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Summary
To colonize the human small intestine, Giardia lamblia monitors a dynamic environment.
Trophozoites attach to enterocytes that mature and die. The parasites must “decide” whether to re-
attach or differentiate into cysts that survive in the environment and re-activate when ingested. Other
intestinal parasites face similar challenges. Study of these parasites is limited because they do not
encyst in vitro. Giardia trophozoites were persuaded to encyst in vitro by mimicking physiologic
stimuli.

Cysts are dormant, yet “spring-loaded for action” to excyst upon ingestion. Giardial encystation has
been studied from morphological, cell-biological, biochemical and molecular viewpoints. Yet
important gaps remain and the mechanisms that co-ordinate responses to external signals remain
enigmatic.

Introduction
As a major cause of waterborne diarrheal disease, Giardia contributes to the burden of
malnutrition worldwide [1••]. Giardia’s simple, two-stage life cycle is central to its success as
a parasite. G. lamblia cysts can survive in cold fresh water for months and fewer than 10 cysts
are needed for human infection. Exposure of ingested cysts to gastric acid triggers excystation,
a rapid and dramatic differentiation. After entry into the small intestine, the cyst wall opens
and the parasite emerges. Trophozoites colonize below the entry of the common bile duct and
can cause disease, although they do not invade. If they are carried downstream, trophozoites
must encyst to survive outside the host. In vitro, Giardia encysts in response to the physiologic
stimuli of increased bile and slightly alkaline pH [2]. The “gold standard” for successful
encystation is the ability of cysts to excyst.

Other important intestinal parasites, including Entamoeba, Toxoplasma, Cryptosporidium,
several tapeworms and nematodes, are transmitted as cysts or oocysts. However, study of these
organisms is limited by the inability to generate mature cysts in vitro.

The giardial encystation pathway is a key virulence mechanism whose “biological goal” is
differentiation into a form that can survive in the environment and infect a new host.
Encystation also promotes immune evasion and is a target for vaccine and drug development
[3-5]. The construction of the extracellular cyst wall (CW) is of primary importance as it allows
the parasite to persist in fresh water, resist disinfectants, pass through the new host’s stomach
and infect in the small intestine. This 300 nm thick fibrous structure excludes small molecules
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such as water, but transmits the physiological stimuli that regulate excystation. It is a model
extracellular matrix with both protective and signaling functions.

Encystation is a gradual transformation of the motile, flagellated binucleate (4N), half-pear-
shaped trophozoite (Figure 1). Trophozoites lose the ability to attach; the attachment disk
fragments [6••] and the flagella are internalized. Metabolism also decreases as cells round up
and enter dormancy. The oval, immotile, quadrinucleate (16N) cyst is encased in the refractile
CW that contains protein (CWP) and glycopolymer (CWG) in insoluble fibrils [7]. Synthesis
of CWP begins early in encystation, and leads to formation of novel large encystation secretory
vesicles (ESV), which export CWP. Several excellent reviews have focused on the ESV
pathway [8-11•].

This review presents a global overview of major events in giardial encystation, emphasizing
recent progress and important areas where further research is needed.

Biogenesis of the cyst wall
The CW composition, formation, and supramolecular architecture are incompletely
understood. Currently, only four structural CWP are known. Three CWP are related leucine-
rich repeat-containing proteins, while the fourth resembles trophozoite variant surface proteins
(VSP) [12-15••]. All are sorted, concentrated within and exported to the nascent CW by ESV,
the earliest cellular manifestation of encystation [16]. Recent studies focus on complementary
aspects of ESV biogenesis. The Lujan lab [17] proposed that CWP aggregate and interact with
specific membranes and drive ESV formation. Maturation requires complex interactions
between ESV contents and membrane receptors. Using CWP chimeras, they reported that
CWP2 is a key regulator of ESV formation and acts as an aggregation factor for CWP1 and
CWP3, and as a ligand for sorting via its C-terminal basic extension. They postulate that the
CWP2 extension must be removed for transport to the CW. However, we found CWP2 with
its tagged C-terminus in the mature CW [14]. They propose that the necessary sorting receptors
are lipid molecules [18], which bud off the ESV in a specialized ER or Golgi-like compartment.
The CWP have 14 positionally conserved cysteine residues [14] and form extensive disulfide
bonded complexes [14]. The importance of the cargo is supported by our finding that reducing
these complexes in situ with DTT reversibly disrupted the ESV [19], transforming them to
flattened ER-like cisternae [20••].

The Hehl laboratory emphasizes peripheral secretory system proteins (Table 1) and Golgi-like
properties of the ESV [9]. Their limited proteomic analysis implicated several cytoplasmic and
luminal ER quality control factors [20••], including the ER chaperone HSP70-BiP that cycles
between the ESV and ER. Several proteasome subunits relocalize near ESV, suggesting
possible cytoplasmic quality control.

In contrast to CWP1-3, whose exclusive destination is the CW, the high cysteine non-variant
cyst protein (HCNCp) differs [15••]. HCNCp is detected in trophozoites and it co-localizes
with CWP to the ESV during encystation. Although HCNCp is in the wall of mature cysts,
much of it remains in the cell body. HCNCp is much larger than CWP and resembles VSP.
HCNCp lacks LRR and has ~14% cysteines with many “CxxC” or “CxC” motifs and a
divergent, VSP-like C-terminal transmembrane domain. The roles of HCNCp and the 60 other
non-VSP high cysteine proteins [15••] in the genome remain enigmatic.

The ESV contents must attain their insoluble architecture after secretion [10]. Several
enzymatic activities have been implicated in post-translational processing in the ESV pathway
(Table 1):
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a. The major known post-translational modification of the three CWP is formation of
extensive intermolecular disulfide bonds by protein disulfide isomerases (PDI)
[12-14,19]. Giardia has five protein disulfide isomerases [21] and the three that are
characterized localize to ESV matrix but not CW [22].

b. PDI 1-3 also have transglutaminase activity which forms isopeptide protein crosslinks
that are resistant to degradation [23,24]. Isopeptide bonds increase during encystation
and transglutaminase inhibition decreases cyst formation. However, the cross-linked
proteins remain to be identified.

c. A lysosomal cysteine proteinase was implicated in cleavage of the C-terminal
extension of CWP2, suggesting cross-talk between the lysosomal compartment and
ESV [25]. HCNCp is cleaved [15••] by a yet unknown protease.

d. CWP 1 and 2 are phosphorylated [26], but no kinase has been implicated.

e. The Giardia granule-specific protein (gGSP) has a calsequentrin domain, binds
calcium, is upregulated in encystation, and localizes to the ESV [27]. Knockdown of
gGSP inhibits ESV release, suggesting a calcium-dependent process [27].

Thus, a number of independent studies show that the ESV are central to CW biogenesis as any
genetic or chemical manipulation that interferes with the ESV pathway blocks all downstream
events [19,23,27,28••].

Many cells and organisms have extracellular walls that permit them to survive in the
environment. Sugar polymers are key components of these walls and are often composed of
repeating hexose units. Although the monomers are closely related, the polymers have distinct
physical properties. Beta 1-3 polyhexoses do not associate as strongly as beta (1-4)-linked
polysaccharides. Chitin, (beta 1-4 linked N-acetyl glucosamine) of arthropod and insect
exoskeleton and fungal cell walls, is widespread in evolution [29,30]. Pioneering studies from
the Jarroll group showed beta 1-3 polymer of galNAc as the major CWG [31]. Their insoluble
material was purified by extensive enzymatic and chemical extractions that might have
removed other important CW components. They defined an enzymatic pathway for synthesis
of UDP-galNAc from glucose by an encystation-specific cytosolic pathway (Table 1)
[12-15••]. An activity in crude cyst wall particles, termed “cyst wall synthase” (CWS),
specifically incorporates galNAc from UDP-galNAc into insoluble material. However, no
CWS gene has been identified. Based on the complexity of chitin synthase systems [32],
“CWS” activity may require more than one protein.

Despite its central importance and the accessibility of the giardial life cycle, many gaps remain
in our knowledge of the CW composition, formation, and architecture.

Transcriptional regulation of encystation
The molecular control of encystation is not well understood. RNA expression of the three CWP
and the CWG biosynthetic enzymes, is largely upregulated transcriptionally (Table 1). In
addition, several other proteins, whose roles in encystation are yet to be discovered, are
upregulated at the transcriptional level (Table 1).

To date, three giardial DNA-binding transcription factors have been described. Only GARP
glp1 and Myb2 are upregulated in encystation [33-35]. Myb2 binds to target sequences in the
proximal upstream regions of the CWP genes and of g6PI-B, the first enzyme in the galNAc
biosynthetic pathway, and of Myb2 itself [33]. Transcripts of most giardial genes initiate in A/
T-rich initiator-like sequences near the start of translation [2]. This and several upstream
sequences have been implicated in transcription of encystation genes [33,36-39]. A
downstream region was reported to affect transcript stability [38,39].
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Signal transduction in encystation
Trophozoites in the small intestine constantly monitor and respond to their environment. The
lumenal composition varies with location and host nutrition. Trophozoites that are attached to
enterocytes are beneath a mucus blanket and bathed in a serum-like microfiltrate, near neutral
pH and at low bile concentration. As enterocytes mature, they are sloughed off and trophozoites
must swim upstream to re-attach. If they remain in the lumen, trophozoites are exposed to the
slightly alkaline pH and increased bile that lead to encystation.

During encystation, morphological modifications are coordinated with cell cycle exit and
decreased metabolism. However, the proteins and pathways involved in transducing the
physiological signals into effective responses are only beginning to be understood. Certain
intracellular signaling proteins have been implicated in encystation based on their increased
mRNA or protein expression and/or their localization to ESV and CW (Table 1). ERK1/2,
PKAc, PKAr, PP2A-C and a PKCβ were reported to play a role in Giardia encystation [28••,
40••-43]. PKA and ERK1/2 activities and ERK1/2 phosphorylation increase during encystation
[28••,40••-43]. Importantly, inhibition of PP2A-C and of PKCβ decreases encystation [28••,
42••].

These signaling proteins are all universal regulators of growth and differentiation in other
organisms. Their specific functions in Giardia, however, are dependent on their cellular
geography. All of these signaling proteins (except ERK2 and PKCβ) localize constitutively to
the Giardia basal bodies/centrosomes. They also localize to cytoskeletal structures unique to
Giardia, such as characteristic paraflagellar rods and the attachment disk. Their diverse
targeting suggests that each signaling protein has a distinct role in encystation. The localization
of PKAc/r, PP2A-C, PKCβ and ERK1/2 changes in response to the physiologic stimuli that
induce encystation [28••,40••-42••,44]. Much additional research is needed to elucidate the
complex cell signaling pathways that regulate encystation. Individual signaling proteins are
regulated, often in cascades, by addition and removal of phosphates. Giardia has few
transmembrane kinases (H.G. Morrison et al., in press) and the surface receptors for detecting
and transmitting the extracellular encystation signals have not been defined.

Conclusions and perspectives
We have summarized progress in understanding giardial encystation from molecular and cell
biological points of view. What emerges is the need for additional research to unmask the
complexities of this important differentiation. In addition to being a model for other parasites,
Giardia may provide useful hypotheses and paradigms for the entry into and exit from
dormancy of a wide variety of cell types.
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Figure 1. Giardia lamblia encystation: from trophozoite to cyst
Images from left to right show a vegetative trophozoite, trophozoites after 21 and 42 hours of
encystation and a water-resistant cyst. Encysting trophozoites gradually round up and develop
numerous ESV (arrowheads) that export CW (arrow) components. F, flagella. Bar: 5μm
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