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 Introduction 

 Substantial resources have been invested in the collec-
tion of affected sibling pair (ASP) families to facilitate 
linkage analyses of complex human diseases. A whole-
genome linkage analysis is often a first step toward the 
goal of identifying novel susceptibility genes, followed by 
association analysis. The linkage screen narrows the 
search by identifying genomic regions most likely to con-
tain a disease susceptibility locus (DSL), and association 
analysis provides a much higher mapping resolution by 
virtue of linkage disequilibrium (LD) between alleles at 
genotyped marker(s) and the DSL. It is well established 
that case-control association analyses are more powerful 
than family-based association analyses in the absence of 
population stratification  [1–3] . Recently, there has also 
been an interest in developing methods for the joint anal-
ysis of families, unrelated cases and unrelated controls  [1, 
4, 5] . In addition to the protection against population 
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 Abstract 

  Objective:  We compared the efficiency of case selection 
strategies for following up a genome-wide linkage screen of 
multiplex families. We simulated datasets under three mod-
els by which continuous environmental or clinical covariates 
may contribute to disease risk or linkage heterogeneity: (i) a 
quantitative trait locus (QTL) underlying a continuous dis-
ease risk factor, (ii) a gene-environment interaction model, 
(iii) a heterogeneity model defined by distinct covariate dis-
tributions in linked and unlinked families.  Methods:  Marker 
genotypes and covariate values were generated for affected 
sibling pair (ASP) families, according to the three models 
above. We evaluated two case selection strategies relative
to a reference design, which compared all family probands 
to a sample of unrelated controls (‘all’). The first strategy 
 ignored covariates and selected probands from families with 
NPL scores  6 0 (‘linked best’). The second strategy selected 
probands from families identified by an ordered subset anal-
ysis (OSA), which utilizes family-specific linkage and covari-
ate information.  Results:  The ‘linked best’ design provided 
power very similar to the ‘all’ design under all three models. 
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stratification provided by family-based association anal-
ysis  [6] , there is great practical value in continuing to 
work with the family datasets collected in the past for 
whole-genome linkage scans. This value is further en-
hanced by identifying study designs that make optimal 
use of the information about the likely DSL location pro-
vided by these family datasets.

  Due to the complexity of the investigated phenotypes, 
it is important to incorporate environmental and clinical 
covariates into study design choices. This may include 
endophenotypes, if available. There are many different 
ways in which such covariates may either influence the 
disease risk directly, or partially explain the genetic het-
erogeneity commonly observed for complex diseases. 
The study presented here examined the efficiency of two 
case selection strategies under three plausible simulation 
models, referred to as ‘covariate models’, for genetically 
heterogeneous datasets: a quantitative trait locus (QTL) 
underlying a continuous covariate that is a risk factor for 
the disease, a multiplicative gene-environment interac-
tion (GxE) model, and a heterogeneity model in which 
covariate distributions differ between linked and un-
linked families, but in which the covariate does not influ-
ence the penetrance. The simulated datasets were ana-
lyzed by a two-stage approach, in which a stage 1 linkage 
analysis was followed by a stage 2 case-control associa-
tion analysis that used one case per family. The two case 
selection strategies used only a subset of all family pro-
bands for association testing and were compared to a ref-
erence design, in which probands from all available fam-
ilies were compared to a sample of unrelated controls.

  Materials and Methods 

 Data Simulation 
 With the simulation package SIMLA  [7] , we used a prospective 

logistic regression model as the penetrance function for binary 
disease outcomes generated on nuclear families with sibship size 
two. If  D  = 1 for affected and  D  = 0 for unaffected individuals, and 
the  �  parameters represent the natural logarithm of the odds ra-
tios (ORs), this penetrance function can be written as
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  where  x  1  = 1 for the susceptible genotype(s),  x  1  = 0 for the ref-
erent genotype(s), and  x  2  is the value of a normally distributed 
continuous covariate  E . As previously described, the  x  1  and  x  2  
values for probands and non-proband pedigree members were 
assigned by appropriate simulation algorithms  [7] . Covariate val-
ues were simulated so that 2.3% of the population were at the 
reference level (baseline risk) and 20% had a risk increase of at 

least OR(E) = exp( �  2 ), compared to the baseline risk (see appen-
dix for details). In SIMLA, this was accomplished by assigning 
the 80th percentile of the covariate distribution as the upper ref-
erence point  [7] . Reference points, but not  �  2  values, were fixed 
across simulation models. For each replicate, 1,000 families with 
two affected siblings were retained for analysis to match standard 
linkage ascertainment strategies. Parents were assumed to be un-
available for genotyping. 

 Genotype and covariate data for 500 unrelated controls were 
generated conditional on their ‘unaffected’ status. We used a 50 
cM map of 501 single-nucleotide polymorphism (SNP) markers 
spaced 0.1 cM apart, with all but one marker (SNP252) having two 
equally frequent alleles. The disease locus was located in the mid-
dle of the map at a distance of 0.05 cM from marker 252. The mi-
nor allele frequency (MAF) of SNP252 was chosen to be the same 
as the frequency of the disease susceptibility allele, and the extent 
of LD between marker and disease alleles was varied by specifying 
their founder haplotype frequencies in SIMLA according to r 2  
values of 0.05, 0.1 and 0.3. Disease genotypes were excluded from 
the analysis. All other marker loci were in linkage equilibrium 
with each other and with the disease locus, and Hardy-Weinberg 
equilibrium in the underlying population was assumed for all 
loci. We used the known (simulated) marker allele frequencies in 
the analysis files.

  Simulation Models 
  Table 1  summarizes the three simulation models considered 

here. The models were chosen to yield a constant locus-specific 
sibling recurrence risk ratio,  �  s  = 1.15, using the formulae in the 
appendix. Model 1 was a QTL model with three genotype-spe-
cific covariate means and standard deviations (SDs) for the gen-
eral population. The covariate was assumed to be a risk factor for 
the disease with OR(E)  1  1.0, and hence part of the penetrance 
function in equation (1), setting  �  1  =  �  3  =  0,   �  2  = ln(OR(E))  1  0. 
Thus, the QTL indirectly influenced the disease risk via the co-
variate effect on the penetrance, and the covariate (and QTL gen-
otype) distributions differed between affected and unaffected in-
dividuals. The SD was assumed to be the same for the three QTL 
genotypes and determined the proportion of the variance ex-
plained by the linked QTL (heritability  h  2 ), with the total variance 
being a combination of major QTL and polygenic effects, non-
specific shared or unshared environmental factors and random 
error. Model 2 was a gene-environment interaction (GxE) model, 
in which the presence of GxE interaction between the DSL and 
continuous covariate was defined as more than multiplicative 
joint effects. As in the QTL model, the covariate was part of the 
penetrance function shown in equation (1) with  �  1  =  �  2  =  0 ,  �  3  = 
ln(OR(GxE))  1  0. In contrast, Model 3 was a heterogeneity model, 
in which linked ( �  1  = ln(OR(G))  1  0,  �  2  =  �  3  =  0 ) and unlinked 
families ( �  1  =  �  2  =  �  3  =  0  for the DSL linked to the marker map) 
were distinguished by covariate distributions with subgroup-spe-
cific means, with the same SD for each distribution. In this case, 
the covariate was not part of the penetrance function, and thus 
not a risk factor for the disease, and it did not have a genetic basis 
in the form of a QTL. Examples for such a covariate include age 
at onset, severity or clinical subtype (measured on a continuous 
scale) of the disease. We would like to point out that the size of the 
OR values in  table 1  should be interpreted in conjunction with the 
assumed covariate distribution. The same  �  s  value of 1.15 can be 
obtained with much smaller OR values by changing the reference 
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points. For example, for Model 1 with  �  = 0.2, recessive inheri-
tance, an overall  �  s  = 1.15, corresponding to  �  s  = 1.75 in the linked 
subset, can be obtained with OR(E) = 3 when 20%, instead of 
2.3%, of the population are at the reference level (baseline risk) for 
the continuous covariate and 47.5%, instead of 20%, have at least 
a one-unit increase in risk. For Model 2 with  �  = 0.2, recessive 
inheritance, the same  �  s  can be obtained with OR(GxE) = 3 with 
20% of the population at baseline risk and 62.6% having at least a 
one-unit increase in risk.

  Data Analysis and Study Designs 
 For the stage 1 linkage analysis, we used the MERLIN software 

 [8]  to compute nonparametric multipoint lod scores derived from 
family-specific NPL scores, assuming the  S  all  scoring function 
under a linear model  [9] . We included a subset of 50 SNPs (out of 
the 501 generated SNPs) evenly spaced 1 cM apart in the linkage 
map. The relationship between family-specific covariate averages 
and family-specific NPL scores was analyzed by OSA, using the 
high-to-low covariate ordering  [10] . The OSA software reports 
the maximum nonparametric lod score for a covariate-defined 
subset of families and the map position at which it occurs. To ob-
tain an empirical p value for a one-sided test of the OSA null hy-
pothesis, which specifies no correlation of the family-level covari-
ate with the family-specific evidence for linkage, a permutation 
test was employed. A minimum of 20 and maximum of 720 per-
mutations were performed, which allows for the accurate estima-
tion of p values on the order of 0.025 according to the precision 
criterion described previously  [10] . We used the empirical p value 

as the criterion for significance, regardless of the size of the base-
line lod score in the entire dataset or the size of the maximum lod 
score in the covariate-defined subset of families.

  As the criterion for declaring the linkage analysis ‘successful’ 
and proceeding to case-control association analysis, we chose a 
lod score threshold of 1.0 for MERLIN, and a p value threshold of 
0.05 for OSA. In replicates that met either of these criteria, the 
stage 2 case-control association analysis was performed on SNP 
markers located within a 10 cM region centered on the linkage 
peak. Three sets of cases and 500 unrelated controls were ana-
lyzed by logistic regression (SAS Institute, Cary, N.C., USA). De-
sign A included probands from all ASP families, Design B includ-
ed the single sibling classified as ‘linked best’ by MERLIN  [11] , 
which is equivalent to using probands from all families with non-
negative NPL scores, and Design C included probands from the 
subset of families identified by OSA. The linkage peak was de-
fined by the maximum lod score for all families in Designs A and 
B, and by the maximum lod score in the OSA-identified subset of 
families in Design C. We present detailed results from a logistic 
regression model that included a single SNP covariate with addi-
tive allele coding. Consistent with previous studies  [12] , we con-
firmed that this coding was most robust to deviation from the 
true model (dominant or recessive) used to generate the data (data 
not shown). For selected simulation models, we also generated 
results from a regression model that included two additional 
terms, a main effect term for the continuous covariate and a prod-
uct term for SNP-covariate interaction.

Table 1. Characteristics of simulated covariate models

Model � Inheritance
model 

Allele
frequency

OR(G) OR(E) OR(GxE) QTL SD
(QTL)

h2 (linked 
families)

h2
(dataset)

�L 
(SD)

�U 
(SD)

1 0.2 dominant 0.10 1.0 33.1 1.0 yes 4 0.49 0.10 – –
0.2 recessive 0.35 1.0 38.5 1.0 yes 4 0.40 0.08 – –
0.5 dominant 0.05 1.0 8.6 1.0 yes 4 0.35 0.07 – –
0.5 recessive 0.35 1.0 10.5 1.0 yes 4 0.40 0.08 – –

2 0.2 dominant 0.10 1.0 1.0 18.2 no – – – – –
0.2 recessive 0.35 1.0 1.0 25.8 no – – – – –
0.5 dominant 0.05 1.0 1.0 8.0 no – – – – –
0.5 recessive 0.35 1.0 1.0 10.0 no – – – – –

3 0.2 dominant 0.10 10.5 1.0 1.0 no – – – 40 (5) 20 (5)
0.2 recessive 0.35 12.8 1.0 1.0 no – – – 40 (5) 20 (5)
0.5 dominant 0.05 5.2 1.0 1.0 no – – – 40 (5) 20 (5)
0.5 recessive 0.35 6.0 1.0 1.0 no – – – 40 (5) 20 (5)

Constants: disease prevalence 5%, locus-specific �s = 1.15. �: 
proportion of families linked to analyzed marker map. �s for the 
entire dataset was calculated as the weighted average of �s in the 
linked subset of families (1.75 for � = 0.2, 1.30 for � = 0.5) and
�s = 1 in the unlinked subset. For Model 1, genotype-specific co-
variate means of 20, 30, and 30 were assumed for QTL genotypes 
aa, Aa, and AA in the dominant model, and means of 20, 20, and 
30 were assumed in the recessive model, with the common stan-
dard deviation given in the SD(QTL) column. h2 is the theoretical 

heritability (additive and dominance variance component) that 
applies to the linked subset of families. h2 for the entire dataset 
was calculated as the weighted average of h2 in the linked subset 
of families and h2 = 0 in the unlinked subset. �L: covariate mean 
in linked families; �U: covariate mean in unlinked families. The 
‘unlinked’ families (proportion 1-�), in which a second unlinked 
disease gene G2 was segregating, were generated with OR(G2) = 
10, OR(E) = 1, RR(G2xE) = 1.
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  Previous studies showed that the ascertainment (or analysis) 
of controls on the basis of their environmental covariates can im-
prove the power to detect GxE interaction when main effects of 
genes and environmental factors have already been well estab-
lished and interactive effects are the focus of the study  [13, 14] . 
Therefore, we also evaluated the efficiency of control selection 
strategies for selected simulation models by performing separate 
association analyses of the three sets of cases defined above versus 
(i) controls from the lower 50% of the covariate distribution, and 
(ii) controls from the upper 50% of the covariate distribution.

  Empirical Type I Error Rate, Power and Per-Genotype 
Information of Study Designs 
 It was previously shown that linkage and association test sta-

tistics are statistically independent under the null hypothesis of 
(i) no linkage and no association; (ii) linkage and no association; 
(iii) association and no linkage  [15] . To verify these findings for 
our specific simulation models, we calculated the type I error 
rates of the three study designs by analyzing the non-associated 
markers in the 10 cM region around the linkage peak (all markers 
except SNP252) in 3,000 replicates. For these replicates, the asso-
ciation analysis was performed every time, not just in replicates 
that met the success criterion for the stage 1 linkage analysis. The 
empirical type I error rate was estimated as the proportion of rep-
licates in which at least one non-associated marker in the 10 cM 
region centered on the maximum lod score on the chromosome 
met a Bonferroni-corrected p value threshold of 0.0005 (= 0.05/
101) in the logistic regression analysis. Note that the stage 1 MER-
LIN and OSA analyses are tests of different null hypotheses, and 
that our goal was  not  to compare the power of these analyses for 
a more narrowly defined common null hypothesis. Instead, our 
goal was to examine how different case selection strategies influ-
enced the probability of the stage 2 analysis to detect a true-posi-
tive association. Hence, the null hypothesis of interest for the dif-
ferent study designs is ‘no association’.

  To estimate statistical power under the alternative hypothesis 
for the different simulation models of interest, 500 replicates were 
generated. Since the SNP with the smallest association p value in 
the region of interest is typically of greatest interest in practice, 
we defined the power of each study design as the proportion of 
replicates in which the associated SNP 252 met the design-spe-
cific linkage threshold, had the smallest case-control association 
p value of the 101 analyzed markers,  and  met a Bonferroni cor-
rection for multiple testing. When the linkage peak was located at 
a map position for which the 10 cM region centered on the peak 
did not exceed the end of the map on either side, we included in 
the association analysis the peak marker itself and 50 markers on 
either side, for a total of 101 markers and a Bonferroni-corrected 
threshold of 0.0005. When the linkage region did exceed the end 
of the map on either side, we still analyzed a total of 101 markers 
but the region was no longer symmetric around the peak.

  The comparison of study designs in terms of absolute statisti-
cal power is only one aspect of practical interest. Another aspect 
is the per-genotype contribution to a case-control association test 
statistic, which is a measure of the relative power. For purposes of 
comparison with earlier work, we adopted a previously proposed 
measure for comparing case selection strategies  [11] , which is 
based on the following test statistic:

( )
( ) ( )
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case |design control
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  This statistic can be calculated from the design-specific esti-
mated allele frequencies for the selected unrelated cases (one from 
each family) and controls,  p ̂  case   �   design  and   p ̂   control , and the average 
number of cases  N  case   �   design  ( N  control  = 500 across all designs). Un-
der Hardy-Weinberg equilibrium, as simulated here, this statistic 
is asymptotically equivalent to the Wald  �  2  statistic for the SNP 
covariate in our logistic regression model. We verified empiri-
cally that the Wald  �  2  statistic follows an asymptotic  �  2  distribu-
tion on 1 d.f. at the non-disease-associated markers on our map 
(corresponding to the null hypothesis of equal allele frequencies 
in cases and controls) under the two case selection criteria em-
ployed in this study (data not shown). We did not use  T   2  design  for 
formal hypothesis tests, but rather to calculate per-genotype con-
tributions to this statistic as  I  design  =  T   2 design   / ( N  case   �   design  +  N  control ) 
 [11] . We then computed ratios of  I  design  for Design B and Design 
C, relative to Design A (e.g.,  R  design B  =  I  design B  /  I  design A ).

  Results 

 The threshold of 1.0 for the nonparametric multipoint 
analysis was slightly liberal for a stand-alone linkage 
analysis, since it was exceeded in 8.2% of 10,000 replicates 
generated under the null hypothesis of no linkage for the 
particular marker map simulated here. The threshold of 
0.05 for the OSA p value was previously shown to guar-
antee a type I error probability of 5% when only one co-
variate order is analyzed  [10, 16] . In practice, an investi-
gator would typically evaluate both high-to-low and low-
to-high covariate orders and a 0.05 threshold, without 
adjusting for multiple testing, would then be slightly lib-
eral. For the null hypothesis of ‘no association’ that is of 
greatest interest in this study, the empirical type I error 
rates for the three study designs ranged from 0.044 to 
0.056, regardless of the linkage thresholds. Since both the 
MERLIN and OSA methods are based on linkage statis-
tics, this was consistent with the previous report that 
linkage and association test statistics are independent 
under the null hypothesis of ‘linkage and no association’, 
and ‘no linkage and no association’  [15] .

   Figures 1–3  show the overall power of study designs 
A–C, estimated as the proportion of replicates in which 
the associated SNP 252 met the stage 1 linkage criteria, 
generated the smallest case-control association p value of 
all 101 analyzed markers,  and  met the Bonferroni correc-
tion for multiple testing. The two investigated propor-
tions of linked families,  �  = 0.2 and  �  = 0.5, are shown on 
the x-axis, and the three sets of bars for each � value cor-
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respond to different levels of LD ranging from r 2  = 0.05 
to r 2  = 0.3. The different bar types correspond to Designs 
A–C, i.e., case-control analysis comparing all family pro-
bands (Design A), only probands from families with non-
negative NPL scores (Design B), and only probands from 
the subset of families identified by OSA (Design C) to the 
500 unrelated controls.

   Figure 1  shows the power of Designs A–C for the QTL 
simulation model (Model 1 in  table 1 ), separately for the 
recessive and dominant inheritance model. For all de-
signs, a nonparametric linkage analysis of the binary af-
fection status had limited power to detect a QTL with the 
covariate model assumed here, especially with  �  = 0.2. 
Consistent with our previous findings  [17] , OSA had 
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  Fig. 1.  Power of Design A (all probands), B (probands from families with NPL  6 0) and C (probands from OSA-
identified family subset) for Model 1 from table 1 (QTL). Power was defined as the proportion of replicates in 
which the associated SNP252 met the design-specific linkage threshold, had the smallest case-control associa-
tion p value of the 101 markers analyzed by logistic regression,  and  met a Bonferroni correction for multiple 
testing.  � : Proportion of linked families; r 2 : linkage disequilibrium between SNP252 and the QTL. 
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  Fig. 2.  Power of Design A (all probands), B (probands from families with NPL  6 0) and C (probands from OSA-
identified family subset) for Model 2 from table 1 (GxE). Power was defined as the proportion of replicates in 
which the associated SNP252 met the design-specific linkage threshold, had the smallest case-control associa-
tion p value of the 101 markers analyzed by logistic regression,  and  met a Bonferroni correction for multiple 
testing.  � : Proportion of linked families; r 2 : linkage disequilibrium between SNP252 and the DSL. 
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 1 70% power to detect linkage in a sample of ASP families 
when a trait determined by a QTL was analyzed as the 
OSA covariate and  �  values were on the order of 0.5. In 
this case,  figure 1  shows that a selection of probands from 
OSA families (Design C) was substantially more power-
ful than an analysis of all probands, especially for low 
levels of LD. For example, for a recessive QTL model with 
 �  = 0.5, the power of Design C was  � 72% for r 2  = 0.05, 
compared to  � 27% for Design A. The increase in power 
was especially remarkable considering that the average 
number of cases analyzed in Design C was much lower 
than in Design A, as illustrated in  table 2 . Across study 
designs and LD levels, Designs A and B had similar pow-
er, but Design B only analyzed 30% of the cases. It should 
be noted that the power of Design C depends on the cho-
sen reference points for the continuous covariate distri-
bution and the standard deviation (SD) within each gen-
otype group, in addition to the choice of OR(E). For ex-
ample, if at least 50% of the population had a one-unit 
increase in risk, instead of 20% as assumed here, a lower 
OR(E) generated equivalent power of OSA under the 
QTL model (data not shown). An increased SD for the 
genotype-specific distribution would decrease the calcu-
lated marginal OR(G), since the SD determines the refer-
ence points for the specified OR(E) (see appendix for de-
tails). To illustrate with an example, increasing the geno-
type-specific SD from 4 to 10 in Model 1 ( �  = 0.2, reces-
sive), while holding all other parameters constant, 

changes the marginal OR(G) due to the QTL from 13.16 
( table 2 ) to 6.22, using similar calculations as shown in 
the appendix.

   Figure 2  shows the power of Designs A–C for the GxE 
simulation model (Model 2 in  table 1 ). Consistent with 
our previous findings for a ‘pure’ GxE interaction model 
with more than multiplicative joint effects in the absence 
of main effects  [16] , OSA did not substantially improve 
the power of a standard nonparametric analysis that ig-
nores covariate values, regardless of LD levels. For  �  = 
0.2, none of the designs had  1 31% power. For  �  = 0.5, 
r 2  = 0.3 and a recessive model, Designs A and B achieved 
66% power, the benefit of Design B again being an aver-
age  � 30% reduction in the number of analyzed cases, 
while the power of Design C was 49%.

   Figure 3  shows the power of Designs A–C for the het-
erogeneity simulation model, in which a main effect of 
the DSL linked to the marker map was only present in a 
proportion  �  of families (Model 3 in  table 1 ). In this mod-
el, a remarkable power increase for Design C, compared 
to Designs A and B, was observed for  �  = 0.2. The power 
of Design C was 59–85% for the recessive and 43–63% for 
the dominant model across the three levels of LD, while 
the power of Designs A and B was  ! 1% (recessive and 
dominant model) for very low LD (r 2  = 0.05) and in-
creased to only 15–20% for moderate LD (r 2  = 0.3). Design 
C required genotyping an average of 200 cases for  �  = 0.2, 
compared to 1,000 cases for Design A and  � 330 cases for 
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  Fig. 3.  Power of Design A (all probands), B (probands from families with NPL  6 0) and C (probands from OSA-
identified family subset) for Model 3 from table 1 (heterogeneity). Power was defined as the proportion of rep-
licates in which the associated SNP252 met the design-specific linkage threshold, had the smallest case-control 
association p value of the 101 markers analyzed by logistic regression,  and  met a Bonferroni correction for mul-
tiple testing.  � : Proportion of linked families; r 2 : linkage disequilibrium between SNP252 and the DSL. 



 Schmidt/Schmidt/Qin/Martin/Hauser

 

Hum Hered 2008;65:154–165160

Design B ( table 2 ). The power increase for Design C was 
substantially reduced for  �  = 0.5, to the point where all 
three designs had very similar power ( � 65% for the re-
cessive, 36–40% for the dominant model) with r 2  = 0.3. 
The heterogeneity model clearly capitalizes on the 

strengths of the OSA method, especially when there is 
little overlap between linked and unlinked families and 
 �  is low  [10] , and it makes intuitive sense that the in-
creased power of the OSA linkage analysis translates di-
rectly into increased power to detect association when 

Table 2. Descriptive summary of three study designs

Mo-
del

� Genetic
model

Design p (true
minor
allele
freq.)

p̂case Avg. (SD)
number
of cases

p̂control
(n = 500)

Avg. propor-
tion of cases
from linked 
subset

T2design Rdesign True
marginal
OR(G)

ÔR(G)
at SNP252

Avg. SD

1 0.2 dom A 0.1 0.173 1,000 (–) 0.087 0.2 48.99 1 10.84 1.85 0.22
B 0.1 0.181 307 (14.6) 0.087 0.213 27.54 0.59 10.84 1.90 0.29
C 0.1 0.268 248 (171) 0.087 0.388 68.98 3.98 10.84 1.89 0.28

0.2 rec A 0.35 0.453 1,000 0.331 0.2 43.1 1 13.16 1.52 0.12
B 0.35 0.485 315 (14.4) 0.331 0.239 38.38 1.46 13.16 1.56 0.18
C 0.35 0.575 297 (196) 0.331 0.349 94.08 8.97 13.16 1.69 0.15

0.5 dom A 0.05 0.168 1,000 (–) 0.044 0.5 137.34 1  7.52 2.38 0.45
B 0.05 0.186 308 (13.7) 0.044 0.514 70.05 0.48  7.52 2.55 0.58
C 0.05 0.381 331 (204) 0.044 0.713 285.12 7.78  7.52 3.79 0.85

0.5 rec A 0.35 0.534 1,000 (–) 0.340 0.5 107.89 1  8.93 1.45 0.11
B 0.35 0.586 323 (14.8) 0.340 0.538 100.87 1.59  8.93 1.54 0.15
C 0.35 0.804 413 (211) 0.340 0.705 518.56 37.95  8.93 1.85 0.19

2 0.2 dom A 0.1 0.172 1,000 (–) 0.097 0.2 35.42 1  3.37 1.30 0.20
B 0.1 0.182 307 (14.6) 0.097 0.215 21.89 0.71  3.37 1.36 0.24
C 0.1 0.249 297 (196) 0.097 0.329 57.41 4.94  3.37 1.70 0.39

0.2 rec A 0.35 0.455 1,000 (–) 0.346 0.2 33.92 1  4.44 1.16 0.09
B 0.35 0.486 315 (14.4) 0.346 0.238 31.47 1.58  4.44 1.23 0.12
C 0.35 0.545 297 (196) 0.346 0.330 61.52 6.19  4.44 1.41 0.26

0.5 dom A 0.05 0.162 1,000 (–) 0.047 0.5 117.38 1  3.32 1.91 0.35
B 0.05 0.183 308 (13.7) 0.047 0.509 64.33 0.56  3.32 2.12 0.45
C 0.05 0.231 331 (204) 0.047 0.593 108.12 1.53  3.32 2.59 0.66

0.5 rec A 0.35 0.541 1,000 (–) 0.344 0.5 110.94 1  4.03 1.31 0.10
B 0.35 0.594 323 (14.8) 0.344 0.540 104.34 1.61  4.03 1.41 0.15
C 0.35 0.630 413 (210) 0.344 0.618 161.06 3.46  4.03 1.53 0.17

3 0.2 dom A 0.1 0.173 1,000 (–) 0.087 0.2 48.99 1  2.90 1.32 0.18
B 0.1 0.183 307 (14.9) 0.087 0.219 28.54 0.63  2.90 1.36 0.23
C 0.1 0.420 208 (81) 0.087 0.822 166.75 24.54  2.90 2.65 0.57

0.2 rec A 0.35 0.455 1,000 (–) 0.332 0.2 43.76 1  3.36 1.18 0.09
B 0.35 0.485 314 (14.3) 0.332 0.239 37.79 1.37  3.36 1.24 0.13
C 0.35 0.823 210 (65) 0.332 0.916 423.98 198.37  3.36 1.94 0.28

0.5 dom A 0.05 0.166 1,000 (–) 0.043 0.5 137.07 1  3.10 1.95 0.37
B 0.05 0.183 309 (13.9) 0.043 0.512 69.24 0.47  3.10 2.12 0.47
C 0.05 0.270 456 (145) 0.043 0.912 200.29 3.35  3.10 2.88 0.60

0.5 rec A 0.35 0.538 1,000 (–) 0.338 0.5 114.93 1  3.50 1.32 0.11
B 0.35 0.590 322 (14.2) 0.338 0.543 105.95 1.55  3.50 1.43 0.15
C 0.35 0.707 487 (102) 0.338 0.948 311.98 11.2  3.50 1.65 0.17

Average minor allele frequency at QTL or DSL in cases and 
controls, average number of cases, and average proportion of cas-
es from linked subset of families are shown for each simulation 
model and study design (for r2 = 0.1). T2design and Rdesign are de-
fined in the Methods section. The true marginal OR(G) was cal-

culated from the simulation parameters (see appendix for details), 
and the estimated ÔR(G) at SNP 252 (average and SD) was calcu-
lated from the simulated datasets. All averages were calculated 
across replicates that met the linkage thresholds for MERLIN 
(Designs A and B) or OSA (Design C), as explained in the text.
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only cases from the OSA-identified subset of families are 
compared to unrelated controls. As expected, the power 
of OSA decreased from  � 80 to 70% when the standard 
deviation for the two covariate distributions in Model 3 
( table 1 ) was increased from 5 to 10, holding  �  constant 
at 0.2 and r 2  constant at 0.1.

   Table 2  shows average estimated allele frequencies at 
the simulated QTL or DSL in the design-specific sample 
of analyzed cases and the 500 controls, and also compares 
the simulated ‘true’ marginal OR for the QTL or DSL to 
the average estimated OR for additively coded genotypes 
at SNP252. The biggest allele frequency difference in cas-
es versus controls, and the highest proportion of cases 
from the linked subset of families, was obtained with De-
sign C across all disease models. The variation in the an-
alyzed number of cases was remarkably low for Design B 
for all models (SD across replicates on the order of 15), 
while the number of families (cases) identified by OSA 
varied substantially (SD across replicates on the order of 
100–200) for all models except for Model 3 with  �  = 0.2. 
As expected, the estimated marginal ORs were much 
smaller for SNP252 than for the true QTL or DSL. The 
difference was especially pronounced for the QTL model 
(Model 1), for which the genotypes conferred an indi-
rectly increased disease risk through the covariate (‘trait’) 
effect on the penetrance. The marginal OR in this model 
depends on the specified OR(E), the QTL allele frequen-
cy, the separation of genotype-specific means and the 
common SD of the respective normal distributions. The 
per-genotype contribution to the  T   2 design   statistic for De-
sign B and C, relative to Design A, was  1 1.0 for all reces-
sive models, but  ! 1.0 for Design B under the dominant 
model. This again illustrates the importance of the as-
sumed allele frequencies, which were in the 0.05–0.10 
range for the dominant models. In this case, the only 
slightly increased frequency of the ‘causal allele’ in the 
analyzed sample of cases was not sufficient to outweigh 
the increased variance due to the much smaller sample 
size ( � 300–330 cases in Design B, compared to 1,000 cas-
es in Design A). Not surprisingly, by far the greatest ratio 
of the per-genotype contribution to the test statistic 
( � 200) was observed for Design C under a recessive het-
erogeneity model with  �  = 0.2. However, the ratio for this 
OSA-based selection strategy was  1 1.0 even for the more 
challenging QTL and GxE models, with a range of 1.53 to 
37.95 ( table 2 ).

  We examined whether the power of Designs B and C 
could be improved by selecting the affected sibling with 
the  higher  covariate value for the case-control association 
analysis. A small power gain on the order of 1 to 3 per-

centage points was observed for simulation Models 1 
(QTL) and 2 (GxE). We also examined whether a selec-
tion of controls on the basis of covariate values was ben-
eficial. To summarize our findings qualitatively, analyz-
ing only controls from the lower 50% of the covariate dis-
tribution (for an average of 250 controls) provided very 
similar power as the analysis of all 500 controls for the 
QTL model. Analyzing only controls from the upper 50% 
of the covariate distribution (for an average of 250 con-
trols) provided power very similar to the analysis of all 
500 controls for the GxE model. Thus, the selection of 
controls on the basis of covariate values could in theory 
help further reduce genotyping costs, however, in the ab-
sence of knowledge about the true underlying model, it is 
preferable to genotype all available controls.

  For the GxE model, we also investigated the power of 
the three designs to not only identify the disease-associ-
ated SNP (i.e., correct localization), but also to detect the 
presence of GxE interaction. For this purpose, the case-
control data were analyzed with a logistic regression 
model that included a term for the continuous covariate 
and a product term for the covariate and the additively 
coded SNP genotype. This model provided very poor lo-
calization and power. The maximum proportion of rep-
licates in which the p value at SNP252 for the estimate of 
either OR(G) or OR(GxE) was the smallest of all ana-
lyzed markers, and also smaller than 0.05, was only 
14.2% across all models, heterogeneity parameters and 
study designs. Consistent with this observation, the 
Akaike Information Criterion (AIC) was always smallest 
for the most parsimonious analysis model that included 
only a term for the SNP genotype, compared to models 
with an additional term for the covariate, or two addi-
tional terms for the covariate and the SNP-covariate in-
teraction.

  Discussion 

 It has long been known that the analysis of cases from 
multiplex families enriches the sample for the presence of 
disease susceptibility alleles, leading to an increase in sta-
tistical power compared to the analysis of randomly sam-
pled cases  [2, 3] . We have extended this finding to show 
that the efficiency of case-control association study de-
signs can be greatly improved when both allele sharing 
and covariate information are used to select cases from 
the same multiplex families that identified a linkage re-
gion for follow-up analysis. For all three investigated 
models by which clinical or environmental covariates 
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may either influence the disease risk or capture linkage 
heterogeneity, selecting cases only from families with 
non-negative NPL scores provided very similar power as 
the analysis of all cases with only 33% of genotyped indi-
viduals. This is consistent with earlier reports for simula-
tion models that did not include disease-associated co-
variates  [11] . The OSA-based study design evaluated here 
selects cases not only on the basis of their IBD sharing 
with affected siblings, but also by evaluating the relation-
ship between family-specific covariates and family-spe-
cific linkage evidence. Our results show that the selection 
of cases from the OSA-identified subset of families was 
beneficial when 40–60% of families were linked to a QTL 
for a continuous covariate. This covariate may have been 
measured in the family sample as a known risk factor for 
the disease of interest, or as an important endopheno-
type. In the presence of GxE interaction between a DSL 
locus and a measured continuous covariate, OSA was less 
helpful for case selection. This is consistent with our pre-
vious report that OSA has limited power to detect hetero-
geneity due to GxE interaction in a multiplicative pene-
trance model  [16] . The greatest benefit of selecting cases 
from the OSA-identified subset of families was observed 
for a heterogeneity model with a small proportion (10–
30%) of families in which a DSL linked to the marker map 
conferred a relatively strong main effect. In this model, 
linkage heterogeneity was captured by a measured co-
variate with distinct distributions in linked and unlinked 
families. The benefit of Design C was especially pro-
nounced under a recessive inheritance model, presum-
ably because ASPs are then more likely to share two al-
leles IBD, which provides more per-family information 
on linkage. The power of Design C is primarily driven by 
two factors: the difference in  �  s  for the linked and un-
linked families, i.e., 1.75 (for  �  = 0.2) or 1.3 (for  �  = 0.5) 
versus 1.0 in this study, and the extent of separation be-
tween the covariate distributions of these subsets. The 
number of multiplex families, and hence the number of 
cases in the OSA-identified subset of cases, is another im-
portant factor, and the formula for the  T   2 design     statistic 
provides insight into the balance between increased sus-
ceptibility allele frequency in the subset versus increased 
variance due to a smaller sample size of cases. For both 
Design B and C, we found that case selection on the basis 
of their  individual  covariate values made little additional 
difference. This finding emphasizes the value of  family-
level  information for enriching a sample of patients for 
inherited alleles.

  A selection of controls on the basis of their individual 
covariate values allowed for a further increase in design 

efficiency, above and beyond that attributable to the case 
selection strategies. For the QTL model considered here, 
selecting the 50% of controls with the  lowest  covariate 
values increased the frequency of homozygous normal 
genotypes, and thus increased the MAF difference be-
tween cases and controls at the disease-associated SNP. 
For relatively common alleles, the increase in the MAF 
difference offset the increase in statistical variance due to 
a smaller sample size of controls, leading to virtually 
identical power estimates for analyzing all 500 controls 
versus only half of them. Conversely, for the GxE model, 
a selection of the 50% of controls with the  highest  covari-
ate values increased the frequency of homozygous nor-
mal genotypes, with the same effect of an increased MAF 
difference between cases and controls. However, relative 
to the QTL model, the absolute MAF difference was 
smaller for the GxE model. These results suggest that 
control selection on the basis of covariate values may in 
principle allow for additional savings in genotyping costs, 
but in the absence of knowledge about the true covariate 
model (e.g., QTL vs. GxE), it is preferable to genotype all 
available controls. At the statistical analysis stage, an 
analysis of all controls compared to an analysis of con-
trols from the lower or upper 50% of the covariate distri-
bution may provide insight into the possible nature of the 
underlying covariate model. It may also be helpful to vi-
sually compare the relationship between marker geno-
types and covariate values in affected and unaffected in-
dividuals with our recently developed software tool SIM-
LAPLOT  [18] .

  The main limitation of our simulation study was the 
assumption of a very simple marker spacing and LD struc-
ture for the genomic region of interest. Only a single SNP 
was in LD with the minor allele at the QTL or DSL, while 
all other SNPs were in linkage equilibrium with each oth-
er and with the causal allele. This made it possible to de-
tect association by analyzing one SNP at a time, and we 
did not consider the additional challenges posed by situ-
ations in which only a haplotype of several SNPs may be 
in LD with an unknown susceptibility variant. In this 
simple situation, the Bonferroni correction is not overly 
conservative. However, for the complex LD structure of 
the human genome, more sophisticated multiple testing 
corrections are desirable in order to balance statistical 
power and false-positive rate, and this continues to be an 
active area of methodological research motivated by the 
current interest in whole-genome association studies.

  Our findings have several implications for applied 
studies of complex human diseases. First, they emphasize 
the value of low-density whole-genome linkage screens 
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with much lower per-sample cost, even at a time when 
whole-genome association screens have become techni-
cally feasible. The analysis of cases selected on the basis 
of linkage evidence can provide substantial power in-
creases for localizing a QTL or DSL with high resolution, 
even at low levels of LD and in the presence of substantial 
genetic heterogeneity. Our findings should extend from 
ASP datasets typical of late-onset disorders (i.e., without 
genotyped parents, as simulated here) to those typical of 
early-onset disorders, since the availability of parental 
genotypes improves the power of linkage analysis.

Second, our results suggest that investigators may 
want to either consider the construction of region-spe-
cific sample lists for follow-up genotyping, or, when that 
is impractical in terms of sample or project management, 
to use linkage results as a guide for the inclusion or exclu-
sion of cases at the statistical analysis stage.

Third, our study illustrates the difficulty of detecting 
GxE interaction with the same dataset used for gene dis-
covery. A logistic regression of cases and controls that 
included only a single SNP genotype term in the model 
was much more powerful in terms of gene localization 
than a model that included additional covariate and in-
teraction (product) terms. This suggests that gene discov-
ery and a more detailed modeling of identified candidate 
genes, including estimation of penetrance, attributable 
risk, and interaction with environmental factors, are best 
performed in independent large datasets. This, in turn, 
emphasizes the importance of ascertaining unrelated 
cases, with or without sampled relatives, and appropri-
ately matched unrelated controls in parallel with multi-
plex families for linkage analysis  [19] . From a practical 
perspective, we note that multiplex families for a genome-
wide linkage analysis are typically more difficult to col-
lect than unrelated cases. A smaller sample size of multi-
plex families limits the power of the study design we have 
evaluated since it is well known that the detection of GxE 
interaction requires substantially larger sample sizes than 
the detection of main effects, particularly when mea-
sured SNPs are not in perfect LD with the true DSL. It 
would be beneficial to evaluate in future studies under 
which conditions the OSA-identified covariate cutoff 
point is useful to select a subset of all available cases, in-
cluding those without affected sampled relatives, in order 
to decrease the genetic heterogeneity of the case sample. 
Extensions of the OSA method to family-based or case-
control association mapping are also desirable.

Finally, our findings emphasize the importance of col-
lecting environmental and clinical covariate data in gene 
discovery studies, in addition to the primary diagnostic 

criteria for determining affection status. The incorpora-
tion of  family-level  covariate information appears to con-
tribute more strongly than  individual  covariate levels to 
the enrichment of a sample of patients for inherited al-
leles. The importance of obtaining detailed phenotypic 
data for studies of complex human diseases with substan-
tial genetic heterogeneity cannot be overestimated. Co-
variate information can also be extremely useful in terms 
of illuminating biological mechanisms or pathways that 
may be important contributors to the disease risk in a 
subset of patients and families. For example, a spectrum 
of sequence variations in the proprotein convertase sub-
tilisin/kexin type 9 serine protease gene (PCSK9) with a 
wide range of allele frequencies and effect sizes was shown 
to contribute to inter-individual differences in low-den-
sity lipoprotein cholesterol (LDL-C) levels  [20] . Variants 
associated with a reduction in mean LDL-C were indi-
rectly associated with a reduction in the risk of coronary 
heart disease ranging from 47% for white subjects to 88% 
in black subjects  [21] . Studying the variation in a contin-
uous disease risk factor in unselected samples allows for 
a more comprehensive assessment of genotype-pheno-
type relationships. However, consistent with the findings 
reported here, a judicious selection of cases and controls 
typically provides a much more efficient study design for 
gene identification since most of the information and sta-
tistical power is provided by individuals in the tails of the 
distribution  [22] .

  Of relevance to this study, novel statistical methodol-
ogy has recently been developed to simultaneously test 
for linkage and LD in datasets that include variable ped-
igree structures (affected sibling pair families, singleton 
families with case-parent triads and/or discordant sibling 
pairs) as well as unrelated cases and controls  [1] . If it is 
financially feasible to genotype such datasets with SNP 
panels of sufficiently high density to detect association 
signals due to LD with untyped susceptibility loci, this 
methodology is very promising and appears to be statisti-
cally powerful  [23] . In the presence of financial con-
straints, however, we believe that the two-stage linkage 
and association analysis approach evaluated here contin-
ues to be of great practical importance.
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  Appendix 

 Let  Z  1 ,  Z  2  denote the affection status for sibling one and two 
in a pedigree, with values 1 for affected and 0 for unaffected sib-
lings. Let  �  1 ,  �  2  denote the sibling covariate vectors, whose com-
ponents may include  X  1 ,  X  2  as genotypes at the disease suscepti-
bility locus (with alleles  A  and  a  and covariate coding according 
to an assumed inheritance model),  Y  1 ,  Y  2  as continuous covari-
ates, and product terms  X  1  Y  1 ,  X  2  Y  2  for GxE interaction. The vec-
tors may include all of these terms or some subset of them, de-
pending on the simulation model.

  The sibling recurrence risk ratio  �  s  is defined as follows:
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  where  P ( �  1 ,  �  2 ) is the joint probability function of the sibling co-
variates and the disease probabilities are functions of the  �  pa-
rameters in the logistic regression model equation (1), the disease 
prevalence  K  and the frequency  p  of the susceptibility allele  A : 
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  �  0  is determined as the solution to the equation 
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    Table A1  shows the joint genotype probabilities for a bi-allelic 
susceptibility locus for the two siblings. 

 
Table A1. Joint genotype probabilities for two siblings

X1 X2 P(X1, X2)

AA AA 0.25 p2 (1 + p)2
AA Aa 0.5 p2 (1 – p2) 
AA aa 0.25 p2 (1 – p)2
Aa AA 0.5 p2 (1 – p2)
Aa Aa p(1 – p)(1 + p(1 – p))
Aa aa p(1 – p)2(1 – 0.5 p)
aa AA 0.25 p2 (1 – p)2
aa Aa p(1 – p)2(1 – 0.5 p)
aa aa (1 – p)2(1 – 0.5 p)2

p is the population frequency of disease susceptibility al-
lele A.

  

  1. For Model 1 (QTL), let  Y  1 ,  Y  2  denote the continuous covari-
ates for the two siblings. To put boundaries on the simulated 
 covariate values and associated risk increases, we need a mecha-
nism to define the one-unit increase in covariate values to which 
OR(E) = exp( �  2 ) from equation (1) applies. Let  �  1  denote the pro-

portion of the population at the reference level (baseline risk), 
with a SIMLA default of 0.0228  [7]  that can be modified by the 
user. Let  	  1  denote the corresponding percentile of the mixture 
normal distribution defined by the three genotype-specific nor-
mal distributions and the QTL allele frequency, i.e.,  P ( T   ̂    	  1 ) = 
 �  1  with  T  being a random variable following the mixture normal 
distribution. The SIMLA default is to assume that the same
proportion of the population experiences the maximum possible 
risk increase, i.e.  P ( T  6  
 )  =   �  1 . Individuals with originally sim-
ulated covariate values  y  1    ̂     	  1  are assigned the value 0, and indi-
viduals with originally simulated covariate values  y  1   6   
  are as-
signed the value  y  max , which is determined by the algorithm as
 P ( T   6   y  max ) =  �  1 /2. Finally,  �  2  is the proportion of the population 
with at least a one-unit increase in covariate values, with  	  2  denot-
ing the corresponding percentile of the mixture normal distribu-
tion, i.e.,  P ( T   6   	  2 ) =  �  2 . For example, if  	  2  is specified as the 80th 
percentile, 20% of the population have a risk increase of at least 
exp( �  2 ), compared to the baseline risk. In summary, we have
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  and analogously for  Y  2 . We assume that sibling phenotypes are 
conditionally independent, given QTL genotypes and corre-
sponding realized covariate (trait) values. If  X  1 ,  X  2  denote the 
QTL genotypes for sibling one and two and  f  denotes the normal 
distribution density function, the formula for  �  s  is: 

( ) ( ) ( ) ( ) ( )

( )
1 2 1 2

2 2 1 1 1 2 1 1 1 2 2 2 1 2

2
1

1 1 , , , , ,

1
X X y y

s

P Z |Y P Z |Y P X X f y f y dy dy

P Z

= =

=

=

   2. For Model 2 (GxE interaction), the derivation is similar to 
Model 1, except that there is only a single normal covariate distri-
bution and the percentiles of interest can be calculated from the 
standard normal distribution. Thus, the formula for  �  s  is:
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  In this model, it is possible to incorporate sibling correlations of 
environmental covariates, in addition to the genotype correla-
tions due to Mendelian inheritance.

  3. For Model 3 (heterogeneity), the calculations are simpler 
since only a main genetic effect is assumed to exist and no inte-
gration over the continuous covariate (trait) distribution is neces-
sary. Thus, the formula for  �  s  is:
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