranes can evolve virtually from
any cytomembrane, i.e. the plasma membrane, the
rough and the smooth endoplasmic reticulum including
the nuclear envelope, the mitochondria, lysosomes and
the Golgi complex (Hyde et al. 1997). However, it seems
that cubic membranes are most frequently formed in
the endoplasmic reticulum (Hyde et al. 1997; Almsherqi
et al. 2006).

Cubic membranes are in general formed from a
structural template, the precursor to the cubic mem-
brane, such as the invaginations of the plasma
membrane (Hyde et al. 1997). The specific mechanisms
leading to membrane folding into a cubic membrane are
not known (Hyde et al. 1997; Almsherqi et al. 2006).

3.3. Scale development in the olive hairstreak,
M. gryneus

The green scales of M. gryneus are known to have a
three-dimensional lattice structure of chitin
(Ghiradella 1989, 1991; Prum et al. 2006). In order to
understand how a cell can produce such lattice
structures, Ghiradella (1989) made a developmental
study of the scales of the olive hairstreak, M. gryneus.
Each scale originates from an individual cell in its wing
epithelium. First, the ridges and crossribs of the scale
are formed. Later, membrane—cuticle units with regular
diameter are formed inside the cytoplasm. The mem-
branes of these units appear to be invaginations of the
plasma membrane (Ghiradella 1989). Thus, the spaces
enclosed by these membranes are continuous with the
extracellular space and the cuticle formation is extra-
cellular. The smooth endoplasmic reticulum appears to
act as a template around which the membrane—cuticle
units and a bit of cytosol are wrapped (Ghiradella
1989). When the cell dies back into the epithelium of
the wing, the newly formed scale dries and hardens to
leave the cuticular structure behind.

Chitin, a biopolymer, is a major component of the
insect’s cuticle. It functions as light but mechanically
strong scaffold material and is always associated with
cuticle proteins that mainly determine the mechanical
properties of the cuticle (Merzendorfer & Zimoch
2003). The specific mechanism by which chitin is
produced is still unknown, but various models have
been presented in which nascent chitin has to be trans-
ported across the plasma membrane (Merzendorfer &
Zimoch 2003).

The lattice development in M. gryneus is consistent
with the cubic membrane formation in other biological
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systems, which are induced by lipid and protein
alternations and/or other physico-chemical changes.
However, the specific mechanisms leading to the lattice
formation are only poorly understood. More detailed
studies of membrane transitions in living organisms are
required to obtain a better understanding of the cubic
membrane formation.

4. CUTICULAR STRUCTURE
CHARACTERIZATION IN BUTTERFLY
WING SCALES

The cuticular structure in insects is generally investi-
gated by means of SEM and TEM. SEM micrographs of
cut surfaces give an impression of the three-dimensional
character of the structure, while TEM micrographs of
thin sections provide a two-dimensional view. TEM
sections are usually random cuts through the structure
and have a thickness of 60—100 nm. Such random cuts
through a periodic cubic structure can lead to complex
patterns in the TEM micrograph. The patterns do not
only depend on the orientation of the section, the
thickness of the section and the viewing angle, but they
can also look very similar for cubic structures belonging
to different space groups (Hyde et al. 1997). Moreover,
the cubic cuticular structures can also be polymorphic
and artefactually distorted. Structure determination
from the observation of a single section is therefore
extremely difficult. However, as we demonstrate in the
following subsections, in most cases a satisfactory
characterization of cubic cuticular structures can be
obtained if SEM and TEM studies are combined, if
SEM micrographs are made for tilted and rotated
samples, if the TEM micrographs are made for various
sections through the structure, and if the TEM
micrographs are compared with computer-generated
projections modelled by equations (2.2)—(2.4) and (4.1).

An alternative approach to study the three-
dimensional cuticular structure is to make use of
electron tomography combined with computer-based
modelling and visualization (Argyros et al. 2002). In
§4 we briefly compare the results obtained with both
methods for the characterization of the three-dimen-
sional cuticular structure in the wing scales of the
Kaiser-i-Hind butterfly, T. imperialis.

4.1. Method

We have investigated the wing scales of various
butterflies by using published SEM and TEM micro-
graphs (Ghiradella & Radigan 1976; Ghiradella 1984,
1985, 1989, 1991, 1994; Vukusic & Sambles 2001,
2003; Argyros et al. 2002; Kertész et al. 2006; Prum
et al. 2006).

A basic assumption of our approach is that we model
the cubic air—cuticle structures of the scales by
structures based on the level surfaces given by equations
(2.2)—(2.4). Hence, we introduce the function

1, if f(z, y,2) <t
9(z, y,2) = , :
0, if f(z, y,2)=>t

where ¢(z, y, z)=1 denotes a filling with cuticle and
g(z, y, 2) =0 denotes a filling with air. Varying the

(4.1)
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parameter ¢ changes the composition of the material, i.e.
the amount of cuticle. The computer-generated cubic
structures consist of voxels that are either coloured
black (cuticle) or white (air). The black voxels have
value 1 and the white voxels have value 0.

The cubic structure contains several unit cells of the
P-, D- and G-structures. The P-, D- and G-structures
have an SC, an FCC and a BCC Bravais lattice
symmetry. We have cut sections of a given thickness d
and with a prescribed orientation from this three-
dimensional model structure, just as microtome cuts
are made for TEM studies.

In order to compute the two-dimensional projections
of these sections, for comparison with the TEM micro-
graphs, we have to consider the interaction of the
specimen with the electron beam. TEM micrographs of
butterfly wing scales have little to no greyscale contrast
and can be considered to be black-and-white images.
This is because the chitin structures act as strong
electron-absorbing objects so that the contrast of the
image is not sensitive to focus (Argyros et al. 2002).
Therefore, to describe the interaction of the specimen
with the electron beam, we can treat the cuticle as
completely opaque. This makes modelling and interpre-
tation more straightforward than in the case of grey-
scale TEM images (Anderson et al. 1992; Deng &
Mieczkowski 1998). Hence, we compute the two-
dimensional projections by summing up the values of
the voxels along a line parallel to the viewing direction.
If the sum differs from zero, we give the corresponding
pixel in the two-dimensional projection the value 1
(black) and otherwise 0 (white).

As a final step, we have compared the TEM
micrographs with computer-generated TEM images
for various values of ¢t and d and for various
orientations.

4.2. The sesostris cattleheart, P. sesostris

As a first example, we consider the papilionid
P. sesostris, which exhibits green spots on its ventral
wings. In these regions, SEM micrographs display a
regular three-dimensional lattice structure (Ghiradella
1985, 1994, 1999; Vukusic & Sambles 2001, 2003).
Figure 2 shows that the rather large circular air holes in
the cuticular network appear to be positioned on square
(bottom right of micrograph) or triangular (centre of
micrograph) lattices.

We can gain more information about the lattice
structure from TEM micrographs (Ghiradella 1985,
1991; Vukusic & Sambles 2001, 2003; Prum et al. 2006).
Figure 3a illustrates that the crystal lattice structure
consists of various domains with an average size of
approximately 3.7 um. In figure 3a we indicate eight
domains that allow structural characterization.

Simulating sections of zero thickness of P-; D- and
G-structures for various values of ¢ immediately
suggests that the black-and-white patterns observed
in the various domains are best matched by pro-
jections of a gyroid structure. Modelling gyroid
structures for various values of ¢, and viewing through
them in the [0 0 1] direction, shows a square lattice of
circular air holes with lattice parameter a/ V2. The
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Figure 2. SEM micrograph showing a longitudinal view of a
fractured scale of P. sesostris. (Reproduced with permission
from Ghiradella (1994).) Scale bar, 1 pm.
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Figure 3. (a¢) TEM micrograph showing a cross section
through the scale of P. sesostris. (Reproduced with per-
mission from Vukusic & Sambles (2003).) The numbers
indicate various domains in the cuticle crystal. The vertical
lines indicate the position of the grain boundaries. Scale bar,
2.5 pm. (b) Computer-simulated projections for a G-structure
with t=—0.3 (equations (2.4) and (4.1)). The projections are
generated from sections with a thickness of 0.15a (a denotes
the length of the cubic unit cell) along the directions: 1, [1 2 3];
2, [L111]; 3, [4811]; 4, [4912]; 5, [1912]; 6, [249]; 7,
[710 12]; 8, [7 710]. The chitin (cuticle) structures appear
black in both the micrograph and the simulation.

smaller ¢ becomes, the larger the air holes become and,
hence, the less cuticle is present in the structure. For
t=—0.3, the air holes have a diameter of approxi-
mately a/3 and the cuticle volume is 0.40 (figure 4).
The square lattice of holes resembles the square lattice
of holes observed in the SEM images rather well
(figure 2). Viewing through the gyroid structure with
t=—0.3 along the [1 1 1] direction shows a triangular
lattice of holes that looks similar to the triangular
lattice seen in the SEM image in figure 2. Choosing
t=—0.3 and varying the thickness d of the sections,
we have computed many projections for various
viewing angles. For d=0.15a (see figure 3b), we
achieve excellent matches with the black-and-white
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t=0.0 t=-03

Figure 4. (a—c) Gyroid structure (eight unit cells) constructed
from equations (2.4) and (4.1). For ¢=0.0, —0.3 and —1.0,
the cuticle volume fractions are 0.50, 0.40 and 0.17,
respectively. (d-f) Projections of the gyroid structures
along the direction [0 0 1]. For ¢=0.0, —0.3 and —1.0, the
circular holes have a diameter of approximately a/4, a/3 and
a/2, respectively.

patterns of the eight domains of figure 3a. Using the
same parameters (t=—0.3 and d=0.15a), we can also
reproduce the patterns observed in the TEM micro-
graphs reported by Ghiradella (1985, 1991) and Prum
et al. (2006). However, the micrographs presented by
Prum et al. (2006) are so small that various projections
match.

Among the possible cubic structures that we have
investigated for the description of the lattice in the
scales of P. sesostris, the gyroid structure with t=—0.3
(chitin volume fraction of 0.40) alone accounts for all
structural features that are available to us. Based on
the comparison between the real and simulated TEM
micrographs, we estimate that the lattice parameter of
the gyroid network is approximately a=260+63 nm.
Our conclusion that P. sesostris scales have a gyroid
structure deviates from Vukusic & Sambles (2001), who
concluded that a tetrahedral structure, namely that of a
diamond lattice with approximately 40% occupancy,
describes the lattice of cuticle, but the achieved
matches were reported to be good, although not exact
(Vukusic & Sambles 2001).

4.3. The green hairstreak, C. rubi

The second example we consider is the lycaenid C. rubi,
which displays a uniform green colour over the whole of
the underside of the wing. Morris (1975) was the first to
examine the structure responsible for this colour by
studying whole mounts of the wing scales applying light
microscopy and TEM. He concluded that single wing
scales are composed of a mosaic of irregular polygonal
domains, with grain diameter 5.4 pm, and that a SC
network with an average thickness of four lattice units
could account for the variety of patterns observed
inside the domains. The lattice parameter of the cubic
network was estimated to be a=257+25 nm (Morris
1975). Based on the average value of 1.065 for the
refractive index (Morris 1975), we estimate the volume
fraction for the cuticle to be 0.13. The sketch of the

J. R. Soc. Interface (2008)

s 221

~ Ay

‘dqv
PpeA v
u‘qv

-

N T S

Figure 5. (a) TEM micrograph showing a transverse section
through a green scale of C. rubi. (Reproduced with permission
from Ghiradella & Radigan (1976).) The numbers indicate
various domains in the cuticle crystal. The vertical line
indicates the position of the grain boundary. Scale bar, 1 pm.
(b) Computer-simulated projections for a G-structure with
t=—1.0 (equations (2.4) and (4.1)). The projections are
generated from sections with a thickness of 0.2a (a denotes the
length of the cubic unit cell) along the directions: 1, [1 6 7]; 2,
[0 3 10]. The chitin (cuticle) structures appear black in both
the micrograph and the simulation.

proposed SC network (Morris 1975) can be modelled by
the level surface equation (2.2), with —1.4<¢<—1.0.
For these values of %, the volume fraction of the
cuticular network varies between 0.16 and 0.26.

More elaborate TEM studies by Ghiradella & Radigan
(1976), in which, apart from whole mounts, longitudinal
and transverse sections were also examined, indicated that
the internal cuticular lattice was FCC and not SC.
Figures ba and 6a with transverse and longitudinal
sections show (parts of ) a few crystal domains.

Based on our analysis for P. sesostris, we assume
that the cuticular structure responsible for the green
colour of C. rubi is also a gyroid structure, having a
BCC lattice symmetry. We use this assumption to
simulate the patterns observed in TEM micrographs of
C. rubi (Ghiradella & Radigan 1976; Ghiradella 1984).

TEM micrographs of whole mounts (Morris 1975;
Ghiradella & Radigan 1976) provide to some extent
the same information as SEM micrographs since they
show frontal views. In these micrographs, square
lattices of air holes are rather common, but also
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Figure 6. (a) TEM micrograph showing a longitudinal section
through a green scale of C. rubi. (Reproduced with permission
from Ghiradella & Radigan (1976).) The numbers indicate
various domains in the cuticle crystal. The vertical lines
indicate the position of the grain boundaries. Scale bar, 1 um.
(b) Computer-simulated projections for a G-structure with
t=—1.0 (equations (2.4) and (4.1)). The projections are
generated from sections with a thickness of 0.2a (@ denotes the
length of the cubic unit cell) along the directions: 1, [0 3 5]; 2,
[279]; 3, [3 4 12]. The chitin (cuticle) structures appear black
in both the micrograph and the simulation.

triangular lattices can be observed (figure 7). The
square lattice of holes observed in the whole-mount
TEM image of Ghiradella & Radigan (1976) (figure 7)
can be modelled by the frontal view (view along the
[0 0 1] direction) of a gyroid structure with t= —1.0. In
that case, the circular air holes have a diameter of
approximately a/2 and the cuticle volume is 0.17
(figure 4). From this TEM image, the lattice unit can
then be estimated, and we find a=363 445 nm.

Choosing t= —1.0 and varying the thickness d of the
sections, we have computed several projections for
various viewing angles. For d=a, many of these
projections show (nearly) square lattices with (nearly)
circular air holes. These projections, which can be
compared with whole-mount TEM micrographs,
explain why Morris (1975) misinterpreted the structure
as SC with a lattice parameter of 257 nm (which is
exactly a/v/2). Figures 5b and 6b demonstrate that for
d=0.2a, we can reproduce the black-and-white pat-
terns and thus characterize the domains very well.
Using the parameters t= —1.0 and d=0.2a, we can also
fully reproduce the patterns observed in the TEM
micrograph of a transversely sectioned wing scale of
C. rubi in Ghiradella (1984). A comparison of the
simulated and real TEM micrographs of transverse and
longitudinal sections yields that the lattice parameter
of the gyroid network is approximately 300 nm, which
is slightly below our estimate based on the analysis of
the whole-mount TEM micrograph.

In summary, we find that the cuticular lattice
structure in the scales of C. rubi approximates the gyroid
structure with t= —1.0 (chitin volume fraction of 0.17).
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Figure 7. TEM micrograph of whole mount of C. rubi scale.
(Reproduced with permission from Ghiradella & Radigan
(1976).) Scale bar, 1 pm.

4.4. Other butterflies and insects

We have investigated whether our conclusion that
P. sesostris and C. rubi have a gyroid cuticular
structure also applies to other Papilionidae and
Lycaenidae.

For the papilionid T. imperialis, we find that the
three TEM micrographs presented by Argyros et al.
(2002) can be generated from sections of a gyroid
structure with t=—0.3 and thickness 0.2a (chitin
volume fraction of 0.31), but also from sections of a
gyroid structure with ¢t=—0.6 and thickness 0.3a
(chitin volume fraction of 0.31; results not shown).
Such gyroids, chiral cubic structures having threefold
connectivity, are completely different from the chiral
tetrahedral structure found by Argyros et al. (2002)
by means of electron tomography and computer
modelling and visualization. This again shows that
making a unique structure characterization of these
cuticular structures remains a difficult task. Unfortu-
nately, we were unable to find enough TEM micro-
graphs in the literature to allow a more detailed
analysis for T. imperialis.

The same holds for lycaenids other than C. rubi.
The cuticular structure in the ventral wing scales of
C. remus has been identified as an FCC inverted opal
structure (Kertész et al. 2006). However, the under-
lying TEM micrograph (fig. 7 of Kertész et al. 2006) can
be well modelled by a gyroid with ¢=—0.5 (chitin
volume fraction of 0.34; results not shown). Also, the
cuticular structures of M. gryneus (Ghiradella 1989;
Prum et al. 2006) can be modelled by a gyroid with
t=—1.0 and those of Callophrys dumetorum (Prum
et al. 2006) by a gyroid with t=—0.6 or —0.3 (results
not shown).

Ghiradella (1984) suggested that sections of the
green scales of the weevil Polydrusus sericeus show the
same type of lattice as that of C. rubi, which she
assumed to be an FCC lattice of air spheres embedded
in a matrix of cuticle. We however conclude, based on
our analysis of the single TEM micrograph showing a
frontal section (Ghiradella 1984), that the lattice
structure is definitely not a gyroid structure (BCC),
the structure we found for C. rubi, but rather a
D-surface (diamond) structure (FCC).
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5. BIOLOGICAL PHOTONIC CRYSTALS

In §4 we have shown that the cuticular microstructure
in the wing scales of various Papilionidae and Lycae-
nidae species can be modelled by a gyroid structure. In
the various species that we have investigated, the
cuticle volume fraction varies between 0.17 and 0.40. It
appears to be difficult to determine the lattice
parameter from the published SEM and TEM micro-
graphs, but we estimate that it varies between 165
and 360 nm.

It is well known that the gyroid structure has
potential as a photonic crystal, a periodic dielectric
composite structure with a periodicity of the order of
the wavelength of electromagnetic waves, that forbids
propagation for a certain frequency range, called the
PBG (Martin-Moreno et al. 1999; Babin et al. 2002;
Maldovan et al. 2002; Michielsen & Kole 2003). In
general, the characteristics of PBGs in periodic
dielectric structures depend on the dielectric contrast
between the composites, the symmetry and topology of
the structure and the filling factor, i.e. the ratio
between the volume occupied by each dielectric with
respect to the total volume of the composite. If for the
frequencies in the PBG the propagation of electro-
magnetic waves is forbidden in any direction and for
any polarization, the PBG is called complete, and
otherwise it is called partial.

Computer simulations have shown that for relatively
large dielectric contrasts (n/n’'=3.5, where n and n’
denote the refractive indices of the two composites), the
gyroid structure has a complete PBG for filling factors
between approximately 0.04 and 0.55 (Martin-Moreno
et al. 1999; Babin et al. 2002; Maldovan et al. 2002;
Michielsen & Kole 2003). The higher the filling factor,
the lower is the midgap frequency. The largest gap is
observed for a filling factor of approximately 0.20, with
a midgap frequency wa/2mwc=0.5. Hence, for these high
dielectric contrasts, PBGs in the optical regime are
expected for lattice parameters a=200-350 nm. The
large complete PBG closes for a refractive index
contrast n/n’' <2.5 (Martin-Moreno et al. 1999; Babin
et al. 2002; Maldovan et al. 2002).

The cuticle/air structures of butterfly wing scales
have a refractive index contrast n/n'=(1.55+0.05)+
1(0.06+0.05) (Vukusic et al. 1999). Hence, given that
for various papilionids and lycaenids these structures
can be modelled by a gyroid structure with a cuticle
volume fraction varying between 0.17 and 0.40, we
conclude that these structures are biological photonic
crystals without a complete PBG. However, partial
band gaps may exist for light propagation in some
directions or for some polarizations. Owing to the
absence of complete PBGs, it might be expected that
the reflected light from the gyroid cuticular structures
is strongly angle dependent. However, this effect can be
masked by the fact that one scale is constructed from
several domains with different orientations (§4), caus-
ing a uniform colour.

Many applications of photonic crystals are in the
visible (400-700 nm) or near-infrared (500-1300 nm)
wavelength range. Finding three-dimensional photonic
structures with a large absolute PBG in the visual or
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near-infrared frequency range, which is suitable for
large-scale production, is therefore highly desirable.
Owing to the submicrometre resolution required in the
production technology, manufacturing these photonic
crystals is a great challenge. One possible way to
construct three-dimensional photonic crystals in the
optical wavelength range could be by using the gyroid
cuticular structure in the wing scales of some Papilio-
nidae and Lycaenidae as a template. Although it is a
challenge to replicate the gyroid structure of this
biotemplate, it might also be a useful tool to produce
three-dimensional photonic crystals. If possible, coating
of the biotemplate with a material having a higher
refractive index than the one of chitin could even
produce a three-dimensional photonic crystal with a
large complete PBG. For this purpose, the scales of
C. rubi could serve as a proper biotemplate, since the
cuticle filling fraction is nearly optimal for obtaining
the largest PBG. Very recently, a controlled replication
by means of a low-temperature atomic layer deposition
process was performed to produce aluminium oxide
replicas of wing scales from a Morpho peleides butterfly
(Huang et al. 2006). The blue colour of the wings of
M. peleides results from a two-dimensional photonic
crystal slab consisting of arrays of rectangles formed by
lamellae and microribs (Huang et al. 2006). Although
the photonic structure in M. peleides is simpler than
the one in C. rubi, the same or a similar technique
(Seshadri & Meldrum 2000; Cook et al. 2003) could be
applied to produce a replica of the wing scales of C. rubi.

We thank Dr P. Vukusic and Dr H. Ghiradella for supplying
the photographs of figures 2, 3 and 5-7 and for critically
reading the manuscript. Financial support was given by the
EOARD (grant no. FA8655-06-1-3027).
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