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Abstract
EDGAR (Extraction of Drugs, Genes and Relations) is a natural language processing system that
extracts information about drugs and genes relevant to cancer from the biomedical literature. This
automatically extracted information has remarkable potential to facilitate computational analysis
in the molecular biology of cancer, and the technology is straightforwardly generalizable to many
areas of biomedicine. This paper reports on the mechanisms for automatically generating such
assertions and on a simple application, conceptual clustering of documents. The system uses a
stochastic part of speech tagger, generates an underspecified syntactic parse and then uses
semantic and pragmatic information to construct its assertions. The system builds on two
important existing resources: the MEDLINE database of biomedical citations and abstracts and the
Unified Medical Language System, which provides syntactic and semantic information about the
terms found in biomedical abstracts.

1 Introduction
The biomedical literature is a tremendously rich information source, and the collection of
abstracts in the National Library of Medicine’s MEDLINE database summarizes that
literature comprehensively. Despite the attractiveness and accessibility of that computer-
readable resource, however, automated extraction of useful information from it remains a
challenge because the abstracts are in natural language form. In this paper, we report a
system, EDGAR (Extraction of Drugs, Genes and Relations), designed to extract factual
information from the MEDLINE database on the relationships between genes, drugs and
cells. This initial demonstration version has been optimized with respect to the literature on
cancer therapy, but the principles and processes developed are applicable more broadly.

Previous work in automated understanding of the biomedical literature has generally focused
either on theoretical and completely general methods or on analytical tasks (e.g., finding
keywords to describe a paper or finding the names of genes or proteins) that are substantially
more constrained than extracting factual assertions. By addressing a problem more complex
than finding descriptive terms in a paper but less difficult than the general problem of
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understanding natural language, we aimed to build a system of immediate use to laboratory
investigators.

Approaches to the extraction of factual assertions from biomedical text vary widely.
Methods used include syntactic parsing (e.g. [Proux, et al., 1998]), processing of statistical
and frequency information (e.g. [Hishiki, et al., 1998] and [Ohta, et al., 1997]) and rule-
based systems (e.g. [Fukuda, et al., 1997]). We draw on all of these lines of attack, using a
stochastic part of speech tagger [Cutting, et al., 1992] in support of an underspecified
syntactic parser [Aronson, et al., 1994]. The parser provides input to a rule-based system
that uses the syntactic information, as well as semantic information from the Unified
Medical Language System Metathesaurus [Humphreys, et al., 1998] to extract factual
assertions from text.

Previous extraction efforts have been mounted to generate gene names (e.g., [Proux, et al.,
1998]), protein names (e.g. [Fukuda, et al., 1998]), keywords describing papers (e.g.
[Andrade, et al., 1999] and [Ohta, et al., 1997]) and binding affinities [Rindflesch, et al.,
1999]. Our goal in this work is to extract factual assertions, in the form of first order
predicate calculus statements, about the relationships between genes and drugs in cancer
therapy.

Mining the literature for relationships between genes and drugs in cancer is an increasingly
important task. The advent of cDNA microarrays and oligonucleotide chips that can assess
tens of thousands of genes simultaneously is providing enormous amounts of information,
for example about the roles particular genes play in drug sensitivity, about the effects of
drugs on gene expression, and about the effects of genetic mutations on sensitivity and
response [Weinstein, et al., 1997; Scherf, et al., 1999]. This information is likely to advance
the twin goals of discovering new drugs for cancer treatment and, in a clinical setting,
individualizing therapy according to the genomic constitution of a patient’s tumor. However,
the amount of potentially relevant information can be overwhelming. There is a pressing
need for automated assistance in managing and exploiting information on the relationships
among the tens of thousands of genes and (potential) drugs.

Focus on a particular domain of knowledge (such as ours on genes and drugs involved in
cancer therapeutics) provides important constraints on the set of concepts that EDGAR’s
algorithms must be able to handle. There is enough complexity to the material to make an
automated system valuable to practitioners in the field, yet the number of entities and
relationships that must be handled is small enough that special purpose programs to take
advantage of the semantics of the domain can be constructed manually.

2 Representation
The entities that participate in the factual assertions on which we focus here are genes, cells
and drugs. EDGAR parses natural language text and produces predicate calculus assertions
over these relationships and entities. We want to capture the main factors that are known to
be relevant but, at the same time, to constrain the vocabulary as much as possible to
facilitate parsing.

Cancer-related drugs and genes can influence each other in two important ways: (1) gene
expression can have an impact on the drug sensitivity of a cell, and (2) drug treatment often
results in changes in the cell’s gene expression. The exact nature of these influences
(sensitivity or resistance, activation or inhibition) is cell type-specific. For example, in one
cell line, a drug may cause upregulation of a gene whereas in another there is either an
inhibition or no effect at all. This variability is due to the particular mix of interacting
entities and pathways in each cell type.
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Figure 1 shows the relationships and entities on which we focus here. Notice that the entity
descriptions are compositionally complex, in that a cell may be transfected with genes (i.e.
have foreign genes added to its natural complement) in addition to having a particular
intrinsic gene expression profile. Similarly, a cell that is resistant to one drug might be
treated with another.

The connectivity in Figure 1 suggests that information about a drug, gene or cell can be
inferred from its relationship to other drugs, genes or cell lines. One important aim in
making such inferences is to discover relationships that provide new insights into clinical
responses to chemotherapy. Another is to guide the process of drug discovery. Interesting
implicit relationships include cross-resistance, synergistic drug effects, antagonistic drug
effects and hypothetical mechanisms of drug action. Automatic tools to discover such
relationships may become practical when it is possible to generate large factual databases
using tools such as EDGAR.

3 Natural Language Processing
3.1 Semantic Interpretation

Our basic approach is to consider the identification of gene, cell and drug names in the text
of MEDLINE abstracts and eventually to determine the relationships asserted to obtain
among them with respect to the interaction of gene expression and drug sensitivity in
particular cell types. For example, the text in (1) gets the semantic interpretation in (2),
where the predicate refers to the relation “increased resistance,” which obtains among the
gene, cell, and drug arguments.

1) “Compared with parental or mock-transfected HAG-1 cells, v-src-transfected
HAG/src3-1 cells showed a 3.5-fold resistance to cis-diamminedichloroplatinum
(CDDP).”

2) i_resistant(v-src, HAG/src3-1, CDDP)

In semantic interpretation it is convenient to distinguish between referential and relational
vocabularies. The referential vocabulary encodes the arguments in the semantic analysis,
whereas the relational vocabulary involves the (more complex) syntactic phenomena
associated with the predicate of the underlying semantic proposition. In this paper we
concentrate on the referential vocabulary; however, we will comment later on progress being
made toward processing the relational vocabulary.

3.2 Knowledge Sources
Interpretation of the referential vocabulary in EDGAR is based on natural language
processing tools and knowledge sources being developed at the National Library of
Medicine. The primary knowledge source supporting EDGAR is the Unified Medical
Language System® (UMLS®) Metathesaurus® [Humphreys, et al., 1998], which is a large
(more than 620,000 concepts) compilation of several controlled vocabularies in the
biomedical (largely clinical) domain. The most important characteristic of the Metathesaurus
for this project is that each constituent concept is associated with a semantic type such as
“Pharmacologic Substance,” “Gene or Genome,” or “Cell.” For syntactic information, we
use a second knowledge source from the UMLS, the SPECIALIST™ Lexicon [McCray, et
al., 1994]. We also use cell line names from the National Cancer Institute’s Drug Discovery
Program and lists of gene synonyms compiled from the Weizmann Institute’s GeneCards
database.
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3.3 Processing
EDGAR begins by assigning an underspecified syntactic parse to each sentence in the
abstract under consideration. All subsequent analysis depends on this structure. The natural
language processing tools include a stochastic tagger [Cutting, et al., 1992], which resolves
part-of-speech ambiguities in support of the underspecified parser [Aronson, et al., 1994].
As shown in the analysis (4) for the sentence in (3), the syntactic structure is underspecified
in the sense that, although low-level constituents (notably noun phrases) are identified, they
are not attached in a fully-specified parse tree.

3) “This effect of cyclosporin A or herbimycin A on the down-regulation of
ERCC-1 correlates with enhanced cytotoxicity of cisplatin in this system.”

4) [this effect]NP [of [cyclosporin A]NP]PrepP [or]CONJ [herbimycin A]NP [on [the
down-regulation]NP]PrepP [of [ERCC-1]NP]PrepP [correlates]V [with [enhanced
cytotoxicity]NP]PrepP [of [cisplatin]NP]PrepP [in [this system]NP]PrepP

To identify those noun phrases that function as arguments in the predications representing
drug and gene interactions, EDGAR relies primarily on the Metathesaurus, with support
from the ancillary gene and cell lists. Given the clinical orientation of the UMLS, the
Metathesaurus has wide coverage of the drugs that appear in the relevant abstracts.
However, since none of the constituent vocabularies of the Metathesaurus has extensive
coverage in molecular biology, genes and cells are not as well represented. Furthermore, the
ancillary lists are incomplete, particularly for cell lines. Therefore, EDGAR uses contextual
information to identify gene and cell names when these do not appear in any of the available
knowledge sources.

The general strategy for harvesting contextually-determined gene and cell names depends on
the fact that the structure of noun phrases referring to cells and genes in the abstracts in this
domain is quite regular. The phrases in (5), all from a single abstract, are typical.

5) human ovarian carcinoma cells, a2780/cp70 human ovarian carcinoma cells,
a2780/cp70 cells

Each noun phrase in (5) has cells as its head. Furthermore, if the word that appears
immediately to the left of the head is not a normal English word, it is the name of a cell.
These generalizations are paradigmatic of the general approach taken to identifying both
gene and cell names by context.

A small set of characteristic signal words (such as cell, clone, line, and cultured for cells and
activated, expression, gene, and mutated for genes) mark certain noun phrases as referring to
either cells or genes. In such phrases, the characteristic words occur in a regular pattern with
respect to the names of genes and cells. Words such as cell, line, and gene function as heads
of the phrase and the target name is likely to occur immediately to their left. Cultured,
activated, and mutated are modifiers that precede the target name. A few signal words, such
as expression (and related forms) may serve as the head of a gene noun phrase but may also
indicate that their complement (introduced by of) is almost certainly a gene name.

Once gene and cell noun phrases have been identified, the potential target name is
scrutinized in order to eliminate carcinoma, for example, as the name of a cell type. If the
text token immediately to the left of the word cell does not occur in the SPECIALIST
Lexicon and does not have the orthographic characteristics of a normal English word
(normal words contain at least one vowel and no digits), then it is likely to be the name of a
cell. Similar rules apply to other characteristic signal words and the corresponding gene or
cell names.
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Although these generalizations have been found useful, they are not always correct.
Hyphenated expressions, in particular, produce false positives. For example, upon
encountering the noun phrase c-myc-overexpressing cells, EDGAR concludes that c-myc-
overexpressing is the name of a cell because this string is not in the SPECIALIST Lexicon.
Similarly, apoptosis-related is identified as a gene name on the basis of the noun phrase
apoptosis-related gene expression. Because of the many hyphens in gene and cell names,
additional work in this area is necessary.

Contextually-identified gene and cell names are harvested in an initial pass through the
entire abstract before the identification of all drugs, genes, and cells is attempted. This
separate pass is necessary because a gene or cell name may occur only once in a context in
which it can easily be identified. For example, in (6), the appearance of c-fos and c-jun as
modifiers in the noun phrase whose head is expressions provides strong evidence that these
are gene names. This evidence can be used with confidence when the same names appear in
another sentence in the same abstract (7) but in a context which less reliably identifies it as a
gene name.

6) Cyclosporin A and herbimycin A, which suppress c-fos and c-jun gene
expressions, respectively, blocked the cisplatin-induced increase in ERCC-1
mRNA.

7) The products of c-fos and c-jun are components of the transcription factor AP-1
(activator protein 1).

Gene and cell names identified by context constitute an internal knowledge source local to
the current abstract. This local source is used to supplement the Metathesaurus and ancillary
lists when each sentence is processed to identify arguments in the predications representing
drug and gene interactions in cells.

Argument identification proceeds by examining each noun phrase in the underspecified
syntactic parse for each sentence and determining whether it matches a Metathesaurus
concept, an entry in one of the ancillary lists of genes and cells, or an item in the local,
contextually-determined list. For access to UMLS, EDGAR calls on MetaMap [Aronson, et
al., 1994], a program that examines the syntactic structure of noun phrases and determines
the best match between the input phrase and concepts in the Metathesaurus. A noun phrase
that maps to a Metathesaurus concept and that has one of the UMLS semantic types
“Pharmacologic Substance,” “Gene or Genome,” or “Cell” is considered accordingly to be a
drug, gene or cell. For example, when the sentence in (3) above is submitted to MetaMap,
EDGAR determines that the noun phrases in (8) refer to drugs. A search in the ancillary lists
finds that (9), another noun phrase in (3), is a gene name.

8) [of cyclosporin A] - Cyclosporine (Pharmacologic Substance) UMLS
[herbimycin A] - herbimycin (Pharmacologic Substance) UMLS [of cisplatin] -
Cisplatin (Pharmacologic Substance) UMLS

9) [of ERCC-1] - ERCC1 (Gene) Ancillary list

As suggested in the discussion of (6) and (7), during this phase of the processing,
contextually-determined items are also used whenever possible to identify arguments as
either genes or cells.

EDGAR retrieves cell features other than the name, including organ type, cancer type,
organism, and several domain specific features, the most important of which refer to
transfection and resistance. EDGAR harvests this information using techniques similar to
those described for the contextual identification of gene and cell names: specific signals
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(notably transfected and resistant) provide guidance, and the Metathesaurus semantic types
are consulted for organisms, body parts, and neoplastic processes.

The algorithm for identifying the referential vocabulary that represents the interaction of
genes and drugs in cells is recapitulated schematically in Figure 2.

To further illustrate the processes in EDGAR, we show here the analysis of a MEDLINE
abstract (UI 99140404) with the title “V-src induces cisplatin resistance by increasing the
repair of cisplatin-DNA interstrand cross-links in human gallbladder adenocarcinoma cells.”
All of the gene and cell noun phrases discovered by EDGAR in this abstract are given in
(10) and (11), respectively.

10) gene_np([activation, of, src]). gene_np([activated,’h-ras’]).

gene_np([‘v-src’, transfected,’hag1’, human, gallbladder, …adenocarcinoma,
cells]).

gene_np([‘v-src’, transfected,’hag/src3-1’, cells]).

gene_np([‘v-src’, transfected, cells]). gene_np([activated, src]).

gene_np([mrna, expression, of, topoisomerase, ii]).

11) cell_np([human, gallbladder, adenocarcinoma, cells]).

cell_np([‘v-src, transfected,’hag-1’, human, gallbladder, …adenocarcinoma,
cells]). cell_np([‘v-src, transfected,’hag/src3-1’, cells]).

cell_np([‘hag/src3-1’, cells]). cell_np([cell, lines]).

The drugs, genes and cells identified as arguments are listed in (12), (13), and (14). Note
that, because of word-sense ambiguity, mapping to the UMLS occasionally produces errors
such as “Link” in (12). There is a drug with this name in the Metathesaurus, and MetaMap
erroneously matched the text cross-links from the title to this concept. Also note that
appropriate characteristics have been added to the cell predications in (14) (e.g., the “tfw”
label to indicate transfection with v-src).

12) drug(’99140404’,’Doxorubicin’). drug(’99140404’,’Etoposide’).

drug(’99140404’,’Fluorouracil’). drug(’99140404’, wortmannin).

drug(’99140404’,’Link’). drug(’99140404’, herbimycin).

drug(’99140404’, radicicol). drug(’99140404’,’Cisplatin’).

drug(’99140404’,’Pharmaceutical Preparations’).

13) gene(‘99140404’,’h-ras’). gene(‘99140404’,’v-src’).

gene(‘99140404’, src).

14) cell(‘99140404’,’HAG-1’,’Gallbladder’,’Adenocarcinoma’, tfw(‘v-…
src’),’Human’).

cell(‘99140404’,’HAG/SRC3-1’,’Gallbladder’,’Adenocarcinoma’, …tfw(‘v-
src’),’Human’).

4 Predications asserting the interaction of drugs, genes, and cells
Processing the referential vocabulary as described in the previous section prepares EDGAR
to address the relational vocabulary and recover predications that assert interaction of the
arguments identified. Although processing of the relational vocabulary remains a work in
progress, many of the abstracts show a characteristic that will make the process easier to
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accomplish successfully: That is, relevant sensitivity and resistance interactions are usually
described in a single sentence that contains a drug name, a gene name, and a cell name, all
of which are susceptible to identification with current EDGAR capabilities. The sentence in
(15) illustrates this phenomenon.

15) The overexpression of catalase or Cu,Zn-superoxide dismutase (Cu,Zn-SOD)
did not affect the sensitivity of HeLa cells to cis-platinum.

Both catalase and Cu,Zn-superoxide dismutase are complements of overexpression and thus
are identifiable as gene names; HeLa as a modifier of cells is a cell name; and cis-platinum
occurs in the Metathesaurus. The syntactic indicators of the underlying semantic relations,
such as overexpression and did not affect sensitivity, seem reasonably amenable to
currently-available natural language processing techniques (although adequate treatment in
the general case will not be trivial).

Unfortunately, the relevant relationships are not always expressed with the relatively
straightforward structures seen in (15). Three syntactic phenomena, coordination, anaphora
and underspecified reference can complicate the task of interpreting sentences that express
sensitivity or resistance relations. In (15), for example, the coordinated gene names indicate
that this sentence expresses two predications describing the sensitivity of the HeLa cells to
cis-platinum. Coordinate structures so complex as to challenge accurate interpretation are
seen in (16).

16) “Compared with parental or mock-transfected HAG-1 cells, v-src-transfected
HAG/src3-1 cells showed a 3.5-fold resistance to cis-diamminedichloroplatinum
(II) (CDDP) but not to doxorubicin, etoposide or 5-fluorouracil.”

Both underspecified reference and anaphora are seen in (17).

17) By contrast, activated H-ras, which acts downstream of src, failed to induce
resistance to either of these drugs.

The specific referents of these drugs will have to be recovered from another sentence in the
abstract. Finding the sentence with that information is a difficult task that depends on not
only finding references to drugs in prior sentences, but also ensuring that h-ras was not
asserted as inducing resistance to those drugs in that or intervening sentences. Further, the
relevant cell will also have to be inferred from another sentence, with similar caveats. This is
a challenging semantic interpretation task, but we are optimistic that with further research it
can be handled with acceptable accuracy.

5 Current status and related work
EDGAR is still in development, and its performance has not yet been quantified. One basis
for evaluation is a comparison with MedMiner, a keyword-based system developed and used
in our laboratory [Tanabe, et al., 1999]. The largest difference is that EDGAR can
automatically identify most drug and gene names, whereas MedMiner requires that these
names be supplied by the user (or programmer). EDGAR is also designed to be able to
generate relational assertions with correct arguments, extracted from syntactically complex
sentences, something that cannot be done in the string-matching paradigm MedMiner uses.
However, EDGAR’s accuracy is still best characterized as moderate. As noted above, the
currently operational version of the system does not analyze the type of relationship existing
between the objects identified. Code for this task is currently under development.

Recently, many groups have proposed systems for automated extraction of factual
information from the biomedical literature. [Blaschke, et al., 1999] is an attempt to generate
functional relationship maps from abstracts. However, it requires a prerequisite list of all
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named entities and cannot handle syntatically complex sentences. [Craven & Kumlien 1999]
uses statistical methods that are unable to resolve even modest syntactical complexity, such
as the presence of more than two possible predicate arguments in a sentence. This system
also has very low recall accuracy. [Ohta, et al.1997] describes a system that automatically
constructs a dictionary of statistically informative terms from a set of abstracts. Although
these terms often overlap with the ones generated by EDGAR, in their system there is no
mapping between terms and the underlying semantic concepts. Hence, it would not be
possible, for example, to use it to identify drugs or genes as such.

6 Application
EDGAR’s current capacity to identify well-characterized genes, drugs and cell lines can be
immediately useful to biologists. We designed a tool that manages large collections of
abstracts using the output of EDGAR as the input for vector space document clustering
[Salton, 1989]. The PubMed query “neoplasms AND cells AND gene AND drug AND
resistance AND mechanism” generated 383 abstracts related to anti-tumor drug resistance.
These abstracts were processed by EDGAR in batch, then perl scripts were applied to the
output to remove single character names, merge synonyms and create boolean feature
vectors representing the cellular entities. Genes, drugs and cells found in at least two
abstracts were included in the document vectors, and Splus statistical software was used to
perform hierarchical clustering.

The dendrogram in Figure 3 shows a subtree of the 383 documents clustered by Euclidean
distance. The cluster structure has been used by domain experts in our laboratory to help
navigate the voluminous relevant literature. Domain experts can make inferences from the
clustering alone, without having to read the abstracts. For example, the first two branches
can be characterized by the statement: “Resistance to folates in leukemia cells is influenced
by the FPGS, TS, DHFR and RFC1 genes.” This interpretation was reached without reading
a single abstract, but upon examination of the abstracts, we found it to be supported by the
literature. It would have been impossible to reach such a conclusion from the titles alone.

This application also demonstrates the scalability of the EDGAR system. Typical processing
time for each abstract was a bit over 8 seconds, much of that overhead associated with http
submission. A large scale application of a similar system run locally [Rajan, et al., in
preparation] processed 491,237 abstracts in 12.8 cpu days (2.25 seconds each). Although
dendrograms in the style of Figure 3 are not practical for very large numbers of abstracts,
more sophisticated visualization techniques can handle larger trees, and no matter what size,
the trees will generally be locally interpretable.

7 Conclusions
We have presented here a natural language processing system, EDGAR, that extracts
mentions of genes, drugs and cell types from Medline abstracts by using existing syntactic
NLP tools in combination with new semantic and pragmatic analyses. Development to date
has focused on the referential vocabulary, but addition of a fully functional relational
vocabulary will provide the strong semantic basis required for capturing biologically
significant gene-drug-cell relationships. EDGAR is most immediately applicable now in the
context of pharmacologically motivated gene expression profiling, but its range of
application will be progressively extended.
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Figure 1.
The entities and relationships used by EDGAR.
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Figure 2.
Processing for each abstract
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Figure 3.
Subtree of Drug Resistance Clusters
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