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Abstract
Introduction: In the classification of Mass Spectrometry (MS) proteomics data, peak detection,
feature selection, and learning classifiers are critical to classification accuracy. To better understand
which methods are more accurate when classifying data, some publicly available peak detection
algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data
were recently compared; however, the issue of different feature selection methods and different
classification models as they relate to classification performance has not been addressed. With the
application of intelligent computing, much progress has been made in the development of feature
selection methods and learning classifiers for the analysis of high-throughput biological data. The
main objective of this paper is to compare the methods of feature selection and different learning
classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis
of MS proteomics data.

Results: We compared a well-known method of feature selection, Support Vector Machine
Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-
one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also
compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve
Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based
quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric
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learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To
compare, we conducted a comprehensive experimental study using three types of MALDI-MS data.

Conclusion: Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the
learning classifiers, when classification models derived from the best training were compared, SVMs
performed the best with respect to the expected testing accuracy. However, the distance metric
learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such
cases, the optimum classification model based on LMNN is worth investigating for future study.

Introduction
In proteome research, high-throughput mass spectrome-
try (MS) establishes an effective framework for biomedi-
cal diagnosis and protein identification [1]. A mass
spectrum data sample includes a sequence of mass/charge
(m/z) ratios. Two types of mechanisms, low resolution
and high resolution, that typically contain more than
10,000 data points ranging from 500 Da to 20000 Da, are
used in mass spectrometry.

Mass spectrum data mining usually contains four steps:
preprocessing, feature extraction or peak detection, fea-
ture selection and classification. Sometimes preprocessing
and peak detection are merged as preprocessing. The main
task in preprocessing is to purify the data and systemati-
cally represent the data for the following steps. The MS
data contain two kinds of noise that damage the classifi-
cation result: electric noise and chemical noise. MS data is
generated with chemical noise through matrix or ion over-
loading, and the noise usually shows up as a baseline
along the spectrum. Baseline correction computes the
local minimum value, draws a baseline represented as the
background noise, and subtracts the baseline from the
spectrum. Williams et al [2] proposed a robust algorithm
for computing the baseline correction of MALDI-MS spec-
tra. Alternatively, because electronic noise is generated
from the electronic instrument and is usually randomly
distributed in the spectra, Chen et al [3] designed a wave-
let-based de-noising that applies wavelet transformation
and removes a certain amount of lower value wavelet
coefficients. The de-noised data are normalized to system-
atically represent the spectra. The next crucial step is to
extract features from the spectra and then form the initial
complete feature set. The simplest way is to extract every
data point as a discriminative feature and generate a huge
feature set including more than 15,000 features [4,5]. A
more elaborate algorithm for peak detection and align-
ment is also available to perform an even more aggressive
feature extraction [6-8].

To classify MALDI MS data, peak detection, feature selec-
tion, and classifier are generally important to obtain the
final results. To compare public peak detection algo-
rithms, Yang et al. [9] recently conducted an experimental
study using five single spectrum based peak detection

algorithms including Cromwell [10], CWT [11], PROcess
[12], LMS [13], and LIMPIC [14]. That study did not com-
pare feature selection and classifiers for MALDI-MS data.
"The curse of dimensionality" in MS data requires a pow-
erful feature selection algorithm to choose the discrimina-
tive feature subset. While distance metric learning has
drawn many researchers' attention, researchers recognize
that different classifiers yield different results. Therefore, a
comprehensive experimental study that compares these
powerful methods of feature selection and different learn-
ing classifiers for the classification of MALDI-MS data has
been sorely needed.

Support Vector Machine Recursive Feature Elimination
(SVMRFE) [15] is a very popular method for feature selec-
tion based on the backward feature elimination that recur-
sively removes the least ranking feature. Originally
proposed for microarray data analysis, it has been widely
used for feature selection in different areas including MS
data analysis [16]. Recently, Tang et al. designed a method
of feature selection called the gradient based leave-one-
out gene selection (GLGS) for classifying microarray data.
The authors concluded that GLGS outperforms SVMRFE
in microarray data analysis [17], a finding that our previ-
ous work corroborates in that we found that GLGS also
effectively classified microarray data [18]. To reach a more
definitive understanding of how methods compare, we
evaluated two methods of feature selection as well as pop-
ular learning classifiers in an experimental study on
MALDI-MS data.

Methods
Preprocessing MALDI-MS data
Mass spectrum data has high dimensionality within a
small sample size. Both chemical and electrical noises are
involved in the signal, and the redundancy of the spectra,
different reference points, and unaligned feature points
increase the computational intensity and decrease the
classification accuracy. In this section, we explain the pre-
processing methods, including spectra re-sampling, wave-
let de-noising, baseline correction, normalization, peak
detection and alignment.
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Spectra re-sampling and wavelet de-noising
Mass spectrum data presents in a discrete format along
intervals that are not equal in the whole spectrum. For
high-resolution data, the high-frequency noise and redun-
dant data points harm the quality of the dataset. So, we
have to set the common low-frequent mass value to every
sample spectrum to have a unified representation. By
using spline interpolation, we resample the data and con-
fine the interval to a unified size. Before re-sampling, the
sample spectrum has little variation from the true spec-
trum. The data is re-sampled to a standard discrete data
that could be analyzed in a frequency domain. The electri-
cal noise is generated in an almost randomly distributed
way during the mass spectrum acquisition by the instru-
ment. The next step is to use discrete wavelet transform to
eliminate the electrical noise. By applying a wavelet trans-
form, the original signal is decomposed into multi-level
wavelet coefficients. By setting up a threshold value, given
percentiles of lower value coefficients are removed. Then,
we apply a polynomial filter of a second order to smooth
the signal and improve data quality.

Baseline correction and normalization
Chemical contamination introduces the baseline effect
and changes the true protein distribution. To minimize
chemical noise, the baseline is subtracted from the spec-
trum. To obtain the baseline, the local minima are com-
puted by assigning a shifting window size of 30 and a step
size of 30. Then, we use spline interpolation to fit the
baseline. After smoothing, the baseline is subtracted from
all spectra. To compare sample spectra, we need to nor-
malize the spectra using its total ion current to represent
the data in a systematic scale.

Peak detection and qualification
The final feature acquisition of MS data is to obtain the
peak position and its magnitude. Peak is the position of
maximum intensity in a local area in spectrum, and par-
ticularly in mass spectrum, it refers to the mass location
where ion count is the largest in a local m/z zone. The
peak is identified where the first derivative is changing
from a positive to a negative. In our mass spectrum exper-
iment, the peak detection method proposed by Coombes
et al [19] is performed on a mean spectrum rather than
individual spectra. We used the ad hoc method based on
signal-to-noise ratio to select the large peaks based on the
preprocessing method described in reference [6].

Feature selection
To address the "curse of dimensionality" problem, three
strategies have been proposed: filtering, wrapper and
embedded methods. Filtering methods select subset fea-
tures independently from the learning classifiers and do
not incorporate learning. One of the weaknesses of filter-
ing methods is that they only consider the individual fea-

ture in isolation and ignore possible interactions. Yet, the
combination of these features may have a combination
effect that does not necessarily follow from the individual
performances of the features in that group. One of the
consequences of the filtering methods is that we may end
up with many highly correlated features; yet, any highly
redundant information will worsen the classification and
prediction performance. Furthermore, a limit on the
number of features chosen may preclude the inclusion of
all informative features.

To avoid the weakness in filtering methods, wrapper
methods wrap around a particular learning algorithm that
can assess the selected feature subsets in terms of the esti-
mated classification errors and then build the final classi-
fier [20]. Wrapper methods use a learning machine to
measure the quality of the subsets of features. One recent
well-known wrapper method for feature selection is SVM-
RFE proposed by Guyon et al. [15], which refines the opti-
mum feature set by using the Support Vector Machine
(SVM). The idea of SVMRFE is that the orientation of the
separating hyper-plane found by the SVM can be used to
select informative features. If the plane is orthogonal to a
particular feature dimension, then that feature is informa-
tive, and vice versa. In addition to microarray classifica-
tion, SVMRFE has been widely used in other high-
throughput biological data analysis including a proteom-
ics study [16] and non-bioinformatics areas involving fea-
ture selection and pattern classification situations [21].
The recursive elimination procedure of SVMRFE is listed
as follows:

(1) Initial ranked feature set R = []; feature set S = [1,...,
d];

(2) Repeat until all features are ranked

(a) Train a linear SVM with all the training data
and variables in S;

(b) Compute the weigh vector;

(c) Compute the ranking scores for features in S;

(d) Find the feature with the smallest ranking
score;

(e) Update R: R = R [e, R];

(f) Update S: S = S - [e];

(3) Output: Ranked feature list R.

Wrapper methods can noticeably reduce the number of
features and significantly improve the classification accu-
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racy [22]. However, wrapper methods have the drawback
of having a high computational load. With better compu-
tational efficiency and similar performance to wrapper
methods, embedded methods simultaneously process fea-
ture selection with a learning classifier. To deal with the
feature selection in microarray data classification, Tang et
al. also proposed two gene selection methods: leave-one-
out calculation sequential forward selection (LOOCSFS)
and GLGS that is based on the calculation of the leave-
one-out cross-validation error of LS-SVM [17]. The GLGS
algorithm can be categorized as an embedded method
that differs greatly from previous wrapper and embedded
approaches because the GLGS optimizes the evaluation
criterion derived in a supervised manner in a transformed
space with significantly reduced dimensions compared to
the original space as it selects genes from the original gene
set based on the results of the optimization. According to
presented experimental results, the GLGS method is more
appealing given it has the lowest generalization error [17].

Based on the above explanation, we employed SVMRFE
and GLGS algorithms for feature selection in our experi-
mental study.

Learning classifiers
Support vector machines
SVM [23] has been widely used in classification. It con-
structs an optimal hyperplane decision function in feature
space that is mapped from the original input space by
using kernels, briefly introduced as follows:

Let xi denote the ith feature vector in the original input
space and zi denote the corresponding vector in the fea-
ture space, zi = Φ (xi). Kernel function k(xi; xj) computes
the inner product of two vectors in the feature space and
defines the mapping function:

Three types of commonly used kernel functions are:

Linear Kernel k(xi; xj) = xi•xj

Polynomical Kernel k(xi; xj) = (1 + xi•xj)p

Gaussian Kernel k(xi; xj) = exp(-||xi - xj||2/2σ2)

For a typical classification problem with l training samples
(x1, y1),..., (xl, yl) where yi ∈ {+1, -1}, finding the discrimi-
nant function f(x) = w•Φ (x) + b with the following opti-
mization problem.

This optimization problem is usually solved in its dual
form

Distance metric learning
Depending on the availability of training examples, the
algorithms of distance metric learning can be divided into
two categories: supervised distance metric learning and
unsupervised distance metric learning. With the given
class labels for training samples, supervised distance met-
ric learning can be divided into global distance metric
learning and local distance metric learning. The global
learns the distance metric in a global sense, i.e., to satisfy
all the pairwise constraints. The local approach is to learn
the distance metric in a local setting, i.e., only to meet
local pairwise constraints.

Unsupervised distance metric learning is also called man-
ifold learning. Its main idea is to learn an underlying low-
dimensional manifold whereby the geometric relation-
ships between most of the observed data are preserved.
Every dimension reduction approach works by essentially
learning a distance metric without label information.
Manifold learning algorithms can be divided into global
linear dimension reduction approaches, including Princi-
ple Component Analysis (PCA) and Multiple Dimension
Scaling (MDS), global nonlinear approaches, for instance,
ISOMAP [24], local linear approaches, including Locally
Linear Embedding (LLE) [25] and the Laplacian Eigen-
map [26].

In supervised global distance metric learning, the repre-
sentative work formulates distance metric learning as a
constrained convex programming problem [27]. In local
adaptive distance metric learning, many researchers pre-
sented approaches to learn an appropriate distance metric
to improve a KNN classifier [28-32]. Inspired by the work
on neighborhood component analysis [30] and metric
learning with the use of energy-based models [33], Wein-
berger et al. proposed a distance metric learning for Large
Margin Nearest Neighbor classification (LMNN). Specifi-
cally, the Mahanalobis distance is optimized with the goal
that the k-nearest neighbors always belong to the same
class while examples from different classes are separated
by a large margin [34]. The LMNN has several parallels to
learning in SVMs. For example, the goal of margin maxi-
mization and a convex objective function is based on the
hinge loss. In multi-classification, the training time of
SVMs scales at least linearly in the number of classes. By
contrast, LMNN has no explicit dependence on the
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number of classes [34]. We introduce the idea of LMNN as
follows:

Given a training set of n labeled samples and the corre-

sponding class labels , the binary matrix yij ∈

{0, 1} indicates whether or not the labels yi and yj match.

And ηij ∈ {0, 1} indicates whether xj is a target neighbor of

xi. Both matrices yij and ηij are fixed during training. The

goal is to learn a linear transformation L: Rd → R that opti-
mizes KNN classification. The transform is used to com-
pute squared distance as

The cost function is given as follows:

Where [z]+ = max(z,0) denotes the standard hinge loss and
the constant C > 0. The first term penalizes large distances
between each input and its target neighbors and the sec-
ond term penalizes small distances between each input
and all other inputs that do not share the same label. The
optimization of eq. (5) can be reformulated as an instance
of semidefinite programming (SDP) [35] and the global
minimum of eq. (5) can be efficiently computed. Maha-
lanobis distance metric M = LTL, eq. (4) is

Slack variables ξij for all pairs of differently labeled inputs
are introduced so that the hinge loss can be mimicked.
The resulting SDP is given by:

Minimize

Subject to

(1) (xi - xl)M(xi - xl)-(xi - xj)M(xi - xj) ≥ 1 - ξijl

(2) ξijl ≥ 0

(3) M ≥ 0

Other learning classifiers
Besides comparing learning classifiers LMNN and support
vector machines with linear kernel (SVM_linear) and RBF
kernel (SVM_rbf), we also applied several traditional clas-
sifiers including K-Nearest Neighbor Classifier (KNNC),
Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classi-
fier (NMSC), Uncorrelated normal based quadratic Bayes
Classifier recorded as UDC for the comparison study. The
technical details about these learning classifiers can be
found in reference [36].

Data sets and experiments
The following three mass spectrometry data sets have
been tested in our experiment:

1. High resolution time-of-flight (TOF) mass spec-
trometry (MS) proteomics data set from surface-
enhanced laser/desorption ionization (SELDI) Pro-
teinChip arrays on 121 ovarian cancer cases and 95
controls. The data sources can be accessed by FDA-NCI
Clinical Proteomics at http://home.ccr.cancer.gov/
ncifdaproteomics/ppatterns.asp

2. The breast cancer QC SELDI spectra data set was
studied by Pusztai et al. [37]. Here, we utilized the data
of 57 controls and 51 cases. The data set is available at:
http://bioinformatics.mdanderson.org/Supplements/
Datasets

3. Matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) liver disease data set was collected
by Ressom et al. [38] for peak selection using ant col-
ony optimization. The data set consists of 78 hepato-
cellular carcinoma (HCC, also called malignant
hepatoma, a primary malignancy cancer of the liver),
51 cirrhosis (cirrhosis is a consequence of chronic liver
disease characterized by replacement of liver tissue by
fibrous scar tissue as well as regenerative nodules lead-
ing to progressive loss of liver function), and 72 nor-
mal. The spectra were binned with bin size of 100
ppm, and the dimension was reduced from 136,000
m/z values to 23846 m/z bins. Since the two liver dis-
eases have similar symptoms but different treatments,
our effort is focused on the classification of these two
different diseases, or the identification of HCC and cir-
rhosis.

We process the data sets according to the methods
described previously for peak detection and apply the
SVMRFE and GLGS algorithms to the detected peak spec-
tra data. The learning classifiers, listed in Table 1, are used
for the training data and the testing data consisting of the
feature sets chosen by SVMRFE and GLGS. In each experi-
ment, 80% samples are randomly chosen for training, and
the remaining 20% samples are tested. We ran the experi-
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ments 50 times for each combination of feature selection
and learning classifiers, with the feature numbers from 5
to 100.

Results
Average testing under each dimension
Figure 1 shows the average testing accuracy by using the
seven classifiers for the feature sets chosen by GLGS and
SVMRFE, with the feature numbers from 5 to 100. Regard-
ing feature selection, SVMRFE is superior to GLGS in the
testing of each type of MS data. In the testing for ovarian
cancer data set, on average, LMNN is the best, followed by
the SVM classifiers with linear kernel and rbf kernel. In the
testing of the breast cancer data set, KNNC performs the
best, followed by SVM classifiers with linear kernel and rbf
kernel. In the testing of the liver disease data set, SVM clas-
sifiers outperformed other classifiers. Spanning over these
three types of MS data, overall, SVM classifiers performed
the best according to an evaluation of the testing accuracy
and the stabilization. Worth mentioning is that, although
LMNN has the best performance in testing the ovarian
cancer data set, it did not fare well on the breast cancer
and liver disease data sets, given the average from the fea-
ture dimension from 5 to 100. However, if we compare
the testing accuracy of the feature sets with the number of
features around 20 chosen by SVMRFE, LMNN delivered
the most promising performance.

Expected testing performance under best training
Besides comparing the average testing accuracy under
each feature dimension from 5 to 100, we also compared
the testing accuracy with the use of the classification mod-
els that are based on the best training. Figure 2 shows the
box-plots of 50 expected testing accuracy values for each
learning classifier with the feature selection methods of
GLGS and SVMRFE, respectively. Table 1 lists the mean
value and the standard error of the expected testing accu-
racy with the classification models derived from the best
training. By comparing the box-plots on the left sub-fig-
ures and on the right sub-figures in Figure 1 and compar-

ing the results shown in Table 1, we concluded that the
SVMRFE outperformed GLGS and SVM classifiers showed
remarkable advantages over other classifiers.

Best testing performance under best training
We also compared the best testing accuracy with the use of
the classification models derived from the best training.
Figure 3 shows the box-plots of 50 best testing accuracy
values for each learning classifier with the feature selec-
tion methods of GLGS and SVMRFE, respectively. Table 2
lists the mean value and the standard error of the best test-
ing accuracy with the classification models derived from
the best training in each experiment. The results shown in
Figure 3 and Table 2 demonstrated that SVMRFE is supe-
rior to GLGS, and that the LMNN delivered the best per-
formance.

Discussion
If we compare the results shown in Table 1 and Table 2,
we found that the results obtained by using SVMs are the
same in both tables, but the results of using other classifi-
ers are different. In each experiment, with the use of other
classifiers, there are multiple classification models,
derived from the best trainings with different feature
numbers. In this case, we calculated the average or
expected testing value for Table 1 and obtained the best
testing value for Table 2, respectively. On the other hand,
by using SVM, we obtained a unique classification model
derived from unique best training in each experiment;
therefore, the results in Tables 1 and 2 are the same with
the use of SVMs.

Regarding the expected testing performance under the
best training, SVMs outperformed other classifiers. As for
the best testing under best training, the best performance
was associated with the learning classifier LMNN, which
implies that distance metric learning is very promising for
the classification of the MALDI-MS data., In these situa-
tions, it is the optimum classification model that delivers

Table 1: Expected testing accuracy and standard errors (mean ± standard error, %) with classification models derived from best 
training, with the use of GLGS and SVMRFE feature selection algorithms and seven learning classifiers. Following the use of each 
feature selection algorithm on each data set, the best result as well as the classifier is highlighted in bold.

Learning classifier GLGS SVMRFE

Ovarian cancer Breast cancer Liver disease Ovarian cancer Breast cancer Liver disease

KNNC 87.4 ± 5.8% 74.1 ± 6.9 80.9 ± 6.6 93.6 ± 3.8 82.8 ± 6.9 89.8 ± 3.9
NBC 78.9 ± 5.8 73.3 ± 8.5 87.1 ± 6.0 90.2 ± 4.5 74.1 ± 9.3 92.8 ± 4.1

NMSC 81.8 ± 5.2 76.2 ± 9.1 90.8 ± 4.9 92.2 ± 3.9 80.5 ± 8.0 94.3 ± 4.1
UDC 82.1 ± 5.6 76.9 ± 8.0 89.5 ± 5.9 91.8 ± 4.3 81.1 ± 7.4 90.4 ± 6.0

SVM_linear 89.6 ± 4.9 85.6 ± 8.3 95.8 ± 3.8 97.9 ± 2.0 89.9 ± 6.0 98.2 ± 2.7
SVM_rbf 90.4 ± 4.3 85.3 ± 7.9 96.4 ± 3.3 98.2 ± 1.8 90.5 ± 6.1 97.5 ± 3.1

LMNN 88.0 ± 4.9 75.5 ± 6.7 88.6 ± 4.7 97.4 ± 1.6 77.4 ± 5.8 91.6 ± 3.2
Page 6 of 11
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the best testing under the best training and, as such, is
worthy of future investigation.

In comparison with the SVMRFE method, the GLGS fea-
ture selection method delivered a comparable and/or bet-
ter performance in classifying microarray data; however,
our experimental results showed that it does not perform

Average testing accuracy after applying seven learning classifiers to the feature sets chosen by the GLGS (left) and the SVMRFE (right) algorithms on ovarian cancer (row 1), breast cancer (row 2), and liver disease (row 3) data sets, respectivelyFigure 1
Average testing accuracy after applying seven learning classifiers to the feature sets chosen by the GLGS (left) 
and the SVMRFE (right) algorithms on ovarian cancer (row 1), breast cancer (row 2), and liver disease (row 3) 
data sets, respectively.
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Average testing accuracy with classification models derived from best trainingFigure 2
Average testing accuracy with classification models derived from best training. In each sub-figure, the results 
shown in column 1 to column 7 are obtained by using KNNC, NBC, NMSC, UDC, SVM_linear, SVM_rbf, and LMNN classifi-
ers, respectively.
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Best testing accuracy with classification models derived from best trainingFigure 3
Best testing accuracy with classification models derived from best training. In each sub-figure, the results shown in 
column 1 to column 7 are obtained by using KNNC, NBC, NMSC, UDC, SVM_linear, SVM_rbf, and LMNN classifiers, respec-
tively.
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as well as SVMRFE in classifying MALDI-MS data. This
phenomenon is very interesting. In our opinion, it is
caused by the difference between microarray data and MS
data. Microarray data have a huge number of variables. It
has a complicated correlation/interaction among genes as
well as high redundancy. MALDI-MS data consist of mass/
charge ratio values, after peak detection, correlation/inter-
action among peaks are generally not as complicated and
much less redundancy exists. In such cases, SVMRFE is
better than GLGS for classifying MS peak data.
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