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Abstract
Reporting transplant center-specific survival rates after hematopoietic cell transplantation is required
in the United States. We describe a method to report 1-year survival outcomes by center, as well as
to quantify center performance relative to the transplant center network average, which can be reliably
used with censored data and for small center sizes. Each center’s observed 1-year survival outcome
is compared to a predicted survival outcome adjusted for patient characteristics using a pseudovalue
regression technique. A 95% prediction interval for 1-year survival assuming no center effect is
computed for each center by bootstrapping the scaled residuals from the regression model, and the
observed 1-year survival is compared to this prediction interval to determine center performance.
We illustrate the technique using a recent center specific analysis performed by the Center for
International Blood and Marrow Transplant Research, and study the performance of this method
using simulation.
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1 Introduction
Hematopoietic cell transplants (HCT) are performed in a wide range of different diseases at a
large number of transplant centers (Pasquini et al. 2007). These transplant centers use a variety
of center practices, ranging from conditioning regimens or graft-versus-host disease
prophylaxes, to donor selection criteria, to supportive care measures. Although it may be
possible to study certain practices through a retrospective database such as that of the Center
for International Blood and Marrow Transplant Research (CIBMTR), it is also of interest to
determine whether the collection of center practices at a given center are contributing positively
or negatively on patient outcomes. Reporting transplant center-specific survival rates after
HCT is required in the United States, most recently by the Stem Cell Therapeutic and Research

© Springer Science+Business Media, LLC 2008
Correspondence to: Brent R. Logan.

NIH Public Access
Author Manuscript
Lifetime Data Anal. Author manuscript; available in PMC 2009 December 1.

Published in final edited form as:
Lifetime Data Anal. 2008 December ; 14(4): 389–404. doi:10.1007/s10985-008-9100-6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Act of 2005 for all allogeneic transplants, and previously by the 1990 Transplant Amendments
Act for unrelated donor transplants. The purpose of this report is to provide potential stem cell
transplant recipients, their families and the general public with a comparison of survival rates
among the centers performing hematopoietic cell transplants. The results of this report are
published and made available on the web (National Marrow Donor Program 2007).

When considering center specific analyses in HCT patients, it is widely known that the
characteristics of patients transplanted at a given center can vary considerably from other
centers. Some centers transplant pediatric patients exclusively, while others may transplant
only adult patients. Referral patterns to a given center may lead to a different patient mix of
diseases, racial/ethnic groups, disease status, etc., than at other centers. These factors can have
a substantial impact on the expected outcomes of patients in a given center. Furthermore, many
of the centers transplant only a small number of patients during the study period; the inclusion
of some high-risk patients in this group can make their survival appear poor. Centers are
concerned that they will be penalized for the types of patients that they transplant. Any
comparison of center performance needs to adequately account for the risk factors of the
patients being transplanted at centers. Note that the appropriate choice of covariates for
inclusion in the risk adjustment model requires careful consultation with clinicians, and the
accuracy of the resulting center specific analysis depends heavily on the accuracy of the risk
adjustment model.

Another important consideration in transplant center assessment is an appropriate outcome
measure. We have chosen to focus solely on survival because of the wide variety of diseases
being transplanted. Relapse or progression may be poorly defined for many of the diseases.
Furthermore, we limit the analysis to the 1-year survival probability for a number of reasons.
Modeling the entire survival curves would be extremely difficult given the potential for
crossing hazard functions across centers and the large number of centers. Survival beyond 1
year may be more severely impacted by disease relapse, which may be more sensitive to the
disease/stage of a patient being transplanted than center practices. Mortality within the first
year is a better measure of the toxicity of the transplant procedure itself, which is more likely
to be directly affected by which center performed the transplant. An analysis of 1-year survival
probabilities is also easier to communicate to the wider audience for whom this report is
targeted.

Center specific outcome analyses, also referred to as provider profiles or hospital report cards,
have received a lot of attention in the literature. Much of the attention came initially from two
high profile examples: the analysis of coronary artery bypass graft surgery results by the New
York State Department of Health (New York State Department of Health 1992), and the
evaluation of hospital performance by the Health Care Financing Administration beginning in
1987 (Health Care Financing Administration 1989; Normand et al. 1997), although many more
examples can now be found. Several basic statistical principles of such analyses are widely
accepted. A comparison of observed and expected outcomes should be adjusted for the patient
risk (Iezzoni 1994; Landon et al. 1996; Salem-Schatz et al. 1994; Huang et al. 2005). The
determination of outlying centers, i.e. overperforming or underperforming centers, should
properly account for sampling variability (Localio et al. 1995). Finally, one must be wary of
the multiple comparisons issue, in which large numbers of centers being examined lead to a
greater likelihood of a center reporting extreme results by chance alone (Thomas et al. 1994;
Localio et al. 1995). A number of procedures have been proposed for the actual statistical
assessment of center outcomes; they generally consider a binary outcome such as mortality at
a fixed time (see DeLong et al. 1997 for a review). Risk adjustment may be done using an
external benchmark model, or using an internal model based on the same patients in the center
analysis. We focus on the latter here. One can use a simple comparison of the observed and
predicted survival outcomes at a given center, by constructing a confidence interval for the
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difference in or ratio of the observed and predicted survival probabilities (DeLong et al.
1997; Austin et al. 2003; Thomas et al. 1994). Alternatively fixed effect logistic regression or
random effect logistic regression models may be used. Several authors have compared fixed
effect and random effect logistic regression models in this setting, and have found that fixed
effect models are more sensitive while random effect models are more conservative and may
be less susceptible to multiplicity problems (DeLong et al. 1997; Huang et al. 2005; Austin et
al. 2003). Bayesian and empirical Bayes hierarchical regression models have also been
proposed (Christiansen and Morris 1997; Normand et al. 1997; Thomas et al. 1994). Transplant
center reporting for solid organ transplantation has been described in Dickinson et al. (2006),
who base assessment of center performance on the standardized mortality ratio (SMR)
assuming a Cox proportional hazards model.

Two features of HCT data make center specific reporting difficult. First, many of the transplant
centers perform a fairly small number of transplants over the reporting period, making reliance
on large sample confidence intervals questionable. This also can cause convergence problems
for a fixed center effect logistic regression model. Second, patients may be lost to follow-up
prior to the fixed time point of analysis. Although the amount of censoring is not large, it makes
a direct comparison of observed and predicted outcomes at a fixed time more difficult, and
renders a parametric random effects logistic regression model impossible.

We propose a method for the analysis of HCT center specific outcomes which is analogous to
the simple comparison of observed and predicted outcomes described in DeLong et al.
(1997) using internal standardization. Here a predictive model for 1-year survival as a function
of patient/risk characteristics is constructed based on the entire cohort of patients across all
centers. Using this model, a risk adjusted 1-year survival rate is estimated for each center, along
with a prediction interval. This prediction interval represents the range of 1-year survival rates
which could have been observed if those patients had been transplanted at a generic center in
the network. The actual observed 1-year survival can be compared to the prediction interval
to assess how a center is performing compared to the entire network of centers. The main
feature of our method is that it examines the center effect in terms of the direct impact on 1-
year survival, while allowing for censored outcomes prior to 1 year, in contrast to the previous
methods based on strict binary outcomes.

The details of this methodology are described in Sect. 2, starting with uncensored data and then
generalizing the approach to account for censoring. We demonstrate the method in Sect.3 using
a recent center specific analysis performed by the CIBMTR. Section 4 contains the results of
a simulation study of the methodology. This simulation study focuses on the performance of
the method in terms of control of the type I error rate, or the probability of incorrectly
identifying a center as over- or under-performing. These are done for a variety of scenarios in
which patient selection depends on center. A brief study of the power to identify over- or under-
performing centers is also included here. Conclusions and discussion are given in Sect. 5.

2 Methods
The methodology proposed to examine center specific outcomes essentially consists of three
steps. First, we build a model to predict 1-year survival as a function of patient characteristics.
Next, we construct a prediction interval for the observed survival of the patients actually
transplanted at a given center, assuming no center effect. This is done by adjusting for the
patient characteristics of the patients actually transplanted at that center, using the previous
predictive model. Finally, we can assess the performance of a given center by comparing their
observed survival probability with the prediction interval. If a center’s observed survival rate
is outside the prediction interval, then we conclude that they are either underperforming or
overperforming compared to the general network of centers.
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We first illustrate the methodology assuming we have complete follow-up at 1-year on all
patients for simplicity. The resulting procedure is equivalent to the simple comparison of
observed and predicted outcomes described in DeLong et al. (1997) using internal
standardization, except that prediction intervals are based on resampling rather than large
sample approximations. This may be more appropriate given the small sample sizes of many
transplant centers. Then we generalize the procedure to account for censoring.

2.1 No censoring prior to 1 year
If there is no censoring prior to 1 year, then the outcome for patient j in center i, Yi j, is binary
(1=alive, 0=dead) with observed value yi j. Assume that there are C centers, with ni patients at
center i. The observed survival probability for the patients at center i in the uncensored case is
the simple proportion,

In order to assess a center effect for center i, we want to compare the observed survival
probability at center i with the predicted survival probability based on the characteristics of the
patients actually transplanted at that center. We fit a predictive model for the probability of
being alive at 1 year using logistic regression,

where pi j is the survival probability at 1 year for patient j in center i, and Xi j is the vector of
patient characteristics for that patient. This model assumes no center effect, i.e. it assumes that
the survival probability depends only on patient characteristics. The predicted survival
probability at 1 year for patient j in center i based on patient characteristics alone is

The predicted survival probability for the patients at center i represents the survival probability
if those patients had been transplanted at a “generic” center in the network, i.e. one without a
center effect. This is the average of the individual predicted probabilities,

Finally, we consider a range of plausible values for what the survival probability could have
been if those patients had been transplanted at a “generic” center, by constructing a prediction
interval for
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under the assumption of no center effect. The observed survival probability  can be compared
directly to the prediction interval, to determine whether a center is underperforming or
overperforming compared to how those patients might have fared at a “generic” center.
Essentially this prediction interval is the upper and lower bounds of the null hypothesis
sampling distribution for the survival of the patients at center i. As a result, if the observed
survival probability is outside the (1 − α) prediction interval, the p-value for testing the null
hypothesis of no center effect will be less than α.

Next we describe one approach to construct such a prediction interval, which works well even
for modest sample sizes. Assuming that we have a reasonably stable estimate of the parameter
vector β ̂ for the patient characteristics (as is reasonable here because of the large sample sizes
across all the centers in the network), a parametric resampling approach models Yi j as Bernoulli
distributed with probability p̂i j. This means that the outcome for patients transplanted at a
“generic” center in the network are assumed to have a survival probability dependent only on
patient characteristics. Then the observed number of patients at center i who are alive at 1 year
is a mixture of ni Bernoulli random variables with varying survival probabilities. We can
simulate this distribution as follows. For b = 1 to B,

1. Generate  for i = 1 to C, j = 1 to ni.

2.
Compute 

Then the (1 − α) prediction interval for  is the α/2 and (1 − α/2) percentiles of  over b,
denoted 

The observed survival probability  can be compared directly to the prediction interval:
 indicates that the center is underperforming while  indicates that the center is

overperforming compared to the overall network. If there is no center effect at center i, the
probability of identifying center i as underperforming or overperforming is ≤ α.

2.2 Censoring prior to 1 year
If there is censoring prior to 1 year, then we do not know the binary outcome for each patient.
In the past center specific analyses, because of mandatory government reporting of HCT
outcomes, the amount of censoring has been fairly small (approximately 5% prior to 1 year).
However, even with this small amount of censoring, the methodology must be adjusted.

The observed 1-year survival probability at 1 year,  in the presence of censoring can be
estimated using the Kaplan–;Meier estimate.

We modify the logistic regression model to predict 1-year survival probabilities for each patient
by using a censored data version of logistic regression (Klein et al. 2007). This is based on
modeling of pseudovalues as described in Andersen et al. (2003) and Klein and Andersen
(2005). Here the pseudovalues are defined for the 1-year survival probability. To compute the
pseudo-value for recipient j at center i, first compute the pooled sample Kaplan–;Meier estimate
of survival at 1 year ignoring all covariates and center, Ŝp(1). Next we compute the Kaplan–
Meier estimate of survival at 1 year based on the entire dataset with observation j at center i

removed . The ijth pseudo-value is defined by
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If there is no censoring then the ijth pseudo-value is simply yi j, the indicator that the jth recipient
at the ith center was alive at 1year. A SAS macro to compute these pseudo-values is available
in Klein et al. (2008). These pseudo-values are used in a regression model using a logit link,
similar to the standard logistic regression model used above, given by

where here pij = E(p̃i j). Although we focus in this paper on the logit link, the pseudo-value
regression method is flexible and can use a variety of link functions including the
complementary log–log transformation which is equivalent to a proportional hazards model at
time 1.

The parameters of the regression model can be estimated using generalized estimating
equations (GEE) (Liang and Zeger 1986), which can be implemented in PROC GENMOD in
SAS. Note that in our situation, only one time point (1 year) is used resulting in univariate data
for each patient and no need to specify a working correlation matrix. Let μ(·) = g−1 (·) be the
mean function. Define dμi j (β) to be the vector of partial derivatives with respect to β. Then
β ̂ is the solution in β to the estimating equation

Note that while the pseudovalues are not constrained to be between 0 and 1, they will usually
be close to 0 or 1 even if they are outside the range. Pseudovalues outside the range of 0 to 1
do not generally cause a problem with the logit link because the logit link models the mean of
the pseudovalues and is not applied to the pseudovalues directly. In most situations the mean
function for a particular set of covariate values is within the appropriate range.

Once β ̂ has been estimated, we can predict the survival probability at 1 year for patient j at
center i with patient characteristics Xi j as

As above, we want to use these predicted survival probabilities to construct a (1−α) prediction
interval for the 1-year survival probability of the patients at center i, had they been transplanted
at a “generic” center. One simple method of constructing a prediction interval would be to
follow the steps (1)–(2) in the above section on no censoring present, and generate a prediction
interval for the complete data survival outcome of the patients at center i. This ignores the
censoring pattern when constructing the prediction interval, since in the resampling scheme
above, a binary (i.e. uncensored) indicator is generated for each patient at a center. Essentially
the censoring is only accounted for in estimating the model parameters. This simple approach
works reasonably well when the censoring percentage is small, but may have some small
inflation of the type I error rate at a center due to not accounting for the censoring.

We can get a more accurate prediction interval which controls the type I error rate by resampling
the residuals from the general linear model rather than generating binary outcomes for each
individual. Bootstrapping of Pearson residuals in a generalized linear model framework has
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been described in Moulton and Zeger (1991). Define the scaled Pearson residual for patient j
at center i by

We propose the following simple resampling algorithm to generate a prediction interval: For
b = 1 to B,

1. Generate  for i = 1,…,C; j = 1,…,ni, by sampling with replacement from the set of
residuals {ri j, i = 1,…, C; j = 1,…,ni}

2. Compute the bootstrap predicted value for patient j at center i as

3. Compute the predicted observed center outcome as

Then similarly to the uncensored case, the (1 –α) prediction interval for  is the α/2 and (1 –
α/2) percentiles of  over b, denoted  and the observed survival probability 
can be compared directly to the prediction interval to gauge center performance relative to the
entire network.

This resampling of the scaled Pearson residuals implicitly accounts for the increase in
prediction variance due to censoring, and provides accurate control of the type I error rate, as
we shall see in a subsequent simulation section. Note however that there is no accounting for
the variability of the parameter estimates β in the generation of the prediction interval. Typically
the sample size associated with estimating these parameters uses the entire dataset of
transplants across all the centers, while prediction is specific to an individual center. Therefore,
the variance contribution of the parameter estimation is relatively small compared to the
variability of the center outcomes themselves. One could add an outer resampling loop which
additionally includes refitting the prediction model, to account for the variance of β ̂. In
simulations shown later, we found this extra step to be computationally burdensome and
unnecessary for accurate control of the type I error rate.

Note that there are alternative ways of generating a predicted 1-year survival probability for
an individual patient, such as using a Cox proportional hazards model. Such a model could
then be incorporated into this method, but would still require use of the pseudovalues in order
to compute the residual distribution and apply the bootstrap. Most likely the Cox model and
the pseudovalue regression model will give similar estimates of the predicted 1-year survival,
but it is possible that if there is nonproportional hazards for one or more of the covariates the
Cox model will yield a biased estimate of the 1-year survival probability. In contrast, the
pseudovalue regression model is directly modeling the 1-year survival probability and is not
sensitive to the proportional hazards assumption.
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3 Simulation study
A simulation study was conducted to see how well the method performed in a variety of
situations where the distribution of patient characteristics may be center dependent. In
particular, we assessed the type I error rate for each center, or the probability that a center will
be incorrectly classified as either over-performing or under-performing compared to the entire
network. We used 95% prediction intervals in all simulations, so the target type I error rate is
5% per center.

Initial simulations were designed to have similar characteristics as the real example discussed
in the next section. There were a total of 7,780 patients distributed across 119 centers: 45 centers
with 15 patients, 29 centers with 45 patients, 26 centers with 75 patients, 15 centers with 150
patients, and 4 centers with 400 patients. For each patient, exponential death times were
generated with rate parameter

where Xi j = (Xi j1, Xi j2) is the design vector, and β = (β1, β2) is the parameter vector. Using
this model, the survival probability at 1 year is given by

corresponding to a logistic regression model for 1-year survival. The covariate Xi j1 is a binary
covariate taking on values 1 or − 1 with probabilities depending on the scenario, while Xi j2 is
a continuous covariate which is distributed according to a uniform distribution between [−0.5,
0.5]. Note that the survival at 1 year is equal to 50% for an “average” patient with Xi jβ = 0,
which approximately matches the real example. We take β1 = log(2)/2, so that the odds ratio
for 1-year survival for patients with Xi j1 = 1 compared to patients with Xi j1 = −1 is 2. The
parameter β2 is set to 1. An independent censoring time is generated from an exponential
distribution so that the censoring percentage at 1 year for an average patient (i.e. Xi jβ = 0) is
5 (similar to what was found for the example), 20, or 35%. These correspond to overall
censoring rates of 9, 31 and 47%.

Several scenarios were considered for how the Xi j1 values were generated. These various
scenarios represent different mechanisms of patient selection at the centers, as represented by
the population proportion πi of patients at center i who are “good risk” (Xi j1 = 1). In scenario
1, πi was fixed at 0.5 for all centers. In scenario 2,πi was increasing from 0.3 to 0.7 with
increasing center size; here larger centers are more likely to transplant good risk patients. In
scenario 3, πi was decreasing from 0.7 to 0.3 with increasing center size; here larger centers
are less likely to transplant good risk patients. In scenarios 4 through 7, only a fraction of the
centers of a particular size were more or less likely to transplant good risk patients. Scenario
7 is a very extreme one, in which a fraction of the centers of a particular size transplant all
“good risk” patients, and another fraction of the centers transplant all “poor risk” patients.
Details on the proportion of patients who are considered “good risk” at each center are given
in Table 1, by scenario. Once the proportion πi is determined for a given center, then Xi j1 is
generated randomly with P(Xi j1 = 1) = πi and P(Xi j1 = −1) = 1 − πi.

For each dataset generated in this way, the methodology described in Sect. 2 was applied so
that the final result is an indicator of whether the observed survival for a given center is outside
the corresponding prediction interval. We generate a total of 10,000 datasets for analysis, and
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compute the type I error rate as the average of these indicators. The prediction intervals for
each dataset are based on 1,000 bootstrap samples. The type I error results are computed for
each individual center. These results are then summarized by grouping centers according to
their center size and proportion of “good risk” patients πi, and then the average of the individual
center type I error rates over similar centers is given in Table 2–Table 4 for 1-year censoring
percentages of 5, 20, and 35% respectively.

The results indicate that the type I error rate is controlled reasonably well for all scenarios,
except for some slight elevation of the type I error rate in the extreme case with center size of
15 and 35% censoring at 1 year. The proposed method of resampling the scaled residuals from
the pseudovalue regression model works well to produce a reliable prediction interval with the
correct coverage probability. Neither the selection pattern of high risk patients exhibited by
the center nor the center size has an effect on the likelihood a center will be incorrectly identified
as overperforming or under-performing compared to the overall network. Even in the extreme
setting where all or none of the patients at a given center are “good risk”, the type I error rate
is still controlled. The risk of patients transplanted at a given center do not affect the likelihood
a center will be mistakenly identified as under-performing or over-performing, as long as that
risk is appropriately adjusted for in the multivariate model.

Next we conducted simulations to explore the type I error rate control when the sample size is
more modest. In particular, we are interested in whether ignoring variability in the estimate of
β ̂ still produces acceptable type I error control when the total sample size is more modest. Here
we consider a total of 990 patients, with 12 centers of size 15, 8 centers of size 45, and 6 centers
of size 75. We use a modification of scenario 4 in which one center of each size has πi = 0.3,
one center has πi = 0.7, and the remaining centers have πi = 0.5. The survival model and
censoring rates are otherwise unchanged from the previous simulations. Results of the type I
error rate simulations are found in Table 5. These indicate that even for this smaller scale center
specific analysis, the type I error rate is reasonably controlled at the 5% level, except for slight
inflation of the type I error rate with centers of size 15 and 35% censoring at 1 year.

For the power simulations we considered a simple scenario in which one center in each sample
size category is over-performing, while one center is under-performing relative to the other
centers. Two sets of odds ratios for these centers are considered, either (1.5, 0.67) or (2.0, 0.5),
respectively, for the over-performing and under-performing center. We also consider three
settings varying the proportion of “good risk” patients at that center to be 0, 0.5, or 1. For all
other centers the proportion of “good risk” patients is set to 0.5. Only censoring rates of 5% at
1 year are presented; higher censoring percentages yielded similar trends but with lower power.
The results are given in Table 6.

The power results are as expected, indicating that the method is performing in a reasonable
manner. As the sample size increases, the power to detect a particular magnitude center effect
increases. For a fixed sample size, as the center effect increases in magnitude (e.g. from OR
=1.5 to 2.0, or from OR=0.67 to 0.5), the power also increases. There are slight effects of the
proportion of “good risk” patients at a given center on the power to detect a center effect. If
the center effect is positive, then a center with a small proportion of “good risk” patients will
have slightly higher power than a center with a high proportion of “good risk” patients. If the
center effect is negative, this trend is reversed. These differences are likely due to the impact
of the proportion of “good risk” patients on the baseline survival probability at a given center,
and the impact is fairly minor.
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4 Example
We applied the methodology to the 2007 center specific analysis conducted by the CIBMTR.
The 2007 analysis includes all unrelated donor transplants occurring in the 5-year time interval
from January 1, 2001 to December 31, 2005. This time interval allows for a minimum of 1-
year potential follow-up for all eligible cases. Centers were eligible to participate in the 2007
analysis based on the criteria that they were a U.S. transplant center, had performed at least
one transplant in the time interval, and had submitted at least 75% of the expected follow-up
data. A total of 119 US transplant centers are included in this analysis. There were 7,830 cases
eligible for analysis, of whom 411 (5.2%) patients had less than 12 months of follow-up. The
overall survival probability at 1 year for the entire dataset is 51.5%.

After careful discussion with clinical and statistical transplant experts, a set of risk factors was
generated to use as candidate effects for the risk adjustment model building process. The
pseudo-values were computed for each patient, and the regression model was fit using SAS
PROC GENMOD. The following risk factors were found to be significant in the regression
model: disease/stage; recipient age; donor age; Human Leukocyte Antigen matching between
donor and recipient; recipient cytomegalovirus status; recipient race; co-existing disease;
Karnofsky/Lansky performance score interacted with prior autologous transplant; cell dose by
stem cell product type; year of transplant; conditioning regimen intensity; resistant disease
(Non-Hodgkins Lymphoma only); duration of first complete remission (acute leukemia only);
and T-cell lineage (Acute Lymphocytic Leukemia only).

Once the prediction model was determined, the bootstrap resampling algorithm with 10,000
bootstrap samples was implemented to generate prediction intervals.

A subset of the final center-specific results is shown in Fig. 1a, b. Each center is represented
by a boxplot, with the predicted survival outcome in the middle and the 95% prediction interval
as the edges of the box. The observed survival outcome is shown with a solid circle, allowing
one to visually compare the observed and predicted outcomes to assess center performance. If
the observed outcome falls outside the box, this indicates that a center is underperforming or
overperforming compared to the predicted outcome. Figure 1a has a sample of centers whose
predicted survival probability is above average compared to the other centers, while Fig. 1b
shows a sample of centers whose predicted survival probability is below average. In each sub-
figure, all centers found overperforming or underperforming are included, along with a sample
of “typically performing” centers. The boxplots within each subfigure are ordered by center
size or the number of transplants performed by the center during the study period, illustrating
that the width of the boxes or prediction intervals are narrowing with larger center size.

There are four overperforming centers and four underperforming centers in Fig. 1a, and there
are seven underperforming centers and two overperforming centers in Fig. 1b. Note also that
most of the overperforming centers are larger centers, while most of the underperforming
centers are smaller centers. Additional analysis of center characteristics may elucidate why
this trend is occurring, but this would require additional data collection from centers and is
beyond the scope of this analysis.

5 Conclusions
We have presented a method for examining the performance of centers performing
hematopoietic cell transplants. The method is based on a simple comparison of observed and
predicted survival outcomes at one year, and is an extension of the method described in DeLong
et al. (1997) to allow for censored outcomes as well as centers performing a small number of
transplants. The method controls the type I error rate, or the probability that an “average”
transplant center will be incorrectly classified as over or underperforming, at a pre-specified
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level α. Adjustment for patient characteristics is done by building a regression model, and our
simulations indicate that the type of patients selected for transplant at a given center do not
affect the likelihood that a center will be incorrectly classified, as long as patient characteristics
are adjusted for in the regression model. While the method controls the marginal type I error
rate for a particular center, it doesn’t explicitly deal with the multiplicity problem across
centers. This can be done by adjusting the individual type I error rate, e.g. using the Bonferroni
correction. The Bonferroni correction controls the probability that at least one center is
incorrectly classified as over or under performing, and it may be excessively conservative in
terms of being less likely to identify truly overperforming or underperforming centers.
Alternative methods of accounting for multiplicity, such as the false discovery rate criterion
of Benjamini and Hochberg (1995), may be less conservative. Finally, we point out that the
method described here is aimed at identifying extreme observed center outcomes which are
not attributable to sampling variability and patient characteristics. In addition to this
assessment, one may want to consider the clinical severity of the difference between observed
(O) and expected (E) outcomes. Dickinson et al. (2006) combine a statistical assessment using
the SMR (significant p-value) with a clinical assessment of the center effect in terms of the
observed and expected number of deaths (O/E > 1.5 and O−E > 3) in order to identify centers
for review.
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Fig. 1.
Transplant center outcomes for a sample of centers with above average predicted survival
probabilities (a) and below average predicted survival probabilities (b). The box represents the
prediction interval for survival at a given center, the line inside the box represents the predicted
survival probability, and the circle represents the observed survival probability. Centers where
the circle falls outside the box are considered underperforming or overperforming compared
to the predicted outcome. Boxplots are labeled by transplant center size
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Table 5
Type I error rates by center size and proportion of good risk patients at a given center, for scaled down version of
scenario 4 with n = 990 patients total

Center size πi Censoring at 1 year

5% 20% 35%

15 0.3 0.052 0.050 0.056

0.7 0.052 0.049 0.055

0.5 0.052 0.054 0.057

45 0.3 0.047 0.050 0.049

0.7 0.045 0.043 0.047

0.5 0.048 0.049 0.049

75 0.3 0.042 0.042 0.043

0.7 0.044 0.041 0.041

0.5 0.044 0.043 0.045
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