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We study the competition between topological effects and se-
quence inhomogeneities in determining the thermodynamics and
the unyfolding kinetics of a b-hairpin. Our work utilizes a new
exactly solvable model that allows for arbitrary configurations of
native contacts. In general, the competition between heterogene-
ity and topology results in a crossover of the dominant transition
state. Interestingly, near this crossover, the single reaction coor-
dinate picture can be seriously misleading. Our results also suggest
that inferring the folding pathway from unfolding simulations is
not always justified.

In their important work (1), Muñoz et al. discovered a sharp
unyfolding transition between two dominant thermodynamic

ensembles during hairpin formation in the small peptide, the
16-residue C-terminal fragment of streptococcal protein G
(sequence GEWTYDDATKTFTVTE). In such a system, it is
often assumed that the formation of a folding droplet (2, 3)
starting from the b-turn (4, 5) is the determining factor in
transition kinetics. However, given that peptides are inherently
inhomogeneous, nucleation sites might develop preferentially at
strong heterogeneities and thereby change the transition kinet-
ics. This was predicted to be the case for this specific system by
a recent unfolding simulation (6). Thus, we are motivated to
study the factors that govern the competition between topolog-
ical effects such as turns and heterogeneity.

To accomplish this, we need a model that allows for all of these
partially folded configurations to occur and compete. The
popular ‘‘single sequence stretch approximation’’ (4) does not
suffice in this respect. As introduced by Schellman (7) and used,
for example, in refs. 8–10, this approach assumes that one need
keep only configurations with a contiguous native peptide
conformation and furthermore use only a discrete degree of
freedom for native vs. nonnative backbone states. It is clear,
however, that this approach rules out the possibility of hetero-
geneity dominance. For the aforementioned fragment, requiring
contiguous native conformations disallows early formation of
the hydrophobic cluster with contacts W-V and Y-F.

One could update this model as suggested in refs. 3 and 8–10
and include multiple sequences. But we prefer instead to use an
exactly solvable hairpin model, which we introduce below. Aside
from its capability of allowing nucleation at the heterogeneous
‘‘hot spots,’’ our model has the added advantage of correctly
treating the fact that the backbone lives in three-dimensional
continuous space. Within this model, we study the influence of
heterogeneity on the overall cooperativity of the transition as
well as on the aforementioned transition kinetics. We also
comment on the validity of the assumption that folding and
unfolding use related pathways and on the validity of determin-
ing kinetic barriers from a landscape based on a single reaction
coordinate.

The Model
We consider a polymer composed of two interacting Gaussian
strands connected by a b-turn. Our basic assumption (11) is that

the effective Hamiltonian can be written in terms of the spatial
coordinates of the interacting residues that form native inter-
stand H-bonds, xWi

(s); here i is a residue index counted from the
b turn (i 5 0), and the superscript s 5 N, C stands for the N-,
C-terminal directed polymer. An exact model requires, of
course, including nonnative interactions as well as loop self-
avoidance effects; we expect these to be relatively unimportant
for properly designed sequences (that favor native terms), which
fold into a linear hairpin with no need for packing together
multiple pieces of the peptide (limiting the role of self avoid-
ance). We can decompose the coordinates into the (irrelevant)
mean coordinate XW i [ 1/2 (xWi

(N) 1 xWi
(C)) and the interstrand sepa-

ration xWi [ (xWi
(N) 2 xWi

(C)). Also, we use the notation Di 5 1 or 0 to
indicate whether the ith residue pair is in contact. Specifically, we
define Di 5 1 if the local interstrand distance uxWiu falls into an
effective attraction window uxWiu # r0,i and 0 otherwise. This ‘‘box’’
approximation has also been used elsewhere (11, 12).

The first component of our Hamiltonian accounts for the
entropy of unfolded segments. Specifically, for a completely
unfolded hairpin from residue i 5 n (distal end) to i 5 0, the loop
entropy is governed by a Gaussian Hamiltonian 1/2 ¥i51

n ki u ¹ xWi u2
1 k0/2 u xW0

(N) 2 xW0
(C) u2, where ¹xWi 5 xWi 2 xWi21 is the vector

connected nearest-neighbor residue pairs, and ki is the unfolded
local backbone stiffness. On the other hand, for any residue i that
is in contact, we approximate r0,i ; 0 (as compared to (bki)21/2)
and replace the Gaussian term of contiguous unfolded residues
by the term li u xWi61u2. Finally, we assume that possible H-bonds
start from i 5 1 and integrate out xW0

(N,C). Thus, we obtain the
loop Hamiltonian

Hloop 5 O
i 5 2

n
ki

2
~1 2 Di!~1 2 Di 2 1!u¹xW iu2

1 O
i ,j 5 1

n
gij

2
Di~1 2 Dj!kj JijuxW ju2 1

k1s

2
~1 2 D1!uxW1u2 , [1]

where Jij 5 1 if i, j are nearest neighbors and 0 otherwise,
s 5 k0y(k0 1 k1), and gij 5 liykj.

The second ingredient of the Hamiltonian is the interstrand
interactions Hint. First, there is a pairwise interaction to mimic
the native H-bond formation and side-chain packing between
the two strands. This has the form 2 V1,iDi with V1,i $ 0. Second,
there is a term representing the possible formation of hydro-
phobic side-chain clusters. Because the side-chain orientations
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are aligned alternatively in the hairpin structure (see figure 1 in
ref. 1), the typical situation leading to clusters is the presence of
two hydrophobic residues at locations h and h 1 2, with one of
them carrying a large aromatic ring (tryptophan, e.g.). From the
unfolding simulation (6), the compactness and hence the solva-
tion of the hydrophobic cluster are improved if both residues are
in the contact position. This leads to a many-body term f [
2V2DhDh12. In general, we may have more complicated high-
order terms because of the presence of multiple hydrophobic
residues. Our entire Hamiltonian is then

H 5 Hloop 2 O
k 5 1

n

V1,kDk 1 f [2]

The Partition Function
The partition function of our model is given by

Zn 5 P
k 5 1

n E Fbki

2p
G

d
2
ddxke 2 bH , [3]

where d 5 3 is the dimensionality of interest. It will be of interest
to decompose this sum into terms with a fixed number of
contacts Q (6, 13). Specifically, we define Zn,Q as the thermo-
dynamic probabilities of the subensembles specified by the
number of contacts Q. We will now discuss briefly how to
develop a recursion relation that allows for the computation of
these objects. A more detailed discussion, albeit for a homoge-
neous model, appears elsewhere (11).

Zn,Q is determined by the energy gain of Q local contacts and
the entropy of the intervening unfolded segments. To compute
this entropy, we define a functional Mij as the path integral of a
completely unfolded segment connecting residue j and i,
weighted by additional terms on the two ends,

Fig. 1. (a) The typical folding temperature Tf for different polymer lengths
with a two-state-like transition. The solid curve indicates Tf for peptides
without heterogeneities. Above nmax (indicated byE), the curve is replaced by
a thin one where the transition is between a partially folded ensemble and the
coil state. Here c represents the ‘‘coil’’ state, and h(c), h(p) stand for the
‘‘complete,’’ ‘‘partial’’ hairpin structure, respectively. In the presence of a
hydrophobic cluster (with locations indicated in the box), Tf is increased (the
dashed curve) with modified nmax ({, central; �, distal-end; �, b-turn); the
transition curves above nmax for these cases are not shown. Here s 5 1, V2 5

0.15 V1, dV1 5 0.05V1, g 5 3, and n0 5 1024. (b) The free energy 2 ln [Zn,Q]
of different ensembles at Tf for n 5 14 polymers with a distal-end hydropho-
bic cluster. Here the parameters aside from V2 are the same as in a. The symbols
‘‘E,’’ ‘‘p,’’ and ‘‘1’’ stand for the coil, completely folded, and partially folded
ensembles. Note that in the strong heterogeneity case, there is a highly folded
ensemble (Q 5 13) as an intermediate. Curves of this kind allow for the
determination of nmax. (c) The dependence of nmax on the variation of V2, in
the case of having a distal-end hydrophobic cluster.

Fig. 2. Two typical heterogeneity-dominant unfolding simulations averaged
over 50 hairpins for the single (Top) and double (Middle) heterogeneity case.
The system starts in the native state, and the parameters are chosen to lie
above the crossover curve in Fig. 4a (kBTyV1 5 0.19, dV1 5 0.4V1) and Fig. 5a
(kBTyV1 5 0.192, dV1 5 V2 5 0.3 V1). (Bottom) The typical heterogeneity-
dominant folding in the double-heterogeneity case (kBTyV1 5 0.13, dV1 5

V2 5 0.4V1), performed by temperature quenching. The local interstrand
distance at residue i is defined as the average of ^uxWiu&yr0 and indicated by the
color map (deep blue, folded; red, totally unfolded; dark red, ^uxWiu&yr0 $ 3.0).
Time is in arbitrary units.
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Mi ,j~m1,m2! 5 P
k 5 j

i E F Îbkk

2p
G d

ddxk@1 2 Dk#

3 e 2 bHloop 2
bki

2m1
~1 2 Di!uxW iu2 2

bkj

2m2
~1 2 Dj!uxW ju2 , [4]

with the sums running from j to i in Eq. 1 for Hloop. It is easy to
derive the recursive relationship

Mi,j~m1,m2! 5 F m1

1 1 m1
G

3
2
Mi 2 1,jSki@m1 1 1#

ki 2 1
,m2D 2 qiMi 2 1,j~gij

2 1,m2!

[5]

supplemented by the boundary condition Mj, j (m1, m2) 5 [m1
m2y(m1 1 m2)]3y2 2 qj, with qi 5 4p

3
r0,i

3 [=bkiy2p]3. By
definition, Mi, j (m1, m2) 5 0 if j . i. For consistency with the
approximations utilized above, we should set q 5 0 in these
formulas.

Next, we define Wn,Q as the ensemble specified by contact
number Q with the further constraint that the polymer distal end
i 5 n is in the contact position; we have Ws,a 5 0 if a # 0. Then,
as in refs. 1, 3, 8, 10, and 11, we can use these as building blocks
to construct Zn,Q. Specifically, in the absence of any clustering
effect, we have for 1 # s # n and 1 # Q # s,

Zs,Q 5 Ws,Q 1 O
k 5 Q

s 2 1

Ms,k 1 1~`, j9k!Wk,Q [6]

Ws,Q

@qsebV1,s#
5 Ws 2 1,Q 2 1 1 O

k 5 Q 2 1

s 2 2

Ms 2 1,k 1 1~js, j9k!Wk,Q 2 1

1 dQ,1Ms 2 1,1~js, j0! 1 ds,1dQ,1 , [7]

with jk 5 gk11,k
21 , j9k 5 gk,k11

21 for 1 # k # n, j0 5 1ys, and Zs,0 5
Ms,1 (`, j0) (the coil state with Q 5 0). Here, the strength of the
native contacts is determined by as [ qsebV1,s, which is assumed
to remain finite even as we take the limit of small q.

Finally, we generalize this formula to include the clustering
effect. We assume one hydrophobic cluster involving the two
side-chain groups at residues h and h 1 2. The recursion
relations Eq. 7 will be unchanged for s Þ (h 1 2), but for s 5
h 1 2, we have

Wh 1 2,Q

@qh 1 2ebV1,h 1 2#
5 ebV2Mh 1 1,h 1 1~jh 1 1, j9h!Wh,Q 2 1

1 eb@V2 1 V1,h 1 1#Wh,Q 2 2 1 dQ,1Mh 1 1,1~jh 1 1, j0!

1 ebV1,h 1 1 O
k 5 Q 2 2

h 2 1

Mh,k 1 1~jh, j9k!Wk,Q 2 2

1 O
k 5 Q 2 1

h 2 1

Mh 1 1,k 1 1~jh 1 1, j9k!Wk,Q 2 1 . [8]

We next turn to an evaluation of the equilibrium phase diagram
of our model.

Phase Diagrams
It was shown in ref. 11 that one can obtain two-state behavior in
homogeneous models of this class for large enough values of the
folding-induced stiffness g. Here, our first concern is the effect
that the heterogeneities can have on system cooperativity. To
address this issue, we consider the simple situation of constant

k, g, V1, r0, and one hydrophobic cluster. We assume this cluster
gives rise to a many-body term as detailed above and also, via
side-chain packing, to an increase dV1 of the (otherwise homo-
geneous) contact energy for the two hydrophobic residues.

To present our results, we rescale all the energies by V1
and introduce the dimensionless parameter n0 via q 5 n0
[V1ykBT]3y2. In Fig. 1a, we plot for the case of n0 5 1024 the
variation of the folding temperature Tf as we change the polymer
length n. In general, there is a maximal polymer length nmax that
allows for a two-state transition between the completely folded
hairpin Zn,n and the coil state Zn,0; above nmax, the folding
transition is defined as between the coil state and a dominant
partially folded ensemble. We should mention that such a
dominant ensemble is not fixed; as the temperature is reduced,
it moves to the completely folded state. Also, a larger g
corresponds to a bigger nmax, because more entropy will be lost
in configurations that contain interleaved folded and unfolded
segments (11).

We now focus on the effect of heterogeneity. For moderate V2
and dV1, Tf is slightly shifted, but nmax is more or less unchanged.
As V2 is increased further, however, the partially folded state
with an intact cluster becomes more significant, and the system
loses two-state behavior between Zn,n and Zn,0 at smaller n (Fig.
1 b and c). The extent to which one would be able to detect the
presence of important partially folded states in the thermody-
namics depends of course on the sensitivity of the probes to
whether the hairpin is fully folded vs. their sensitivity to more
local features, such as whether the hydrophobic cluster has been
formed.

Simulations
To get some idea how folding and unfolding occur in our model,
we performed Langevin simulations on 50 independent hairpins,
using the Verlet algorithm proposed in ref. 14. Specifically, we
have the time step Dt 5 1024 =mr0

2yV1 with the mass m and
V1 set to unity. The box potential Di (uxWiu) is approximated by
exp[2(uxWiuyr0)s] with s 5 100. The damping coefficient is taken
from ref. 14. Also, we used a stiffness k 5 0.1 to allow for good
visualization of the individual residue kinetics; too large a k
would force all residues to unyfold almost simultaneously.

For small inhomogeneity, we found, as expected, that the
topology determined the folding pathway, i.e., that folding took
place from the b-turn and unfolding from the distal end (data not
shown). In the case of strong heterogeneity, however, we ob-
served dramatic changes to the unyfolding patterns (Fig. 2).
Now, the hairpin unfolds from both the b-turn and distal end
(similar to the observations in ref. 6), leaving the decomposition
of the hydrophobic cluster for last. Folding occurs in the reverse
manner, with the cluster forming first. Thus, there is a crossover
in the kinetics from being topology dominated to being heter-
ogeneity controlled. Next, we analyze this crossover by studying
the free energy landscape of our model.

The Transition Kinetics
We begin by assuming that the transition rate has an Arrhenius
form ktx ; e2bDF, where DF is the free energy difference
between the transition and metastable states. In our system, this
is just the thermodynamic probability ratio between the transi-
tion and metastable ensembles. In the absence of heterogeneity,
the metastable states are simply the coil state for folding (i.e., if
T , Tf) or the folded state (if T . Tf). In the presence of
heterogeneity, however, there might be additional metastable
states (6). As in the simulations, we focus our discussion on the
case of having a ‘‘hot-spot’’ near the hairpin center. Specifically,
two cases are considered: (i) two hydrophobic residues at
locations h and h 1 2 with dV1,i 5 dV1 (di,h 1 di,h12) plus an
additional clustering energy V2, and (ii) a single hydrophobic
residue at the location h 1 2 with dV1,i 5 dV1 di,h12.
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To clarify the transition rate and hence the rate-limiting
structure, we use the droplet concept (2). A droplet is a
configuration containing one or more sets of contiguous folded
residues, and our basic method involves computing the free
energy of differing droplets. For the homogeneous case, it is easy
to see that we need consider only two possible droplets: one

folded from the b-turn (the b-turn droplet) and one from the
distal end (the distal-end droplet). The thermodynamic proba-
bilities of these two droplets, defined as Yn,Q

(b) , Yn,Q
(d) with the

number of contacts Q can be obtained simply by using the M
functionals Eq. 4 (11).

The situation is more complicated in the presence of heter-
ogeneity. Now, we should also consider droplets surrounding the
heterogeneity (a ‘‘hetero-droplet’’) with a thermodynamic prob-
ability Yn,Q

(h) . These configurations contain contiguous unfolded
segments between the heterogeneity and topological constraints.

Fig. 3. Typical hetero-droplet profiles. Here (a1,2) stand for the single (res-
idue i 5 6), and (b1,2) represent the double (residue i 5 4, 6 with a clustering
effect) heterogeneity cases. dV1yV1 5 (a1) 0.4 (a2) 0.2, and dV1 5 V2 5 (b1)
0.4 (b2) 0.2 V1 with kBTyV1 5 0.19, stand for the strongymild heterogeneity
cases, respectively. Other parameters include n 5 10, g 5 3, s 5 1, and n0 5

1024. The folded residues are indicated byF. Note that the droplet profiles are
kinetically connected by addydropping a folded residue, and in (b1), the Q 5

2 droplet corresponds to four noncontiguous sequence stretches.

Fig. 4. (a) The typical free energy profiles for the b-turn and hetero-droplets
at a Tf point indicated by the hollow arrow in b, in the single heterogeneity
case. The barriers encountered in transition states are indicated by D. Here
n 5 10, g 5 3, s 5 1, V2 5 0, and n0 5 1024. (b) The typical crossover
diagram. The solid curve is Tf for transitions between the coil and complete
hairpin states; above {, the transition is instead between the coil and a
partially folded ensemble (the long-dashed curve). The crossover is indicated
by the dashed curve. The thin long-dashed curve indicates where the barriers
disappear.

Fig. 5. (a) The typical free energy profiles for the hetero- and b-turn droplets
at a Tf point indicated by the hollow arrow in b, in the double heterogeneity
case. The barriers for the unfolding transition are indicated by D. Note that the
folding barrier (the hollow arrow) is different from the unfolding one in the
hetero-droplet. Here n 5 10, g 5 3, n 5 1024, and dV1 5 V2 5 0.4V1. (b) The
typical crossover diagram. The solid curve, the {, and the long-dashed curve
have the same meanings as in Fig. 4. Because the rate-limiting barriers are
different for unyfolding, there is a ‘‘discontinuity’’ (jump) in the crossover
curve (indicated by the hollow arrow). (c) The difference DDF 5 DFd 2 DFQ

between the droplet analysis (DFd) and the single reaction coordinate land-
scape (DFQ) as a function of heterogeneity strength; this curve is based on data
of the type shown in d for the specific value dV1 5 V2 5 0.3V1. Note that the
droplet analysis, although dependent on a single coordinate Q, does not lump
together all states with a given number of contacts.
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In the single heterogeneity case, a hetero-droplet with Q con-
tacts might contain one (or two) unfolded ‘‘bubbles’’ between
either the b-turn or the distal end and the heterogeneity (or
both); for the cluster case, the situation can be even more
complicated, as the intervening residue i 5 h 1 1 might also be
in or out of contact. Obviously, there can be many configurations
with the same number of contacts. Hence, we define the
hetero-droplet as the configuration with the maximal thermo-
dynamic probability. Fig. 3 a1,2 and b1,2 show the hetero-
droplets in the single and double heterogeneity cases.

We determine the favored transition pathway by determining
the barrier heights separating differing Q values for a set of
droplets. Typical results from calculating these free energies are
shown in Figs. 4a and 5a for the two different heterogeneity
models. For unfolding, the model exhibits a metastable inter-
mediate state at Q 5 h 1 2 5 6. The rate-limiting step then
involves starting from this state and breaking additional H-bonds
between the heterogeneity and the b-turn. For the case of the
more complex heterogeneity model in Fig. 5, there is an addi-
tional intermediate state at smaller Q. For this state to unfold
fully, one needs to traverse an additional barrier, which for the
case shown is smaller than the previous one. Hence for unfold-
ing, both models yield similar pathways.

For folding, however, the presence of the new intermediate
state has a large effect; we note in passing that the maximal
number of intermediates is correlated with the number of
heterogeneities. In the case of a single heterogeneity, folding
proceeds exactly as the reverse of unfolding. For the clustered
inhomogeneity, on the other hand, the largest barrier is the first
one encountered from the coil state, namely the formation of the
cluster by traversing the Q 5 1 transition state.

Overall, there is only a very narrow range of parameters for
which two-state behavior coexists with heterogeneity-dominated
kinetics; we therefore expect that the experimental system lies in
the zipping kinetics regime. Note that at higher temperatures,
the range of heterogeneous domination broadens; this might
account for the disagreement between the high T results of ref.
6 and other treatments to date (1). Two other points are worth
mentioning. We found that the crossover at a smaller b-turn
rigidity (s) requires less heterogeneity, consistent with a recent
33-residue GCN4 peptide experiment (15). Also, we examined
the validity of directly using the free energy profile with Q as the
single reaction coordinate (Zn,Q in Eq. 1) to predict the kinetic
barrier. Clearly, this approach lumps together all states at a given
Q as opposed to the droplet configurations that have a fixed
pattern of the Q native contacts. Near the crossover, we observed
a systematic underestimate of the free energy barrier via the

single reaction coordinate landscape method (Fig. 5c). A pos-
sible reason for this is that near the crossover, the system has two
dominant transition ensembles that are kinetically unconnected,
as also noticed in ref. 8.

Discussion
In this paper, we utilized a new exactly solvable b-hairpin model
to investigate a competing droplet picture of folding and un-
folding. In this model, folding energies occur only if the residues
are very close to each other, and this allows us to give a
discretized labeling of configurations without losing the ability to
get reliable estimates of the loop entropies. Our approach does
not suffer from the difficulties of the single sequence stretch
approximation, in that it includes all possible arrangements of
native structure, not merely contiguous ones (1, 3, 8, 10). Our
results were obtained by detailed analysis of the free energy
landscape as well as by direct simulation. The most important
finding shows that there is a direct competition between path-
ways dominated by topological considerations vs. those domi-
nated by heterogeneous free energy terms. This leads to a
crossover in the structure of the transition state, which could be
seen experimentally as one varies the strength and location of
any hydrophobic clusters andyor the rigidity of the b-turn. Our
results suggest that if we demand that the system have real
two-state behavior, it is likely that the foldyunfolding will be
topology dominated.

Interestingly, the single reaction coordinate approach be-
comes rather inaccurate near this crossover as it lumps together
parts of configuration space that share the same number of
contacts but are in fact not connected by the model kinetics.
Also, we show that it can be incorrect to assume that the most
significant free energy barriers are the same for folding and
unfolding. Because it is common practice to simulate unfolding
and to infer thereby the computationally inaccessible folding
process, this caveat will be important to keep in mind.

Of course, no model (including all-atom potentials) can be
perfect. We have used a simplified Gaussian approximation for
the backbone and have also neglected all nonnative contacts.
Our study was for a single heterogeneous region (either one
residue or one cluster), but one can extend our methodology to
the multiple heterogeneity case. We are hopeful that this mod-
eling approach will serve as a tractable way of putting in real
biological complexity without sacrificing the ability to do a full
analysis of the folding kinetics.
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