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Abstract
γ-Aminobutyric acid type A (GABAA) receptors mediate the majority of fast synaptic inhibition in
the mammalian brain, controlling activity both at the network and cellular level. The diverse functions
of GABA in the central nervous system are matched not just by the heterogeneity of GABAA
receptors, but also the complex trafficking mechanisms and protein-protein interactions that generate
and maintain appropriate receptor cell surface localization. In this review, we discuss recent progress
in our understanding of the dynamic regulation of GABAA receptor composition, trafficking to and
from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic
locations. Finally, we highlight a number of neurological disorders, including epilepsy and
schizophrenia, in which alterations in GABAA receptor trafficking occur.

1. Introduction
Synaptic inhibition in the brain is largely mediated via γ-aminobutyric acid (GABA). The fast
inhibitory actions of GABA are mediated via the activation of GABAA receptors (GABAARs)
in the brain1,2 and via GABAC receptors in the retina3, whereas the slow prolonged actions
of this transmitter are mediated via metabotropic G-protein coupled GABAB receptors4,5.
GABAARs are also clinically relevant drug targets for anti-convulsant, anxiolytic, and
sedative-hypnotic agents. Moreover, deficits in the functional expression of GABAARs are
critical in epilepsy, anxiety disorders, cognitive deficits, schizophrenia, depression, and
substance abuse. Understandably, there has been considerable interest in comprehending the
cellular mechanisms that regulate their accumulation on the neuronal plasma membrane.

Molecular studies have demonstrated that GABAARs are members of a ligand-gated ion
channel superfamily, whose members include nicotinic acetylcholine, glycine and 5-hydroxy-
tryptamine 3 (5-HT3) receptors6,7. Members of this superfamily are heteropentamers that are
assembled from a range of homologous subunits that share a common structure: a large N-
terminal extracellular domain and 4 transmembrane domains (TMs) with a large intracellular
domain between TM 3 and 4 (Fig. 1A). To date, 18 GABAAR subunits have been identified.
Based on sequence homology, these are divided into 7 subunit classes, each of which has
multiple members; α(1–6), β(1–3), γ(1–3), δ, ε(1–3), θ, π. GABAAR structural diversity is
further increased via the alterative splicing of some receptor mRNAs. However, most
GABAARs are composed of 2α, 2β and 1γ (or 1δ) subunit2 (Fig. 1B). GABAARs with different
subunit composition have different physiological and pharmacological properties, are
differentially expressed throughout the brain, and targeted to different subcellular regions. For
instance, receptors composed of α(1,2,3 or 5) subunits together with β and γ subunits form
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benzodiazepine-sensitive receptors that are largely synaptically located and mediate the
majority of phasic inhibition in the brain2 (with the notable exception of extrasynaptically-
localized α5-containing receptors8,9) (Fig. 1C). In contrast, those composed of α(4/6)βδ
subunits form a specialized population of predominantly extrasynaptic receptor subtypes that
mediate tonic inhibition and are insensitive to benzodiazepine modulation9. In addition,
GABAARs at presynaptic sites also exist10.

Here we will address how neurons regulate the assembly, membrane trafficking, synaptic
accumulation and function of these distinct GABAAR subtypes, and the relevance of these
emerging regulatory processes for the efficacy of neuronal inhibition in both health and disease.

2. Controlling GABAAR assembly
GABAARs are assembled from their component subunits in the endoplasmic reticulum (ER).
This process plays a critical role in determining the diversity of GABAARs that are expressed
on the neuronal cell surface, because exit from the ER is dependent upon proteins reaching
“conformation maturity” and misfolded proteins are retro-translocated from this organelle for
degradation in the proteasome.

Limiting diversity via selective oligomerization
Many different subunit combinations are theoretically possible, however studies reveal that
only a limited number of these combinations can actually exit the ER and access the neuronal
cell surface. Most studies agree that most GABAARs expressed on the surface of neurons are
composed of 2α, 2β, and 1γ subunit (the γ subunit can be replaced by δ, ε or π depending on
the neuron type and subcellular localization of the receptor)2,11. Most homomeric subunits,
and αγ and βγ heteromers, are retained in the ER and degraded (for a review, see12). Thus, the
expression and assembly of these subunits must be carefully regulated in the ER, via
mechanisms that involve classical ER-resident chaperones, such as heavy chain binding protein
and calnexin13.

Sequences in the N-terminus of GABAAR subunits control receptor oligomerization, thus
promoting the assembly of particular subunit combinations12. Oligomerization of individual
GABAA receptor subunits into heteromers occurs within 5 minutes after translation14.
However, it is inefficient, with less than 25% of translated subunits being assembled into
heteromeric receptors14. GABAAR subunit-deficient mice have provided insights into the
preferential assembly of select GABAARs in vivo. For example, a loss of the δ subunit from
the plasma membrane of cerebellar granule cells is observed in α6 knock-out mice15. Similarly,
there is a decrease in the α4 subunit levels in the forebrain of δ subunit-deficient mice, whereas
the levels of α1 subunits remain unchanged16,17. This indicates that the δ subunit preferentially
assembles with α4 and α6 subunits. There is also a compensatory increase in γ2 subunit levels
in δ subunit-deficient mice16,17, suggesting that γ2 associates with the α4 subunit in the
absence of the δ subunit. These findings suggest that subunits compete to find their preferential
oligomerization partners in the ER. However, the details of these processes remain to be
determined.

Activity-dependent GABAAR ubiquitination
The ER is responsible for the retention and degradation of misfolded or unassembled subunits
and, accordingly, homomeric unassembled GABAARs subunits have been shown to be
degraded in this organelle14,18. ER-associated degradation (ERAD) involves protein
ubiquitination and degradation via the ubiquitin-proteasome system (UPS)19. GABAAR
subunits have recently been shown to be ubiquitinated in an activity-dependent manner20.
Chronic blockade of neuronal activity dramatically increased the levels of GABAAR
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ubiquitination within the ER, resulting in decreased insertion at the plasma membrane20.
Correspondingly, increasing the level of neuronal activity resulted in a decrease in the level of
GABAAR ubiquitination and an enhancement of receptor cell surface expression20. Thus,
neuronal activity can regulate the ubiquitination of GABAARs in the ER, affecting their rate
of degradation via the UPS. This may be one mechanism neurons use to homeostatically
regulate synaptic inhibition.

The fate of ubiquitinated GABAARs is also likely to be modulated via their association with
the ubiquitin-like proteins Plic-1 and Plic-218, which have been demonstrated to block the
degradation of ubiquitinated substrates21. Plic-1 binds to the intracellular domain of α and β
GABAAR subunits via its ubiquitin-associated (UBA) domain18. Plic-1 increases the half-life
of GABAARs, resulting in an increase in the number of receptors available for insertion into
the plasma membrane18. Plic-1 does not affect the rate of receptor endocytosis18, thus it
appears to function solely in the secretory pathway by stabilizing and/or inhibiting the
degradation of GABAARs by the UPS, thereby facilitating receptor accumulation at inhibitory
synapses.

3. Facilitating GABAAR trafficking
After assembly in the ER, transport-competent GABAARs are trafficked to the Golgi apparatus
and segregated into vesicles for transport to, and insertion into, the plasma membrane. Our
understanding of these processes remains rudimentary, but it is becoming clear that they are
facilitated by a number of receptor-associated proteins (Fig. 2), which are described in the
following sections.

GABARAP and NSF
GABA receptor-associated protein (GABARAP) interacts with the intracellular domain of
GABAAR γ subunits in vitro and in vivo22. It also binds to microtubules23 and to N-
ethylmaleimide-sensitive factor (NSF)24, a protein involved in intracellular vesicular fusion
events25. GABARAP is concentrated in the Golgi apparatus and in intracellular vesicles, but
is not present at GABAergic synapses22,24,26, suggesting that its main role is in the
intracellular transport of GABAARs. Overexpressing GABARAP with GABAARs results in
increased cell surface receptor expression, possibly as a result of enhanced intracellular
receptor trafficking27,28,29. This effect can be abolished by a mutation that disrupts the
addition of phospholipids to GABARAP30, which apparently increases its membrane
association, and is thus critical for GABARAP to control GABAAR trafficking30. Analysis of
GABARAP knock-out mice did not reveal any alterations in synaptic γ2-containing
GABAAR numbers31; however, this may reflect redundancy, given the existence of other
GABARAP homologs that can interact with GABAARs32. Recently, it was demonstrated that
GABARAP is necessary for increasing cell surface GABAAR expression after N-methyl-D-
aspartate (NMDA) receptor activation33, suggesting that it may have a role in the regulated
delivery of GABAARs to the surface after activity, rather than in the maintenance of basal
receptor levels.

NSF has also been found to bind directly to GABAAR β subunits34. NSF and GABARAP may
act together to promote the forward trafficking of GABAARs from the Golgi apparatus. Indeed,
the subcellular distribution of both GABAARs and NSF is disturbed when the lipid
modification of GABARAP is prevented in neurons, resulting in less GABAARs being
trafficked to the plasma membrane30. However, another study found that overexpression of
NSF significantly reduced GABAAR cell surface numbers in both heterologous systems and
in neurons34. This is opposite to the effect observed on GABAARs when GABARAP is
overexpressed27,28,29, and is also opposite to NSF’s role in enhancing α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptor surface expression35,36. This may
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indicate that NSF has additional functions in the endocytic pathway, however further studies
are required to understand the exact mechanism of how NSF regulates GABAAR numbers.

PRIP proteins
Phospholipase C-related catalytically inactive proteins (PRIP) are inositol 1,4,5-trisphosphate
binding proteins37. PRIP-1 is expressed mainly in the brain, whereas PRIP-2 is expressed
ubiquitously38. PRIP proteins bind to GABARAP as well as to the intracellular domains of
GABAAR β subunits, and more weakly, γ2 subunits38,39. These findings prompted the
hypothesis that PRIP proteins modulate GABAARs by competitively inhibiting GABARAP
binding39. However, a more recent study40 suggests that PRIP molecules act as bridging
proteins between GABARAP and GABAARs, facilitating the transport of γ2-containing
receptors. This model was derived largely from studies of PRIP-1 and PRIP-2 double knock-
out (PRIP-DKO) mice, in which the association between GABAARs and GABARAP in
neurons was significantly reduced40. Furthermore, PRIP-DKO mice have reduced sensitivity
to diazepam, suggesting an alteration in γ2-containing GABAARs40. PRIP-1 knockout mice
showed a similar phenotype39. In a complementary approach, peptides were used to disrupt
the binding of PRIP-1 to GABAAR subunits, resulting in a reduction in cell surface expression
of γ2-containing GABAARs in cultured cell lines and neurons40. Thus, PRIP and GABARAP
proteins may participate together in the trafficking of GABAARs to the synaptic membrane.

PRIP proteins may also regulate GABAAR function by regulating their phosphorylation.
Phosphorylation has been shown to dynamically modulate GABAAR function, and β subunits
are substrates for protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA)41.
Dephosphorylation of GABAARs by the protein phosphatase 1α (PP1α) terminates
phosphorylation-dependent receptor modulation42, and PP1α has been shown to be inactivated
by PRIP-143. PRIP-1 knock-out mice exhibited enhanced PP1α activity, resulting in
diminished phosphorylation of GABAARs by PKA and subsequent changes in hippocampal
neuronal inhibition42. Lastly, a recent study has implicated PRIP proteins in the constitutive
internalization of recombinant GABAARs from the plasma membrane of non-neuronal
cells44. Thus, PRIP proteins might have a central role in controlling GABAAR function via at
least three distinct mechanisms: the trafficking of GABAARs, the modulation of GABAAR
phosphorylation and the internalization of GABAARs.

Palmitoylation and GODZ
Palmitoylation involves the covalent attachment of the saturated fatty acid palmitate to a protein
and has been shown to play a role in protein trafficking and function at both inhibitory and
excitatory synapses45. Two groups have demonstrated that cysteine residues located within
the intracellular domain of γ subunits are substrates for palmitoylation and that this
modification is critical for the delivery of GABAARs to synapses46,47. The Golgi-specific
DHHC zinc finger domain protein (GODZ) has been shown to mediate the palmitoyl acyl
transfer to these subunits46. Of the twenty-three members of the Asp, His, His, Cys-cysteine-
rich repeat domain (DHHC-CRD) protein family only GODZ and its close paralog Sertoli cell
gene with a zinc finger domain-β (Serz-β) can efficiently palmitoylate the γ2 subunit48.
Furthermore, studies using dominant-negative GODZ or GODZ-specific RNA interferance
(RNAi) have demonstrated that GODZ is the principal palmitolytransferase for
GABAARs48. GODZ is not found at inhibitory synapses, but is enriched in the trans-Golgi
network, and is essential for the accumulation of γ2-containing GABAARs at synapses and for
synaptic inhibitory function46,48. Therefore, GODZ presumably acts to control GABAAR
trafficking in the secretory pathway and the delivery of these receptors to the plasma
membrane46.
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BIG2
Brefeldin A-inhibited GDP/ GTP exchange factor 2 (BIG2) plays an important role in the
vesicular trafficking of GABAARs to the plasma membrane. A yeast two hybrid screen showed
that it can bind to the intracellular domain of the β3 subunit, and it has since been shown to
have high binding affinity for the intracellular loops of all β subunits49. In hippocampal
neurons BIG2 is largely localized to the trans-Golgi network, but it is also found in trafficking
vesicles and at the synaptic plasma membrane49. BIG2 has a known role in membrane budding
and vesicular transport from the Golgi apparatus50. Taken together, this suggests that the main
function of BIG2 is in the intracellular trafficking of GABAARs through the exocytic pathway
to the plasma membrane.

GRIF/TRAK proteins
GABAAR-interacting factor 1 (GRIF-1) was first described as a protein that interacts with the
β2 subunit of GABAARs51. It is a member of the TRAK family of coiled-coil domain proteins
that have been implicated in the trafficking of intracellular vesicles. GRIF-1 (also known as
TRAK2) and TRAK1 both interact with the microtubule-associated motor protein kinesin52,
53. TRAK1 has also been shown to interact with GABAARs54, suggesting a role for these
proteins in regulating the motor-dependent transport of GABAARs. Interestingly, deletion of
TRAK1 in mice leads to hypertonia and reduced GABAAR expression in the brain and motor
neurons54.

4. Clustering GABAARs at synapses
After navigating their way through the secretory pathway, GABAARs are inserted into the
plasma membrane, where they are able to access inhibitory postsynaptic specializations or
extrasynaptic sites, depending on subunit composition (Fig. 3). The mechanisms that facilitate
these distinct subcellular fates are described below.

Synaptic vs. extrasynaptic GABAARs
GABAARs on the neuronal cell surface exist as diffuse receptor populations or synaptic or
extrasynaptic clusters. Lateral diffusion within the plasma membrane allows for continual
exchange between these receptor populations55,56. GABAARs that can bind bungarotoxin
have been used to examine the subcellular sites of GABAAR insertion into the neuronal
membrane. These studies have demonstrated that most receptors are delivered to extrasynaptic
locations in the plasma membrane. Over time, diffusion and trapping increases the population
of synaptic receptors57.

Heteromeric GABAARs retain distinct cell surface expression patterns dependent on subunit
composition. Most surface receptor clusters of γ2 receptor subunits are synaptic, whereas β3-
containing GABAARs have a higher proportion of diffuse and/or extrasynaptic receptors55,
58. α5-containing receptors are predominantly extrasynaptic8,9. Other receptor subunits, such
as δ, appear as diffuse populations on the neuronal surface59,60 and are exclusively located
outside the synapse at perisynaptic and extrasynaptic locations57,61. These extrasynaptic α5-
and δ- containing GABAARs are considered the main receptors mediating tonic inhibition.

Gephyrin-dependent clustering of GABAARs
One protein strongly implicated in regulating the clustering of GABAARs at inhibitory
synapses is the multifunctional protein gephyrin, which was first identified by its association
with glycine receptors62. Gephyrin binds directly with the intracellular domain of the β subunit
of glycine receptors, which stabilizes these proteins at inhibitory synapses in the spinal
cord63–67. Gephyrin is also widely expressed in non-neuronal tissues65. In the brain, it is
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found in neurons, and is enriched at postsynaptic specializations that contain GABAAR
subtypes composed of α(1–3), β(2,3) and γ2 subunits68.

Reducing gephyrin expression compromises the accumulation of GABAAR subtypes
containing α2 or γ2 subunits at inhibitory synapses55,66,69–71, although there is no change
in overall levels of these subunits71 and only a modest reduction in the amplitude of miniature
inhibitory postsynaptic currents (mIPSCs) or GABA-induced whole-cell currents66. In
addition, surface clusters of GABAARs formed in the absence of gephyrin were three times
more mobile than those in control neurons55, indicating that gephyrin plays a role in enhancing
the confinement of GABAARs at synaptic sites. Furthermore, gene knockout of collybistin, an
established binding partner for gephyrin72,73, also leads to loss of synaptic GABAAR
clusters74. Together, these results support the concept that gephyrin may act to promote the
stability of GABAAR clusters containing α2/γ2 subunits.

A loss of α3 and β(2/3) subunits were observed in spinal cord neurons of gephyrin knockout
mice, whereas there were only minimal changes in α1 or α5 subunits in hippocampal and spinal
cord neurons66,70. These observations suggested the existence of gephyrin-dependent and
independent GABAAR clustering mechanisms. However, the development of compensatory
clustering mechanisms in neurons devoid of gephyrin cannot be discounted.

The molecular mechanisms underlying gephyrin-dependent clustering of GABAARs remain
poorly understood. Evidence suggests that a domain critical for clustering may exist within the
γ2subunit, as cultured neurons from γ2 knock-out mice are devoid of both GABAARs and
gephyrin at postsynaptic sites69,75. In order to identify such a domain, chimeric α2/γ2 and δ/
γ2 receptors have been studied76,77. These suggest that the intracellular loop and/or
transmembrane domain 4 of the γ2 subunit are critical for GABAAR synaptic clustering76,
77, but whether these domains actually mediate their effects in a mechanism dependent upon
gephyrin remains to be established.

Efforts to show gephyrin binding to native GABAARs have been unsuccessful63. Similarly,
co-expression of gephyrin and α1–3, β1–3 and γ2 GABAAR subunits in HEK-293 cells
revealed only a weak interaction with the β3 subunit78. Interestingly, a recent study79
identified a 10 amino acid hydrophobic motif within the major intracellular domain of the α2
subunit that is responsible for the targeting of GABAAR subunits to inhibitory synapses.
Critically, this phenomenon is dependent upon gephyrin expression79. In addition, this motif
was demonstrated to mediate the direct interaction of the intracellular domain of the α2 subunit
with gephyrin in in vitro binding assays79. However, under the same conditions, minimal
binding of gephyrin to the intracellular domains of the γ2 and β3 subunits was evident79. The
interaction of the α2 intracellular domain with gephyrin was blocked by low concentrations of
detergent79, thus providing a possible explanation as to why previous studies had not identified
such a direct association between gephyrin and GABAARs.

In summary, these results provide strong evidence that gephyrin can bind directly to receptor
subtypes containing α2 subunits and regulate their synaptic targeting, but the relevance of this
mechanism for receptor subtypes containing other α subunit variants remains to be evaluated.
Significantly, a large number of gephyrin splice variants have been identified80 and the
synaptic localization and function of gephyrin can be regulated by both activity81,82 and
phosphorylation83. It will therefore be of merit to examine the roles that these differing variants
of gephyrin play in regulating the synaptic clustering of distinct GABAAR subtypes.

Gephyrin-independent clustering of GABAARs
Gephyrin-independent GABAAR clustering mechanisms are suggested by the presence of
clustered receptors and mIPSCs in gephyrin knockout mice66,70,83. Recently, radixin, an
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ERM (ezrin, radixin, moesin)-family member protein, has been identified as a specific
interactor for the intracellular domain of the α5 subunit84. ERM proteins exist in an inactive
conformation and are activated by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and
subsequent phosphorylation of the C-terminus (for a review, see85). In neurons, depletion of
radixin dramatically decreased α5-containing GABAAR clustering, although total cell surface
levels of the α5 subunit remained unchanged84. Radixin appears to directly link the α5 subunit
to the actin cytoskeleton, as activated radixin is capable of binding both the α5 subunit and F-
actin84. The apparent radixin binding domain within the α5 subunit is a highly conserved region
that is also found in α1–3 subunits, differing only in the last two amino acids in the α2 subunit.
Further work clearly remains in elucidating the mechanism of radixin-dependent GABAAR
anchoring.

5. Endocytosis and post-endocytic sorting of GABAARs
GABAAR endocytosis

GABAARs undergo extensive endocytosis in both heterologous and neuronal systems.
Although a clathrin-independent endocytic pathway has been demonstrated in heterologous
cells86, clathrin-dependent endocytosis appears to be the major internalization mechanism for
neuronal GABAARs87 (Fig. 4), with approximately 25% of β3-containing cell surface
GABAARs being internalized within 30 minutes88. Blocking clathrin-dependent endocytosis
results in reduced GABAAR internalization87,89,90 and a large increase in mIPSC
amplitude87, consistent with an increase in cell surface receptor levels87,89,90.

The clathrin adaptor protein 2 (AP2) complex plays a critical role in recruiting membrane-
associated proteins into clathrin-coated pits. AP2 is composed of four distinct subunits (α, β2,
μ2 and σ2 subunits; reviewed in91). GABAARs in the brain are intimately associated with AP2
via a direct binding of β1–3 and γ2 GABAAR subunits to the μ2 subunit of this complex87.

Within the β2 GABAAR subunit, a dileucine motif has been identified that is important for
clathrin-dependent GABAAR internalization in heterologous cells89. In addition, an atypical
AP2 binding motif within the intracellular domains of GABAAR β subunits has been
identified92. Intriguingly, this binding motif contains the major sites of phosphorylation for
PKA and PKC, and phosphorylation of these sites reduces binding to the μ2 subunit of
AP292. A peptide corresponding to the AP2 binding motif in the β3 subunit binds to AP2 with
high affinity only when dephosphorylated92. Furthermore, this peptide enhanced mIPSC
amplitude and whole cell GABAAR currents.

More recently, another AP2 binding motif, centered around tyrosines 365/7 in the GABAAR
γ2 subunit, has been identified93. These tyrosine residues are the principal sites for
phosphorylation by Src kinase94. A peptide containing residues Y365/7 exhibits very high
affinity for the μ2 subunit, and the affinity of this interaction is dramatically decreased via
phosphorylation of these sites93. Introduction of the non-phosphorylated γ2 peptide into
neurons produced a large increase in the mIPSC amplitude, and was observed to increase the
number of cell surface GABAARs. Intriguingly, co-dialysis of neurons with both the non-
phosphorylated β3 and γ2 subunit peptides produced an additive effect on mIPSC
amplitudes93.

Together, these results provide direct evidence that phosphorylation of GABAAR subunits at
distinct AP2 binding sites can regulate the cell surface stability of GABAARs and the strength
of synaptic inhibition. Moreover they also provide a mechanism by which neurotransmitter
and/or growth factor signaling pathways that regulate the activity of protein kinases/
phosphatases41,95–97; could influence the efficacy of synaptic inhibition by controlling the
stoichiometry of GABAAR phosphorylation and, thus, their endocytosis.

Jacob et al. Page 7

Nat Rev Neurosci. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



GABAAR recycling and lysosomal degradation
Once endocytosed, most internalized GABAARs recycle back to the plasma membrane over
short time frames; however over longer time periods they are targeted for lysosomal
degradation88. Clearly the fate of internalized GABAARs will therefore play a critical role in
controlling cell surface receptor levels and hence the efficacy of synaptic inhibition. Huntingtin
associated protein-1 (HAP1)98 is a GABAAR associated protein that binds the intracellular
loop of β subunits in vitro and in vivo88. HAP1 is a cytoplasmic protein with several central
coil-coiled domains that are likely to regulate protein-protein interactions. Overexpression of
HAP1 in neurons inhibits GABAAR degradation and consequently increases receptor
recycling88. Furthermore, HAP1 overexpression increased steady state surface levels of
GABAARs and produced a 63% increase in mIPSC amplitude, showing a dramatic functional
effect of increased surface receptor number88. The mechanism underlying post-endocytic
GABAAR sorting remains to be elucidated, and HAP1’s specific role in this process is also an
area of active research. The impact of HAP1 regulation of GABAARs was recently shown in
the hypothalamus, where down-regulation of HAP1 levels resulted in decreased GABAAR
levels, causing decreased food intake and loss of body weight99. An unresolved issue is
whether HAP1 acts to promote recycling of GABAARs or prevents their lysosomal
degradation.

6. Compromised GABAAR trafficking in disease
The significance of the aforementioned mechanisms for maintaining homeostatic synaptic
inhibition is highlighted by the multiple neurological and psychiatric diseases in which
GABAAR dysfunction has been suggested. These include epilepsy100, anxiety disorders2,
Huntington’s disease101, Angelman syndrome102, fragile X syndrome103,
schizophrenia104, and drug abuse105. In this section, we highlight recent findings related to
a few of these disorders.

Epilepsy
The epileptic state represents a dramatic change in balance between excitatory and inhibitory
activity. Studies have shown that seizure activity results in altered GABAAR trafficking and/
or subunit expression in animal models of status epilepticus (SE) and temporal lobe epilepsy
(TLE), as well as in patients100,106. These changes involve both up- and down-regulation,
depending on the particular GABAAR subunit in question, as well as on the time-point studied
in relation to the evolution of the chronic seizure state.

SE is a life-threatening state in which seizures occur unremittingly107. Decreases in synaptic
GABAARs, resulting from enhanced endocytosis, have been observed in animals in which SE
has been experimentally induced108–110. The loss of these synaptic receptor populations,
which are normally benzodiazepine-sensitive, may explain the rapid development of
pharmacoresistance in patients with SE and also explain the non-terminating nature of these
seizures. A recent study showed decreased phosphorylation of β3 GABAAR subunits during
SE, resulting in an increased association of receptors with the clathrin adaptor AP2110 (Fig.
5A). Enhancing GABAAR subunit phosphorylation, or selectively blocking subunit binding
to AP2, increased GABAAR surface expression levels and normalized synaptic inhibition in
hippocampal slices derived from mice with SE110. Thus, novel therapeutic strategies for SE
may one day be based on preventing or reversing this aberrant internalization of GABAARs.

Altered GABAAR expression has also been observed in animal models of TLE, however these
have generally shown increases in the expression of synaptic GABAARs, at least in the dentate
gyrus111. Corresponding increases in the expression of GABAAR-associated proteins, such
as gephyrin, and in the size and density of postsynaptic GABAAR clusters have also been
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demonstrated112. This suggests that novel GABAergic synapses form, which could occur as
a result of the aberrant sprouting of GABAergic axons106. Extrasynaptic GABAAR subunits
(α4 and δ) have also been reported to be increased in granule cells of the dentate gyrus in rat
models of TLE113–115, however, one study in mice has observed decreases in δ subunit
expression in these cells116. Analyses of hippocampal tissue from patients with TLE reveal
alterations in GABAAR subunit expression patterns that are similar to those observed
experimentally117,118.

Human genetic studies have provided further evidence that abnormal GABAAR function
contributes to epilepsy disorders. Multiple distinct mutations in the γ2119–121, α1122,123 and
δ subunits124 have been identified in patients with epilepsy. While the exact mechanisms by
which each of these mutations contribute to seizure disorders remain to be fully elucidated,
deficits in the assembly, trafficking and function of recombinant mutant receptors have been
described119,120,125–127. For example, a missense mutation that occurs in the α1 subunit
(A322D) leads to subunit retention in the ER, followed by ubiquitin-dependent
degradation128, resulting in overall lower levels of α1-containing GABAARs at the cell
surface.

Drug abuse
Considerable evidence exists to support a role for GABAARs in mediating the addictive
properties of drugs of abuse105,129. In particular, chronic use of alcohol or benzodiazepines,
which are both allosteric modulators of GABAARs, can lead to drug tolerance, dependence
and withdrawal symptoms following drug cessation. Changes in the mRNA and protein
expression of various GABAAR subunits have been documented after alcohol and
benzodiazepine administration in both cultured neurons and animal models130,131. However,
the mechanisms responsible for these alterations have only recently begun to be elucidated.
Significant alterations in the surface expression and composition of both synaptic and
extrasynaptic GABAAR populations have been observed after a single intoxicating dose of
alcohol in rats132 (Fig. 5B). These changes were found to be persistent after chronic alcohol
administration and withdrawal132,133. This long-term plasticity in GABAARs is likely to
involve changes in the phosphorylation of GABAAR subunits and alterations in the endocytosis
of specific GABAAR subtypes. For example, the association of PKC with GABAAR subunits
is altered after chronic ethanol exposure134. Increased associations between clathrin adaptor
proteins and α1 subunits have also been demonstrated135, suggesting that enhanced clathrin-
mediated endocytosis of α1-containing GABAARs contributes to changes in GABAAR
trafficking after chronic alcohol use (Fig. 5B). Interestingly, the well-documented phenomenon
of cross-tolerance to benzodiazepines after chronic alcohol use136 suggests that similar
mechanisms may be responsible for tolerance to both of these drugs. Thus, understanding
tolerance-inducing alterations in GABAAR trafficking should not only advance our
understanding of the disease process that leads to alcoholism, but also improve the development
of drugs to treat insomnia and anxiety disorders without causing tolerance.

Schizophrenia
Altered expression of several proteins involved in GABAergic transmission have been reported
in studies of postmortem tissue from subjects with schizophrenia. Significant reductions in the
mRNA levels of GAD-67 (one of the major GABA synthesizing enzymes) and the GABA
membrane transporter (GAT-1) have been observed in a subpopulation of interneurons in the
prefrontal cortex (PFC) of schizophrenic subjects137,138. In addition, a compensatory
upregulation of α2-containing GABAARs in the axon initial segment of pyramidal neurons has
been demonstrated137. Reduced GABAergic signaling between these affected interneurons
and pyramidal cells has been postulated to contribute to cognitive deficits associated with
schizophrenia104.
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The in vivo analysis of animal models will help to determine the extent to which aberrant
GABAergic plasticity contributes to the pathophysiology of schizophrenia. For example, mice
lacking the α3 GABAAR subunit showed select deficits in prepulse inhibition (PPI), which
could be normalized by treatment with the antipsychotic haloperidol139. Deficits in PPI have
been associated with a number of psychiatric disorders, including schizophrenia, and are a
measure of a diminished ability for sensorimotor information processing140. There was a
dramatic loss of synaptic GABAARs and gephyrin clusters in the thalamic reticular
nucleus141 (one of the main regions in the brain where the α3 subunit is normally
expressed142) of α3 subunit knockout mice, resulting in an absence of functional inhibitory
receptors throughout development in this critical brain region. Deficits in PPI have also been
observed in mutant mice in which there is a selective reduction in hippocampal α5-containing
GABAARs143. Together, these findings suggest that sensorimotor gating is highly sensitive
to an imbalance in inhibitory neurotransmission, and that hypofunction of select GABAAR
populations can lead to a schizophrenia-related cognitive impairment. Pharmacological
interventions to increase GABAAR function and/or trafficking of relevant GABAAR
subpopulations may help to alleviate some of the symptoms of schizophrenia and other
psychiatric disorders.

7. Conclusions and outlook
Fast inhibitory GABAergic synaptic transmission is a principal determinant of neuronal
excitability. This process is dependent upon the delivery of individual GABAAR subtypes,
which are endowed with unique physiological and pharmacological properties, to their
appropriate synaptic or extrasynaptic sites, where they mediate phasic and tonic inhibition,
respectively.

The synthesis and assembly of GABAARs in the ER is an important control point in
determining receptor diversity on the plasma membrane. Results from knock-out mice have
illustrated preferential receptor subunit partnerships, but how this process is orchestrated
remains to be determined. It is becoming apparent that subunits within the ER are subject to
activity-dependent ubiquitination, which decreases their stability and half-life and limits the
rate of insertion of newly synthesized receptors into the plasma membrane. It will be exciting
to determine whether the various GABAAR subunits are differentially ubiquitinated, as this
may allow neuronal activity to shape the number and pharmacological properties of
GABAARs on target cells. Modulating receptor palmitoylation, or their binding to accessory
proteins as they passage through the Golgi apparatus, may further refine our understanding of
how these processes shape the diversity of GABAARs on the plasma membrane.

GABAARs exhibit high rates of diffusion at the cell surface, which facilitates their delivery to
synaptic sites, or entry into coated pits for removal via clathrin-dependent endocytosis. It is
emerging that endocytosis is regulated via phosphorylation-dependent mechanisms; more
specifically, receptor binding to clathrin-associated proteins can be negatively modulated via
the phosphorylation of serine or tyrosine residues within specific GABAAR subunits. This
could allow cell-signaling pathways that regulate GABAAR phosphorylation to also influence
their cell surface stability. The relevance of these processes awaits the development of knock-
in mouse lines in which the phosphorylation residues within individual AP2 binding motifs
have been ablated. However, it is interesting to note that dephosphorylation of GABAARs and
their enhanced endocytosis may be responsible for compromised synaptic inhibition during
status epilepticus. Furthermore, the fate of endocytosed receptors is another determinant of
steady-state cell surface expression levels. However our understanding of processes that
control the recycling and lysosomal degradation of GABAARs remains rudimentary.
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The stabilization of GABAARs on the plasma membrane is likely to be facilitated by multiple
mechanisms. Extrasynaptic receptors mediate tonic inhibition, and the stabilization of α5-
containing receptors at extrasynaptic specializations is facilitated by the actin binding protein
radixin. For synaptic receptors, the multifunctional protein gephyrin is strongly implicated in
stabilizing receptors containing α2 and γ2 subunits. There is also evidence that α1-containing
GABAARs, although tightly co-localized with gephyrin, can be maintained at synaptic sites in
the absence of gephyrin. Therefore, further studies are required to address the range of
GABAAR subunits that are capable of binding specific gephyrin splice variants, and the roles
that these binding motifs play in the accumulation of individual subtypes at inhibitory synapses.

Resolution of these issues will provide key insights into what controls inhibitory synaptic
strength and how alterations in these processes result in the development of central nervous
system pathologies, ranging from epilepsy to schizophrenia. This information is also likely to
lead to the identification of novel therapeutic drug targets that will allow for the
pharmacological modulation of individual GABAAR subtypes.
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Glossary
BENZODIAZEPINES, Pharmacologically active molecules with sedative, anxiolytic, amnesic
and anticonvulsant effects. They act by binding at the interface between α(1,2,3 or 5) and γ
subunits of GABAA receptors to potentiate the response elicited by GABA.; YEAST TWO-
HYBRID SCREEN, System used to determine the existence of direct interactions between two
proteins. It involves the expression of two proteins in yeast; the plasmids encoding these
proteins are fused to GAL4 DNA-binding and GAL4 activation domains, respectively. If the
proteins interact, the resulting complex will drive the expression of a reporter gene, commonly
β-galactosidase.; GABAergic PLASTICITY, Changes in local activity that lead to longer-term
increases or decreases in inhibitory synaptic strength.; UBIQUITIN-PROTEASOME
SYSTEM, Ubiquitin is a 76 amino-acid protein that serves as a tag to mark proteins destined
for degradation. Proteins tagged by a polyubiquitin chain are targeted to the proteasome, a
large, multimeric barrel-like complex that acts by proteolysis to degrade proteins.;
PALMITOYLATION, The covalent attachment of a palmitate (16-carbon saturated fatty acid)
to a cysteine residue through a thioester bond.; CLATHRIN, One of the main protein
components of the coats formed during membrane endocytosis.; AP2 COMPLEX, Tetrameric
complex composed of subunits called adaptins that play an important role in clathrin-dependent
membrane endocytosis.; RNA interference (RNAi), A molecular method in which small
interfering RNA sequences are introduced into cells or tissues, and subsequently decrease the
expression of target genes.; MINIATURE INHIBITORY POSTSYNAPTIC CURRENT
(mIPSC), The postsynaptic current that results from the activation of synaptic receptors by
neurotransmitters (GABA or glycine) that are usually released from a single vesicle.; TONIC
INHIBITION, An inhibitory response that is mediated by the activation of extra- or peri-
synaptic GABAA receptors through ambient concentrations of GABA..
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Figure 1. GABAA receptor structure and neuronal localization
(A) GABAA receptors are members of the ligand-gated ion channel superfamily. Receptor
subunits consist of four hydrophobic transmembrane (TM1–4) domains, where TM2 is
believed to line the pore of the channel. The large extracellular N-terminus is the site for the
binding of the neurotransmitter GABA, as well as containing binding sites for psychoactive
drugs, such as benzodiazepines (BZ). Each receptor subunit also contains a large intracellular
domain between TM3 and TM4, which is the site for various protein interactions as well as
the site for various post-translational modifications that modulate receptor activity. (B) Five
subunits from 7 subunit subfamilies (α,β,γ,δ,ε,θ,π) assemble to form a heteropentameric
chloride-permeable channel. Despite the extensive heterogeneity of GABAA receptor subunits,
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the majority of GABAA receptors expressed in the brain consist of 2α, 2β, and 1γ subunit,
where the γ subunit can be replaced by δ, ε or π. Binding of the neurotransmitter GABA occurs
at the interface between the α and β subunits and triggers the opening of the channel, allowing
the rapid influx of chloride ions. BZ-binding occurs at the interface between α(1,2,3 or 5) and
γ subunits and potentiates GABA-induced chloride flux. (C) GABAA receptors composed of
α(1–3) subunits together with β and γ subunits are thought to be primarily synaptically
localized, whereas α5βγ receptors are located largely at extrasynaptic sites. Receptors
composed of the aforementioned subunits are benzodiazepine-sensitive. In contrast, receptors
composed of α(4,6)βδ are benzodiazepine-insensitive, and are localized at extrasynaptic sites.
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Figure 2. Trafficking of GABAA receptors
GABAA receptor subunits are synthesized and assembled into pentameric structures in the
endoplasmic reticulum (ER). This process is carefully regulated in the ER. The fate of
GABAA receptor subunits can be modulated by ubiquitination and subsequent ER-associated
degradation via the proteasome. Ubiquitinated GABAA receptor subunits can also be
modulated via their association with Plic-1. Plic-1 facilitates GABAA receptor accumulation
at the synapse by preventing the degradation of ubiquitinated GABAA receptors. Exit into the
Golgi network and subsequent trafficking to the plasma membrane are also facilitiated by a
number of GABAA receptor-associated proteins. GABARAP associates with the γ2 subunit of
GABAA receptors and aids in the trafficking of receptors from the Golgi network to the plasma
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membrane. NSF and BIG2 are also localized to the Golgi network, where they bind to β subunits
of GABAA receptors and modulate receptor trafficking. Palmitoylation of γ subunits occurs in
the Golgi apparatus as a result of an association with the palmitoyltransferase, GODZ, and is
a critical step in the delivery of GABAA receptors to the plasma membrane. GRIF proteins
play a role in the trafficking of GABAA receptors to the membrane. PRIP proteins also play
essential roles in the trafficking of GABAA receptors, as well as in modulating the
phosphorylation state of GABAA receptors.
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Figure 3. Dynamic regulation of receptor lateral mobility at the GABAergic synapse
GABAA receptors are inserted into the plasma membrane at extrasynaptic sites, where they
can then diffuse into synaptic sites. Lateral diffusion (black arrows) within the plasma
membrane allows for continual exchange between diffuse receptor populations and synaptic
or extrasynaptic receptor clusters, with anchoring molecules tethering or corralling moving
receptors. The synaptic localization of α2-containing GABAA receptors is maintained by direct
binding to gephyrin, which binds to microtubules and actin interactors such as the GDP/GTP
exchange factor collybistin72, Mena/ VASP (vasodilator-stimulated phosphoprotein)144 and
profilins 1 and 2144,145. No direct interaction between gephyrin and the γ2 subunit has been
demonstrated. However, gephyrin depletion increases γ2 cluster mobility, and loss of the γ2
subunit results in post-synaptic sites devoid of gephyrin. This suggests an unidentified
intermediary interactor or a post-translational modification that could link γ2-containing
receptors and gephyrin. Alternatively, clustering of γ2-containing receptors might occur via
an independent mechanism. Gephyrin also displays local lateral movements (red double
arrow), and removal or addition by microtubule dependent trafficking, contributing additional
mechanisms to regulate synaptic transmission. Extrasynaptic localization of α5-containing
GABAA receptors is controlled by binding to activated radixin, which directly binds F-actin.
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Figure 4. Regulation of GABAA receptor endocytosis and post-endocytic sorting
Clathrin-dependent endocytosis is the major internalization mechanism for neuronal
GABAA receptors. The intracellular loops of β and γ subunits interact with the clathrin adaptor
protein 2 (AP2) complex. Binding of the μ2 subunit is inhibited by phosphorylation of the AP2-
interacting motifs in GABAA receptor subunits, increasing cell surface receptor levels and
enhancing the efficacy of inhibitory synaptic transmission. Once endocytosed in clathrin-
coated vesicles (CCV), the vesicles are uncoated and fuse with early or sorting endosomes,
resulting in GABAA receptors being subsequently recycled to the plasma membrane or
degraded in lysosomes. Huntingtin associated protein-1 (HAP1) interacts with β subunits and
promotes receptor recycling to the plasma membrane. PKA and PKC regulate phosphorylation
of serine residues 408/9 in the AP2-binding motif of β3 subunits, while tyrosine residues 365/7
in the γ2 subunit are phosphorylated by Src kinase.
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Figure 5. Dysregulation in GABAA receptor trafficking in neurological disease
(A) Repetitive, non-abating seizures that lead to status epilepticus result in a decrease in the
phosphorylation of GABAA receptor β subunits by PKC. This leads to an increased associated
with the clathrin adaptor AP2, followed by increased internalization via clathrin-mediated
endocytosis. Decreased numbers of synaptic GABAA receptors lead to reduced synaptic
inhibition (ie. increased excitatory drive and a lower seizure threshold) as well as decreased
benzodiazepine sensitivity. (B) Alcohol-induced plasticity in GABAA receptors involves
changes in both synaptic and extrasynaptic GABAA receptor populations. After alcohol
administration, there is an increased internalization of δ-containing extrasynaptic GABAA
receptors. There is also an increased internalization of α1-containing synaptic GABAA
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receptors via clathrin-dependent internalization. Insertion of distinct GABAA receptor
populations at synaptic sites (ie. α4βγ2) have been hypothesized to serve a compensatory role
at inhibitory synapses, however, these receptors differ in their physiological functions from
normal synaptic GABAA receptor populations, as well as being benzodiazepine-insensitive.
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