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Lévy laws and 1/f noises are shown to emerge uniquely and uni-
versally from a general model of systems which superimpose the
transmissions of many independent stochastic signals. The signals
are considered to follow, statistically, a common—yet arbitrary—
generic signal pattern which may be either stationary or dissi-
pative. Each signal is considered to have its own random trans-
mission amplitude and frequency. We characterize the amplitude-
frequency randomizations which render the system output’s sta-
tionary law and power-spectrum universal—i.e., independent of
the underlying generic signal pattern. The classes of universal sta-
tionary laws and power spectra are shown to coincide, respectively,
with the classes of Lévy laws and 1/f noises—thus providing a uni-
fied and universal explanation for the ubiquity of these classes of
“anomalous statistics” in various fields of science and engineering.
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A nomalous statistics are ubiquitously observed in many fields
of science and engineering, and their exploration has drawn

major interest in recent years by both experimentalists and theo-
reticians (1–3). In the context of stationary stochastic processes
and signals, one can observe either amplitudinal or temporal
anomalous statistics.

Amplitudinal anomalous statistics are manifested by wide
process fluctuations, and are referred to as the Noah effect (4).
Quantitatively, amplitudinal anomalous statistics are character-
ized by “heavy-tailed” stationary laws (5)—stationary laws whose
distribution tails follow asymptotic power-law decay. The quintes-
sential proxy of amplitudinal anomalous statistics is the class of
Lévy laws (6, 7). This class of probability laws emerges from the
Central Limit Theorem as the universal scaling limits of sums of
independent and identically distributed (IID) random variables
with infinite variance (8, 9).

Temporal anomalous statistics are manifested by long process
memory and are referred to as the Joseph effect (4). Quantita-
tively, temporal anomalous statistics are characterized by long-
range correlations (10, 11)—autocorrelation functions following
asymptotic power-law decay. The quintessential proxy of temporal
anomalous statistics is the class of 1/f noises (12–14)—stationary
processes with power-law power spectra.

Stationary stochastic processes and signals are prevalent across
many fields of science and engineering. Examples of such
processes and signals include the intensity of solar luminosity,
the sales of a consumer product, and transmissions sent through
communication channels. In many systems, a very large collection
of microscopic stationary stochastic inputs are aggregated up to
form a macroscopic stationary system output. In the context of the
aforementioned examples, consider, respectively, the luminosity
of a galaxy, the sales of a large department store, and transmissions
sent through a central communication router.

In this research, we consider systems whose outputs are super-
positions of many stationary stochastic inputs—all inputs being,
statistically, of the same stationary signal pattern but with different
amplitudes and frequencies. We further consider the amplitudes
and frequencies of the inputs to be random, and address the

following universality question: Is it possible to randomize the
inputs’ amplitudes and frequencies so that the system outputs’
stationary law, or power spectrum, be independent of the inputs’
stationary signal pattern?

Randomizations rendering the system outputs’ stationary laws
independent of the inputs’ stationary signal patterns are termed
“amplitude-universal,” and randomizations rendering the system
outputs’ power spectra independent of the inputs’ stationary sig-
nal patterns are termed “temporal-universal.” In this research, we
prove the existence of both amplitude-universal and temporal-
universal randomizations and explicitly characterize these ran-
domization classes. We further prove that in the case of amplitude-
universal randomizations, the system outputs’ stationary laws
coincide with the class of Lévy laws, and in the case of temporal-
universal randomizations the system outputs’ stationary laws coin-
cide with the class of 1/f noises. This research thus establishes a
unified and universal explanation to the ubiquity of Lévy laws and
1/f noises.

The remainder of this article is organized as follows. In Section
2, the aforementioned system model and results are presented
in detail. In Section 3, the aforementioned results are shown to
hold also in systems whose outputs are superpositions of many
dissipative stochastic inputs which appear and vanish randomly
in time—all inputs being, statistically, of the same dissipative
signal pattern, but with different amplitudes and frequencies.
A discussion and a conclusion of the results follows, respectively,
in Sections 4 and 5. For proofs, the readers are referred to the
SI Appendix.

Section 2: The Stationary Superposition Model
Consider a stochastic process Y = (Y (t))−∞<t<∞ which is a super-
position of a countable collection of stationary stochastic signals
transmitted from independent transmission sources. Assume that
the transmission sources produce statistically identical stochas-
tic signals—albeit with different amplitudes and frequencies—
which are IID copies of a generic stationary signal pattern X =
(X (t))−∞<t<∞ with zero mean and short-range correlations.∗ The
stochastic process Y is thus given by

Y (t) =
∑

k

akXk(ωkt) [1]
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where (i) ak is the (real-valued) transmission amplitude of source
k; (ii) ωk is the (positive-valued) transmission frequency of source
k; and (iii) Xk = (Xk(t))−∞<t<∞ is the stochastic signal pattern
transmitted by source k—an IID copy of the generic stationary
signal pattern X .

The stationary superposition model of Eq. 1 establishes a sto-
chastic map X �→ Y , which maps the input stationary signal
pattern X to the output stochastic process Y . The output is a
stationary stochastic process, and hence its amplitudinal statistics
are governed by its stationary law, and its temporal statistics are
governed by its power spectrum. Our aim is to find and character-
ize randomizations of the amplitude-frequency pairs {(ak, ωk)}k
which render either the stationary law of the output process Y , or
its power spectrum, independent of the input signal pattern X .

To illustrate things, consider Eq. 1 as a system whose amplitude-
frequency pairs {(ak, ωk)}k are randomized by the system engineer,
whereas the signal pattern X is chosen arbitrarily by the system
users. The engineer’s goal is to design a system whose output statis-
tics (either the stationary law or the power spectrum of the output
process Y ) are universal, regardless of the choice of the system
users. Can this goal be accomplished? And, if yes, what are the uni-
versal randomizations, and what are the resulting universal output
statistics? These are the questions we address in this research.

Section 2.1: Randomizations. The common randomization method
of the amplitude-frequency pairs {(ak, ωk)}k is the “IID
randomization”—i.e. setting the parameters to be a sequence
of IID random variables. Yet another randomization method
is the “Poissonian randomization”—i.e. setting the amplitude-
frequency pairs to be the random points of a Poisson process (15).
The IID randomization is a special case of the Poissonian random-
ization, and the later method goes beyond the realm of the former
method.

Poissonian randomizations are a major statistical model for
the random scattering of points in general domains (15) and
have a wide spectrum of applications ranging from insurance
and finance (16) to queueing systems (17). In recent years, we
applied Poissonian randomizations in various topics in statistical
physics—obtaining results which are unattainable by IID ran-
domizations. Examples include nonlinear shot noise systems (18),
fractality in the context of random populations (19–21), and sta-
tistical resilience of random populations to the action of random
perturbations (22).

Henceforth, we consider the amplitude-frequency pairs
{(ak, ωk)}k to be the random points of a Poisson process, scattered
on the upper half-plane H = (−∞, ∞) × (0, ∞) with intensity
λ(x, y). Informally, this Poissonian randomization means that a
transmission source with amplitude-frequency pair (a, ω) belong-
ing to the infinitesimal rectangle (x, x + dx) × (y, y + dy) exists
with probability λ(x, y)dxdy. More precisely, this Poissonian ran-
domization means, as defined by ref. 15, that (i) the number of
transmission sources with amplitude-frequency pairs residing in a
subdomain D of the upper half-plane H is Poisson-distributed with
mean

∫ ∫
D λ(x, y)dxdy; and (ii) the number of transmission sources

with amplitude-frequency pairs residing in disjoint subdomains
of the upper half-plane H are independent random variables.
The Poissonian intensity λ(x, y) governs the randomization of the
amplitude-frequency pairs {(ak, ωk)}k.

Section 2.2: Amplitudinal Universality and Lévy Laws. Consider the
stationary law of the output process Y . We seek Poissonian inten-
sities λ(x, y) for which the choice of the signal pattern X affects
the output’s stationary law only by a scale factor—and term such
intensities “amplitude-universal.” Analysis shows that the inten-
sity λ(x, y) is amplitude-universal if and only if the function φ(x) =∫ ∞

0 λ(x, y)dy (−∞ < x < ∞) is a power law (see SI Appendix).
More specifically, if φ(x) = c1|x|−1−α, then the Fourier transform
of the output’s stationary law is given by

〈exp(iθY (t))〉 = exp(−c2|θ|α) [2]

where θ is the (real-valued) Fourier variable and: (i) c1 is a positive-
valued coefficient; (ii) α is an exponent taking values in the range
0 < α < 2; and (iii) c2 is a positive-valued coefficient depending
on the coefficient c1, the exponent α, and the signal pattern X .

The Fourier transform of Eq. 2 characterizes the class of Lévy
laws (6, 7). Hence, we conclude with the following result: The
universal stationary laws of the output process Y —being inde-
pendent, up to a scale factor, of the input signal pattern X—are
Lévy laws. Lévy laws arise from the Central Limit Theorem as the
universal scaling limits of sums of IID random variables with infi-
nite variance (8, 9) and are ubiquitously observed in anomalous
transport (2, 23, 24). Lévy laws are of infinite variance, and are
heavy-tailed (5)—i.e., their distribution tails follow an asymptotic
power-law decay with exponent α. Thus, the output process Y ,
when randomized by amplitude-universal Poissonian intensities,
exhibits the Noah effect (4).

The simplest example of amplitude-universal intensities is
λ(x, y) = c1|x|−1−αδ(y − 1), where δ(·) is the Dirac delta func-
tion. This example represents the case where the frequencies
{ωk}k are all set to equal unity (ωk = 1). Another example is
λ(x, y) = c1|x|−1−αP(y), where P(·) is a probability density func-
tion defined on the positive half-line. This example represents
the case where the frequencies {ωk}k are IID random variables
whose distribution is governed by the density P(·). An example
which couples x and y is λ(x, y) = c1|x|−1−αQ(x; y), where Q(x; ·)
is (for each x > 0) a probability density function defined on the
positive half-line. This example represents the case where the fre-
quency ωk is a random variable whose distribution is conditional
on the amplitude ak and is governed by the density Q(ak; ·). Yet
another example that couples x and y is λ(x, y) = c1P(|x|εy)|x|ε−1−α

where P(·) is a probability density function defined on the positive
half-line, and where ε is a real-valued exponent.

Section 2.3: Temporal Universality and 1/f Noises. Consider the
power spectrum of the output process Y . We seek Poissonian
intensities λ(x, y) for which the choice of the signal pattern X
affects the output’s power spectrum only by a scale factor—
and term such intensities “temporal-universal.” Analysis shows
that the intensity λ(x, y) is temporal-universal if and only if the
function ψ(y) = ∫ ∞

−∞ x2λ(x, y)dx (y > 0) is a power law (see
SI Appendix). More specifically, if ψ(y) = c3y−β, then the output’s
power spectrum is given by

∫ ∞

−∞
〈Y (0)Y (t)〉 exp(ift)dt = c4

|f |β [3]

where f is the (real-valued) power spectrum variable, and (i) c3
is a positive-valued coefficient; (ii) β is an exponent taking values
in the range 0 < β < 1; and (iii) c4 is a real-valued coefficient
depending on the coefficient c3, the exponent β, and the signal
pattern X .

The power spectrum of Eq. 3 characterizes the class of 1/f noises
(“flicker noises”) (12–14). Hence, we conclude with the following
result: The universal power spectra of the output process Y —being
independent, up to a scale factor, of the input signal pattern X—
are 1/f noise power spectra. The autocovariance functions corre-
sponding to the power spectra of Eq. 3 are “long-range correlated”
(10, 11)—following a power-law decay with exponent 1 − β. Thus,
the output process Y , when randomized by temporal-universal
Poissonian intensities, exhibits the Joseph effect (4).

The output process Y , when randomized by temporal-universal
Poissonian intensities, is an irregular stochastic process. Its under-
lying superposition-aggregate—the right-hand side of Eq. 1—is
divergent, and this is why it is referred to as noise, rather than as
process. However, the corresponding integrated output process
Z = (Z(t))t≥0—given by Z(t) = ∫ t

0 Y (t′)dt′ (t ≥ 0)—is a regu-
lar stochastic process. Moreover, analysis shows that the mean
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square displacement of the integrated output process follows a
superlinear power-law growth (see SI Appendix)

〈Z(t)2〉 = c5t1+β [4]

(t ≥ 0), where c5 is a positive-valued coefficient depending on
the coefficient c4 and on the exponent β. Superlinear power-
law growth of the mean square displacement is the hallmark of
superdiffusive transport (1, 25). As an illustrative comparison,
consider the case of diffusion where: (i) Y is a white noise, an
irregular stochastic process; (ii) Z is a Brownian motion, a regular
stochastic process; and (iii) the diffusion mean square displace-
ment 〈Z(t)2〉 follows a linear growth rather than a super-linear
power-law growth.

The simplest example of temporal-universal intensities is
λ(x, y) = c3δ(x −1)y−β, where δ(·) is the Dirac delta function. This
example represents the case where the amplitudes {ak}k are all set
to equal unity (ak = 1). Another example is λ(x, y) = c3P(x)y−β,
where P(·) is a probability density function defined on the real line
with a second moment equaling unity. This example represents the
case where the amplitudes {ak}k are IID random variables whose
distribution is governed by the density P(·). An example which
couples x and y is λ(x, y) = c3P(xyε)y3ε−β where P(·) is a probabil-
ity density function defined on the real line with a second moment
equaling unity, and where ε is a real-valued exponent.

Section 3: The Dissipative Superposition Model
So far, we have considered the superposition of stationary stochas-
tic processes. However, the universal emergence of Lévy laws and
1/f noises—as established for the stationary superposition model
of Section 2—holds also in the case of dissipative systems.

Consider a stochastic process Y = (Y (t))−∞<t<∞ which is
a superposition of a countable collection of independent dis-
sipative stochastic signals initiating and vanishing randomly in
time. Assume that the dissipative stochastic signals are IID
copies—albeit with different initiation epochs, amplitudes, and
frequencies—of a generic dissipative signal pattern X = (X (t))t≥0
with zero mean.† The stochastic process Y is thus given by

Y (t) =
∑
τk≤t

akXk(ωk(t − τk)) [5]

where (i) τk is the (real-valued) initiation epoch of signal k; (ii) ak
is the (real-valued) amplitude of signal k; (iii) ωk is the (positive-
valued) frequency of signal k; and (iv) Xk = (Xk(t))t≥0 is the sto-
chastic pattern of signal k—an IID copy of the generic dissipative
signal pattern X .

The superposition model of Eq. 5 is the dissipative analogue
of the stationary superposition model of Eq. 1—replacing the
always-present stationary signal of source k (in Eq. 1) by a dissi-
pative signal which initiates at the random time τk and thereafter
decays to zero in Eq. 5. The stationary superposition model of
Section 2 represents a static setting in which the collection of
transmission sources—which produce the superimposed output
process Y —is fixed and unchanging. The dissipative superposi-
tion model of this section represents a dynamic setting in which
the superimposed signals appear and vanish randomly as time
progresses.

The dissipative superposition model can be illustrated as a gen-
eral shot noise system in which external shocks impact the system
randomly in time and thereafter dissipate: Shock k hits the sys-
tem at time τk with amplitude ak. After impact, shock k decays
with frequency ωk according to the dissipative signal pattern Xk.
We note that the special case of deterministic dissipative signal

†By “dissipative” we mean that the signal pattern X decays to zero stochastically, at a
sufficiently rapid pace, as t → ∞. The precise definition is given in the SI Appendix.

patterns—i.e., X (t) = h(t) (t ≥ 0), where h(·) is an “impulse-
response function” decaying to zero (26)—corresponds to the class
of linear shot noise systems (27–29).

As in the stationary superposition model of Section 2, we con-
sider a Poissonian randomization of the parameters {(τk, ak, ωk)}k.
Namely, {(τk, ak, ωk)}k are considered the random points of a Pois-
son process, scattered on the half-space (−∞, ∞) × (−∞, ∞) ×
(0, ∞) with a time-homogeneous intensity λ(t, x, y) = η(x, y). In
the shot noise illustration, this Poissonian randomization means
that shots with amplitude a and frequency ω arrive to the system,
randomly in time, according to the time-homogeneous Poissonian
rate η(a, ω).

The dissipative superposition model of Eq. 5 establishes a sto-
chastic map X �→ Y , which maps the input dissipative signal
pattern X to the output stochastic process Y . Moreover, the Pois-
sonian randomization of the parameters {(τk, ak, ωk)}k—governed
by the time-homogeneous Poissonian rate η(x, y)—renders the
output Y a stationary stochastic process.

The definitions of amplitudinal universality and temporal
universality—in the context of the dissipative superposition model
of Eq. 5—are identical to the stationary superposition model
of Section 2. We define the Poissonian inflow rate η(x, y) as (i)
“amplitude-universal” if the choice of the dissipative signal pat-
tern X affects the output’s stationary law only by a scale factor;
and (ii) “temporal-universal” if the choice of the dissipative sig-
nal pattern X affects the output’s power spectrum only by a scale
factor.

The stationary superposition model results of the previous
section remain valid for the dissipative superposition model of
this section—once replacing the Poissonian intensity λ(x, y) by
the function η(x, y)/y. Specifically (see SI Appendix), the result
of Eq. 2—amplitudinal universality of Lévy laws—holds with
φ(x) = ∫ ∞

0 [η(x, y)/y]dy (−∞ < x < ∞), and the result of Eq.
3—temporal universality of 1/f noise power spectra—holds with
ψ(y) = ∫ ∞

−∞ x2[η(x, y)/y]dx (y > 0).

Section 4: Discussion
Both the stationary superposition model of Section 2 and the dis-
sipative superposition model of Section 3 are prevalent in systems
carrying heavy information traffic. Examples include throughputs
in major transmission and communication channels and loads on
large data and communication servers. For the sake of illustra-
tion, if the stochastic process Y represents the load level on a
given server, then (i) in the stationary superposition model, the
indexing k represents a fixed population of customers connected
to the server—e.g., the subscribers of a large Internet provider,
and (ii) in the dissipative superposition model, the indexing k rep-
resents demands arriving randomly to the server—e.g., the entries
to a popular Internet site.

A substantial body of empirical evidence indicates that Internet-
age information traffic displays both amplitudinal and temporal
anomalous statistics (30–33). Trying to explain the long-range cor-
relations observed in information traffic, a superposition model of
“on-off sources” was introduced and analyzed in (34). An on-off
source produces a signal which is an alternating renewal process
with values 1 and 0—the value 1 representing transmission and the
value 0 representing no transmission. The scaling limits of aggre-
gates of independent on-off sources (with infinite variance) were
shown to converge, stochastically, to fractional Brownian noise
(35), hence displaying the Joseph effect.

The on-off model presented in (34) is one among a class of
superposition models leading to fractional Brownian noise and
the Joseph effect. This class of models considers the stochastic
scaling limits of aggregates of the form

Yn(t) =
n∑

k=1

Xk(t) [6]
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(t ≥ 0), where the summands Xk = (Xk(t))t≥0 (k = 1, 2, . . .)
are IID copies of a generic signal process X = (X (t))t≥0. In
this class, each model deals with a specific underlying generic
signal X—e.g., on-off processes (34), renewal processes (36,
37), persistent random walks (38), and Ornstein–Uhlenbeck
processes (39).

The model established in this research is fundamentally dif-
ferent of the aforementioned superposition model: considering
the randomization (via random transmission amplitudes and fre-
quencies) of the superimposed signals rather than their stochas-
tic scaling limits; considering arbitrary underlying generic signal
processes rather than a specific one; and seeking amplitudinal-
universality and temporal-universality rather than setting as goal
to obtain a fractional Brownian noise scaling limit.

In this research, we sought randomizations of the transmission
amplitude-frequency pairs that yield output statistics which are
independent of the input signals (X ). To that end, we had to allow
for arbitrary system inputs and had no a priori idea what universal
statistics, if any, would turn out. At no stage have we aimed at
obtaining Lévy laws and 1/f noises, let alone obtaining them from
a superposition of a specific input signal. Rather, Lévy laws and
1/f noises emerged as the answers to the amplitudinal-universality
and temporal-universality questions we embarked from.

The exponent β of the 1/f noises we obtained—in both the sta-
tionary superposition model of Section 2 and the dissipative super-
position model of Section 3—takes values in the range 0 < β < 1.
In real life however, the exponent of observed 1/f noises is typi-
cally in the range 0 < β < 2 (40). This discrepancy stems from a
couple of reasons: (i) Our model considers stationary output sto-
chastic processes; and (ii) the definition we use for the power spec-
trum of the stationary output stochastic process Y is the Fourier
transform of its autocovariance function (Eq. 3). Indeed, the
power-spectra definition we applied allows only for 1/f noises with
exponent in the range 0 < β < 1. To obtain 1/f noises with expo-
nent in the range 0 < β < 2, nonstationary stochastic processes
need be considered as well as a different definition of power
spectra.‡ In forthcoming research (41), we consider the universal
generation of statistically self-similar stochastic processes, using
a Poissonian parameters-randomization analogous to the one

applied in the dissipative superposition model of Section 3: The
Dissipative Superposition Model. As a consequence, the research
(41) establishes a universal mechanism for the generation of 1/f
noises with an exponent in the range of β > 1–the “nonstationary
side” of the 1/f noise regime.

Section 5: Conclusions
In this letter, we considered countable superpositions of indepen-
dent stochastic signals in which each signal has its own amplitude
and frequency, and all signals share a statistically generic signal
pattern X . The setting could be either static or dynamic. In the
former setting, the signals are stationary processes transmitted by
a static collection of transmission sources. In the latter setting,
the signals are dissipative processes appearing and vanishing ran-
domly and dynamically as time progresses. Both settings generate
an aggregate superimposed system output Y , which is a stationary
stochastic process.

Considering Poissonian randomizations of the amplitudes and
frequencies of the superimposed signals, we sought randomiza-
tions yielding system outputs Y whose statistics are independent of
the signal pattern X . Analysis showed that (i) the only amplitude-
universal statistics—outputs’ stationary laws which are indepen-
dent, up to a scale factor, of the signal pattern X—are Lévy laws,
and (ii) the only temporal-universal statistics—outputs’ power
spectra which are independent, up to a scale factor, of the sig-
nal pattern X—are 1/f noise power spectra. We emphasize that
both results are unattainable by IID randomizations.

The signal pattern X represents the microscopic structure of
the superposition system, whereas the process Y represents the
system’s macroscopic structure. The results obtained assert that
Lévy laws and 1/f noises are, respectively, the unique amplitudi-
nal and temporal statistics which are universal—i.e., attainable at
the system’s macro level regardless of the system’s microstructure.
This research provides a unified and universal explanation to the
ubiquity of Lévy laws and 1/f noises—the quintessential proxies
of anomalous statistics—in a wide array of natural and engineered
systems.

‡Specifically, the power spectrum of a general finite-variance stochastic process ξ =
(ξ(t))t≥0 is given by the definition Sξ(f ) : = limT→∞ 1

T
〈| ∫ T

0 exp(ift)ξ(t)dt|2〉 (f real).
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