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Abstract
Standardized Mortality Ratios (SMRs) are widely used as a measurement of quality of care for
profiling and otherwise comparing medical care providers. Invalid estimation or inappropriate
interpretation may have serious local and national consequences. Estimating an SMR entails
producing provider-specific expected deaths via a statistical model and then computing the
“observed/expected” ratio. Appropriate comparison of estimated SMRs requires considering both
estimated values and statistical uncertainty. With statistical uncertainty that varies over providers,
hypothesis testing to identify poor performers unfairly penalizes large providers; use of direct
estimates unfairly penalizes small providers. Since neither approach suffices, we report on a suite of
comparisons, each addressing an important aspect of the comparison. Our approach is based on a
hierarchical statistical model. Goals include estimating and ranking (percentiling) provider-specific
SMRs and calculating the probability that a provider's true SMR percentile falls within a specified
percentile range. We present the issues and related statistical models for comparing SMRs and apply
our approaches to the 1998 United States Renal Data System (USRDS) dialysis provider data.
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1. Introduction
Use of performance assessments in the health and social sciences has increased substantially.
For example, goals for health services research and evaluation at the clinic, physician, and
other health service provider levels (e.g., “dialysis centers” for End-Stage Renal Disease
[ESRD] patients) include valid and efficient estimation of population parameters (such as
average performance over providers), estimation of between-provider variation (variance
components), and inferences focused on provider-specific performance. These latter include
estimating provider-specific Standardized Mortality Ratios (SMRs), estimating their
percentiles to be used in profiling/league tables, identifying excellent and poor performers, and
determining “exceedences” (how many and which true, underlying, provider-specific SMRs
exceed a threshold).

Estimated SMRs [1] are used to evaluate performance relative to dataset-specific or national
norms; financial and reputational consequences are associated with good and poor
performance. Therefore, invalid estimation or inappropriate interpretation can have serious
local and national consequences. For a fair comparison, mortality must be adjusted for case
mix and both an estimated SMR for each provider and the considerable range of the associated
variability must be taken into account. The current method of calculating ESRD dialysis
provider-specific SMRs [18] is reasonably straightforward: produce provider-specific
expected deaths based on a statistical model, and then compute the “observed/expected” ratio.
Complications arise from the need to specify a reference population (providers included, the
time period covered, attribution of events), the validity of the model used to adjust for important
patient attributes (age, gender, race, diabetes, type of dialysis, severity of disease, vintage [the
time from the first ESRD service date to the starting time of follow-up], etc.), the need to adjust
for potential biases induced when attributing deaths to providers, and the need to account for
informative censoring.

A valid comparison of providers requires simultaneous consideration of estimated values and
their statistical uncertainty. The large variation in dialysis provider sizes produces large
differences in the variances of the estimated SMRs. With this differential statistical stability,
using hypothesis tests to identify poor performance can unfairly penalize large providers with
relatively stable estimated SMRs (the test has relatively high power to detect small differences),
while direct use of estimates can unfairly penalize small providers (unstable estimates are likely
to be extreme). Gelman and Price [6] and Shen and Louis [14] formalized this competition and
have shown that no single set of estimates or assessments can effectively address them all.
Therefore, a “suite” of goal-specific robust summaries and inferences is needed. Tracking,
reporting, and analyzing the consequences of uncertainty are key because in many contexts
available information is insufficient to support definitive comparisons and conclusions.

Producing valid SMR estimates is challenging and a key initial step, but policy goals also
include identifying providers who perform substantially above or below average (outlier
detection), estimating the number of providers whose SMR exceeds some intervention standard
(exceedences), and percentiling providers. Analyses must be tuned to these goals, be robust,
and communicate uncertainty. Importantly, even “optimal” procedures may have poor
performance because available information may be insufficient to produce procedures with
acceptable operating characteristics. Therefore, risk performance and relevant uncertainties
must be communicated [11,12].

Bayesian hierarchical models coupled with a relevant loss function are very effective in
structuring ranking and related inferential goals. Such models retain a provider-specific focus
while improving statistical stability. They properly structure addressing nonstandard goals and
allow all relevant uncertainties to be reflected in statistical inferences. Examples of the power
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of the Bayesian approach in structuring goals are presented in Appendix B of Carlin and Louis
[2]. Properly specified, hierarchical models account for the sample design and provide the
necessary structure for developing scientific and policy-relevant inferences. Hierarchical
models explicitly identify population parameters (e.g., typical performance), between-provider
variation (variance components) and provider-specific parameters represented as random
effects. The latter are the “underlying truths” to be estimated, displayed in a histogram, and
percentiled. Hierarchical models properly structure statistical analyses directed to assessments
and substantial progress has been made in tuning such models to these goals, such as
performance evaluations of health service providers [3,7,10,12,13], assessment of post-
marketing drug side-effects [5], analyzing spatially structured health information [4], and
percentiling teachers and school burgeoning [11].

Developing valid, provider-specific expected deaths is essential in producing valid estimated
SMRs; however, in this report we focus on using observed and expected deaths to produce
information on SMRs and using this information to compare providers. We use the death rate
model currently employed by the United States Renal Data System (USRDS, see [17]), which
is evaluated by the USRDS and displayed explicitly in Section 3. We compare dialysis provider
adjusted SMRs with each other for 1998 using information from the USRDS [8,9,17]. The
USRDS database contains information on more than 3500 dialysis providers in 1998. Providers
have a wide variety of patient populations and range from quite small (less than 10 patients
per year) to quite large (more than 700 patients per year). The large range of statistical
variability in estimated SMRs challenges standard methods.

Sections 2 and 3 present the data set and the USRDS death rate model; Sections 4 and 5 present
methods used for estimating and percentiling SMRs and computing percentile-range
probabilities; Section 6 compares results from candidate methods using the 1998 ESRD
provider data; and Section 7 summarizes, discusses issues, and identifies areas requiring
additional research.

2. Data
We constructed a provider-specific profile from 1998 ESRD Facility Survey data, patient-level
data, and ESRD Medicare claims. ESRD Facility Survey data are collected annually by the
Centers for Medicare and Medicaid Services (CMS, formerly HCFA: Health Care Financing
Administration). The data set includes provider identification, provider type, types of dialysis,
and numbers of patients at the beginning and the end of the survey year (taken from CMS
Facility Survey form 2744). For comparing dialysis provider performance, only providers
rendering dialysis services are considered. Such providers include dialysis centers, dialysis
facility hospitals, independent dialysis facilities, and mixed facilities that provide both
transplant and dialysis services.

The patient-level data set contains basic information including demographics (e.g., birth date,
race, gender, date of ESRD onset), primary cause of kidney failure, and transplant and death
dates. The USRDS database contains information on Medicare claims for ESRD patients since
1991. It includes the service period, treatment modality, clinical diagnoses and procedure
codes, and provider identification. To ensure a stable treatment modality, we ignored a new
modality or provider switches that occurred within 60 days from the last switch [17].

By cross-referencing ESRD service provider survey data, patient-level data, and ESRD
Medicare claims, we constructed a patient-modality-provider file that traces when, where, and
what kinds of services each patient received. Comparison of SMRs is performed on yearly
period prevalent cohorts consisting of patients who were alive and on dialysis at the beginning
of each year, or new patients starting dialysis during that year. A patient would experience the
event if he/she died during that year, or his/her follow-up is censored at the earliest date of
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renal transplantation, provider change, and/or the end of the year. Patients who died of AIDS
are excluded from the analysis and patients are censored if they died of street drug use or an
accident unrelated to ESRD treatment.

3. Expected deaths
A Poisson mixed effects model was used to produce national category-specific death rates
[17], where the categories are defined by age, race, gender, ESRD primary diagnosis, vintage,
and year. Based on the national category-specific death rates, the provider-specific expected
deaths were calculated. The specific death model is as follows,

where ci is the number of deaths in category i, ti is the total follow-up time of patients in category
i, β is the vector of fixed effects, and γ is the vector of random effects. Fixed effects regressors
included age, race, gender, ESRD primary diagnosis, vintage, year, and all two-way
interactions among age, race, gender, and ESRD primary diagnosis. Random effects are the
four-way interactions of age, race, gender, and ESRD primary diagnosis. Age was used as a
continuous variable in the two-way interactions and a categorical variable (a category for each
five years) in the main effect and four-way interactions. To stabilize the estimates for 1998,
three years of data (1996, 1997, and 1998) were used with weights ⅓, ½ and 1, respectively.

4. The MLE
Assume there are K providers and provider k has death count Yk,expected death μk (from the
mixed Poisson model in Section 3), true SMRs ρk, and a Poisson model

Then, the MLE of ρk and its estimated variance are

(1)

5. Bayesian inferences
The MLE is the traditional estimate and when the numbers of observed and expected deaths
are sufficiently large, it performs well. However, for providers with a relatively small number
of expected deaths, the MLE is very unstable and estimates for these providers will tend to be
at the extremes. To stabilize estimates and structure subsequent inferences, we use a Bayesian
hierarchical model:

(2)
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where σ2 and a are fixed, E(λ) = a · a-1 = 1, var(λ) = a (a-1)2 a-1

For model (2), the joint posterior distribution of (θ1,...,θK, ζ λ) is

(3)

5.1. The posterior mean (PM)
In the Bayesian approach, the posterior structures all inferences. For example, under squared-

error loss  on SMR, the posterior mean  is the optimal estimate.
1 It shrinks the MLE toward a common value, striking an effective trade-off of bias and variance
to produce a lower MSE than for the MLE. For example, when Yk = 0 both the posterior mean
and the posterior variance will be greater than 0, moving the estimate and its standard error
away from the overly optimistic MLE = 0. For an almost uninformative prior on λ (a very small
a), a large value of μk and most Y - values, this estimate will be close to the MLE.

5.2. Ranks and percentiles
Though the posterior means are optimal SMR estimates under squared-error loss, their
histogram is underdispersed relative to the true, underlying SMR distribution. Furthermore,
ranks or percentiles based on them are not optimal. The histogram based on the MLEs is
overdispersed and percentiles based on them are far from optimal. Percentiles computed from
the MLE can be particularly problematic because the high-variance estimates tend to be at the
extremes. And percentiles based on p-values or Z-scores from testing the hypothesis that ρk =
1 create the opposite problem; low-variance estimates tend to be flagged as deviant. To see

this, consider the Z-score,2 . From (1), a large μk produces a small variance
and so low variance providers tend to produce large |Zk|.

To strike an appropriate signal-to-noise balance, we use the posterior distribution (3) and a loss
function to optimize ranking or percentiling. Following Shen and Louis [15], p. 2297, for

optimal ranks, let Rk be the true rank of provider k, then . Without ties, the
smallest ρk has rank 1 and so on. With Tk the estimated rank of ρk, for mean squared-error loss

on the ranks , the posterior expected ranks

 are optimal. These  are shrunken toward the mid-rank
(K + 1)/2, thus compressing “percentiles” toward the 50th. The  are usually not integers,
which can be attractive, since integer ranks can overstate distance and understate uncertainty.

For example,  of 1.0, 1.1, 3.9 indicate similarity between the first two providers, and a

1For the current model, there is no closed form for the PM; it must be computed by Monte-Carlo methods.

2Let log  be the MLE of log(ρk), then var  by (1) and the Delta method. For testing log(ρk) = 0 (testing SMR = 1,

equivalently), the Z-score is . Since we have many zero , the Z-score used here is log

.
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larger difference between the first two and the third. If integer ranks are required, rank the
 to produce SEL optimal, integer ranks .

In the sequel, we use percentiles rather than ranks. Percentiles are more directly interpretable
and their statistical properties are almost independent of the number of providers K. We have:

(4)

5.3. Percentile range probabilities
Even optimal percentiles will not perform well if there is insufficient statistical information.
An empirical evaluation of percentile accuracy is available by computing the posterior
probability that a provider's SMR is truly in a target percentile region (e.g., below the 20th,
above the 80th). The computation is straightforward, though numerically challenging:

(5)

where

Note that by conditioning on all data, we are also conditioning on the values of  and .
Therefore (5) produces a plot of these probabilities versus the optimal percentile.

Similarly, we can calculate the posterior probability that a provider's true SMR exceeds a
threshold. For example, let ρ* be a cut-point defining poor performance (e.g., ρ* = 2.0). Then,
the posterior probability that provider k exceeds the threshold is, pr[ρk > ρ* | all data].

5.4. Computation
Computing the MLE is straightforward. For the hierarchical model we use Markov Chain
Monte Carlo (MCMC, see [2]). For Model (2), the joint posterior is (3) and the full conditional
distributions of θ1,...,θK, ζ, and λ are
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To make the hyperprior “non-informative,” we chose a = 10-4 and σ2 = 106. The Gibbs sampler
was used to generate the λs. To generate the ζ s and all θks, the Metropolis-Hastings method
with symmetric Normal proposal densities was used. We ran the MCMC algorithm for 20,000
iterations with a burn-in period of 15,000. Trace plots show that the algorithm converged after
10,000 runs.

Posterior means, posterior credible intervals, ranks, percentiles, the percentile-range
probabilities, and the threshold-crossing probabilities can be computed from the MCMC output
[4,11].

Sensitivity of results to the prior were checked by using a variety of values for σ2 and different
means and variances in the Gamma prior for λ. So long as σ2 and the variance of the Gamma
prior are sufficiently large, results are virtually identical to those presented. Importantly, the
burn-in period can depend quite strongly on these variations. Serial dependence exists in the
MCMC samples. Assuming the draws of θs are normally distributed and using AIC as the
criterion, most of the series have lag 1 with autocorrelation (r) 0.61 - 0.66. This dependence
affects the results slightly. Based on the lag 1 autocorrelation and the sample size (5000) used
for inference, the effective size is approximately n(1 - r2) ≥ 5000(1 - 0.662) = 2822, which is
large enough to make inference. To remove the dependence, we also calculated the estimates
using some subsets by taking every kth draw from the original series with k = 3, 5, 10, 20.
Comparing to the estimates from all draws (the last 5,000 draws of the 20,000 iterations), the
average of the four changes distributes from 1% to 10%; 70% of the changes are less than 5%.

6. Results
For a representative sample of providers in 1998, figure 1 displays the “caterpillar plot” of the
MLE estimates and exact 95% confidence intervals (the 2.5th percentile to the 97.5th percentile

of , Y ~ Poisson(μ)). Note that variances of the MLEs are quite large and have a broad range
of values.

Performance of MLE-based percentiles depends on the ratio of their variances to the spread of
the prior distribution of SMRs and on the pattern of their relative variances. Table 1 shows this
dependency as a function of patient-years by reporting the percentage of providers in patient-
year categories with MLE-estimated percentiles in the bottom 25% (small SMRs), middle 50%
(moderate SMRs), and upper 25% (large SMRs). If the MLEs had equal variability, each
stratum would have approximately 25% of the providers with small estimated SMRs, 50%
with moderate, and 25% with large. However, Table 1 shows that small providers usually had
extreme (very large or very small) SMRs and that large providers usually had moderate SMRs.
For example, in the <10 patient-years stratum, about 60% of providers had small SMRs, 30%
had large SMRs, and only 10% had moderate SMRs. However, in the ≥250 patient-years
stratum, no providers were in the small SMR category and approximately 87% were in the
moderate SMR category.

Hypothesis test Z-scores assessing whether an SMR significantly differs from 1 produced the
ranks (percentiles) used to create Table 2. This table is identical in format to Table 1. In contrast
to the distribution of SMRs in Table 1, here we see that small providers tend to generate Z-
scores of moderate magnitude. Of small providers (<10 patient-years), 68% had moderate Z-
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scores (close to 0), 19% had large Z-scores (positive with large values), and only 13% had
small Z-scores (negative with large values). Figure 2 displays the relation between MLE-based
and Z-score based percentiles, further documenting these discrepancies. In figure 2, the points
on the vertical line at the left of the figure correspond to the zero MLEs. They all have the same
tie rank, 127. Each curve in the figure represents providers who have the same number of
deaths. For example, the highest curve at the left half of the figure and the lowest curve at the
right half of the figure represent the providers with 1 as the number of deaths. The relation

between the MLE percentile and Z-score percentile is brought by .

Figure 3 displays the PM estimates and their 95% posterior credible intervals (2.5% quantile
to 97.5% quantile) for the random sample of providers in figure 1. The PMs are shrunken
toward 1.0 relative to the MLEs; variability (as evidenced by posterior credible length) is
substantially reduced, and the provider-specific posterior variance relation is substantially
“flatter.”

Comparing the optimal percentiles with MLE-based percentiles and the PM-based percentiles,
we find that the PM-based are very close to the optimal values, but the MLE-based can be quite
far from optimal. (See figure 4. The diagonal line of dots in figure 4(a) corresponds to zero
MLEs.)

Figure 5 displays the percentile range (bottom and top quintile) probabilities computed in (5).
Generally, the larger the optimally estimated percentile, the greater the probability of the true
percentile being in the top quintile and the smaller the probability of being in the bottom quintile
(and conversely). However, due to the differential variability of the estimates, these relations
are not monotone. The relation is steeper for the relatively accurately estimated percentiles. If
there were no information on providers or all were “stochastically equivalent,” the plot would
be a horizontal line at 0.20; if information were infinite, the plot for dots below the 20th
percentile would be 1.00 and 0 thereafter.

Figure 5 shows that the “signal” in the data is relatively low. Note that providers with optimal
percentiles below 5 have posterior probabilities of being in the bottom 20% greater than 0.44,
but that providers with optimal percentiles at or near 20 have a probability of only about 0.3,
showing that there is considerable uncertainty in which providers are truly in the bottom 20%.
Probability of membership in the top quintile gives a similar message.

7. Discussion
Hierarchical models with optimal estimation of SMRs and percentiles are very effective in
striking a trade-off between direct use of MLEs and use of Z-scores to identify the worst and
the best performers. However, even the optimal procedure may perform poorly. Even if all
aspects of the model are correct, our case study (see figure 5) and the evaluations of Lockwood
et al. [11] show that the ratio of the prior variance to the variance of the MLEs (the signal-to-
noise ratio) needs to be extremely large for optimal percentiles to perform well. Some
improvement can be made by using a loss function for percentiles tuned to penalize more for
errors in estimating extremes [16], but percentile estimates, even optimal estimates, must be
used and used with caution and always accompanied by plots such as figure 5. The interprovider
reliability is implicit in figure 5 in that predictive accuracy increases with increased reliability
(the left-hand curve moves toward an “L” shape). Additional figures for cutpoints other than
(0.20, 0.80) show performance for other definitions of “extreme.” Reliability can be
investigated by computing pair-wise test statistics (differences of posterior means divided by
the appropriate posterior standard errors); however, for the ranking goal displays like figure 5
are far more informative in that they consolidate performance over all providers.
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Also, though the PMs,  and  are optimal under squared-error loss and close to optimal for
other loss functions, their operation may be unacceptable to some evaluators and providers.
For example, PM-based SMRs for providers with a small number of patient-years will be close
to 1 even when the MLE is far from 1, producing what may be viewed as unfair upgrading or
downgrading. The model assumes a priori that after case mix adjustment provider-specific
SMRs are stochastically identical. Shrinkage toward 1 is consistent with this exchangeability
assumption and sends a message about uncertainty that is consistent with that delivered by
confidence intervals.

Validity of statistical assessments depends on model validity. A correct case mix adjustment
model is required to produce valid MLE-estimated SMRs and associated sampling
distributions. A valid hierarchical model and relevant loss function are required for valid
Bayesian assessments; increasing the demands on appropriate modeling. Percentile estimates
are particularly sensitive to model features and research is needed to robustify the approach.
Other issues have high leverage irrespective of the analytic approach. For example, rules for
attributing deaths to providers for patients who switched providers must be developed and
evaluated.

Provider characteristics are usually important predictors of provider performance. Including
them in the model or not may also affect the validity of the model. The provider characteristics
that are available in the data and that may affect death rate are “for profit” or “not for profit,”
“hospital based” or “freestanding,” “reuse” or “non-reuse” of dialyzer, provider size, and water
treatment methods. None of them were found significant with respect to death in analyses: This
may be due to the efforts of the CMS to enhance consistency of care in the dialysis providers
and the Clinic Guidelines published by the National Kidney Foundation and introduced in
1977.

Importantly, dialysis providers directly control certain aspects of care such as the amount of
dialysis therapy, the treatment of anemia, and intervention to assist patients in management of
dietary limitation. Other factors, such as reasons for hospitalization or the events in proximity
of the death event, may be outside the direct control of dialysis units. These events associated
with deaths may be attributable more directly to hospital care, physicians, and health plan
policies and practices. These policies and practices may impact referrals for care and
indications for hospitalization. To the extent that dialysis providers can influence care that is
associated with mortality, SMR comparisons are relevant; however SMRs can overestimate
the attributable risk. They are but one of many quality of care measures and others, such as
hospitalization rates, should be considered.
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Figure 1.
MLE SMRs (dots) with their 95% exact confidence intervals. The horizontal line indicates
SMR = 1 and the providers are sorted by their MLE SMRs.
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Figure 2.
Z-Score percentile vs MLE percentile.
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Figure 3.
Posterior mean SMRs (dots) with their 95% posterior credible intervals sorted by PM SMRs.
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Figure 4.
The differences of (a) MLE percentile and (b) posterior mean percentile with optimal
percentile, sorted by optimal percentile estimates.
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Figure 5.

(a) Pr(  ≤ 20 | data) and (b) Pr(  ≥ 80 data) sorted by optimal percentile estimates .
The horizontal line is at 20; the two vertical lines are at the 5th and 95th percentiles,
respectively.
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Table 1
Percentages of providers in small MLE SMR category (the bottom 25%), moderate MLE SMR category (the middle
50%), and large MLE SMR category (the upper 25%) for each provider stratum with strata defined by total follow-up
patient-years.

Provider size Upper 25% Middle 50% Upper 25% No. of providers

>10 60 10 30 429

10-20 30 32 38 367

20-30 25 43 31 417

30-40 19 54 28 340

40-50 28 57 19 350

50-60 19 62 19 290

60-70 17 60 23 254

70-80 17 59 24 204

80-90 15 66 20 151

90-100 15 68 17 139

100-130 11 74 15 235

130-170 12 66 21 161

170-250 12 74 14 73

≥250 0 87 13 15

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2009 July 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

LIU et al. Page 17

Table 2
Percentages of providers in small Z-score category (the bottom 25%), moderate Z-score category (the middle 50%),
and large Z-score category (the upper 25%) for each provider stratum with strata defined by total follow-up patient-
years.

Provider size Upper 25% Middle 50% Upper 25%

<10 13 68 19

10-20 22 50 29

20-30 26 47 27

30-40 21 52 27

40-50 31 49 20

50-60 25 53 22

60-70 27 47 26

70-80 28 46 26

80-90 26 50 25

90-100 29 47 23

100-130 33 37 29

130-170 34 33 33

170-250 26 48 26

≥250 13 47 40
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