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Abstract: Higher plants not only provide human beings renewable food, building materials and energy, but also play the 

most important role in keeping a stable environment on earth. Plants differ from animals in many aspects, but the impor-

tant is that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for re-

sponding to environmental changes, which has been established during their long-period evolution and artificial domesti-

cation. The machinery related to molecular biology is the most important basis. The elucidation of it will extremely and 

purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under dif-

ferent scales. This molecular mechanism at least includes drought signal recognition (input), signal transduction (many 

cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, 

which is a multi-dimension network system and contains many levels of gene expression and regulation. We will focus on 

the physiological and molecular adaptive machinery of plants under soil water stress and draw a possible blueprint for it. 

Meanwhile, the issues and perspectives are also discussed. We conclude that biological measures is the basic solution to 

solving various types of issues in relation to sustainable development and the plant measures is the eventual way. 
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1. INTRODUCTION 

 Environmental stresses represent limiting factors for 
plant productivity on the globe. Drought is one of the impor-
tant abiotic stresses, constraining global crop production and 
quality seriously and recent global climate change and in-
creasingly erratic weather patterns in the future are likely to 
enhance this situation more seriously [1-11]. Abiotic stress 
factors mainly include temperature, salinity, drought, an-
aerobic, and mechanical stresses on plants. In most cases, 
soil water deficits directly result in drought, which is closely 
linked with natural rainfall [12-21]. Drought is a complex 
physical-chemical process, in which many biological mac-
romolecules and small molecules are involved ,such as nu-
cleic acids (DNA, RNA, microRNA), proteins, carbohy-
drates, lipids, hormones, ions, free radicals ,mineral elements 
[22-78]. In addition, drought is also related to salt stress, 
cold stress, high temperature stress, acid stress, alkaline 
stress, pathological reactions, senescence, growth, develop-
ment, cell circle, UV-B damage, wounding, embryogenesis, 
flowering, signal transduction and so on [79-100], making 
the problem more complicated. The development and appli-
cation of modern molecular biology have led to a better  
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understanding of plant adaptations and responses to abiotic 
stress conditions. Genes responsible for adaptation processes 
to every example of given stress have been identified in 
Arabidopsis thaliana and other important model plants. The 
use of transgenic plants to overexpress or silence these genes 
is a powerful tool in determining if they are necessary or 
sufficient to induce stress tolerance. However, with stress 
tolerance being a quantitative character, it should not be ex-
pected that single genes confer a high level of corresponding 
tolerance [101-115]. 

 Considering the interacting complexity (at least including 
water movement, solute transport, information exchange, ion 
homeostasis regulation, and other related physi-chemical 
changes) between plants and their surroundings, it is neces-
sary to generalize the performance of physiological functions 
for higher plants under drought stress. In this article, related 
aspects of physiological and molecular responses of higher 
plants to drought stresses will be reviewed, mainly including 
the following parts: Plant Physiological Function Perform-
ance under Soil Water Stress, Plant Gene Regulatory Net-
work System, A Model for Stress Signal Transduction Path-
way in Higher Plants under abiotic Stresses, Pant Gene 
Regulatory Network System and Plant Drought Resistance 
Improvement. We then focus on the aspects of plant gene 
regulatory network system, which is the core controlling the 
interrelationship between plants and environment at the mo-
lecular level in a complex and coordinated manner.  
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2. PLANT PHYSIOLOGICAL FUNCTION PERFOR- 

MANCE IN FIELD UNDER SOIL WATER STRESS 

 Plants live in soil-plant-atmosphere continuum (SPAC) 
environment, and they have to coordinate the mechanisms of 
diverse types to respond to the above changing environment 
at any time for sustainable survival [1-9]. When abiotic-
stress happened, the water in plants would be distributed 
again. And it could make the old leaf dead by the water 
movement from old leaf to new leaf, resulting in reduction of 
the yield of crops. Plant productivity realization is obtained 
eventually through physiological pathways at least at the 
level of individual and community [10-16]. One molecule, 
one kind of tissue or an organ can not produce any economic 
yield in terms of the need for human being [26-53]. Under 
the condition of ensuring plant survival, plants can produce 
corresponding yield.  

 Soil water is one of key factors influencing plant produc-
tion and many reports have proved this clearly [17-25]. Loss 
of water in soil will lead to great reduction in plant produc-
tion, which has been reflected from total grain yield of many 
countries in the world [54-58]. Soil water is also the impor-
tant material for photosynthetic reactions that plants depend 
on to finish accumulation of photosynthetic products, which 
are impacted greatly by physiological pathways and envi-
ronmental factors (such as soil water supply) [59-64]. The 
influence of water deficits for plant metabolism is very ap-
parent, which is mainly restraining the anabolism by reduc-
ing the activity of synthase and strengthening the catabolism 
by increasing the activity of hydrolytic enzymes. This in-
cludes the reduction of protein, chlorophyll, DNA, RNA and 
plant growth hormone synthesis, which could destroy the 
normal metabolism and cause growth disorder. So, different 
soil water supplying will result in quite different physiologi-
cal pathways, which directly determine the ability for plants 
to make photosynthetic products. Water deficits in soil envi-
ronment also influence solute transport (ion and nutrient up-
take of plants) to larger extent, which effects on photosyn-
thetic reactions in plant chloroplasts in many ways [65-71]. 
This is the reason that ion homeostasis and redox state have 
been brought to attention [72-76]. 

 The series of the above reactions and processes occurring 
at different biointerfaces is regulated and controlled by plant 
gene regulatory network system spatially and temporally on 
the basis of responding to plant developmental cue, through 
which plants can elegantly respond to the changing environ-
ment [77-82]. This network system has been formed by the 
interaction between plants and environment for a long time 
of evolution, which will continue to evolve with environ-
mental succession [83-86]. From the angle of individual 
plant development, Plant Growth Grand Periodicity curve 
can reflect and show the above trend, displaying higher plas-
ticity [87-90]. Besides, plant responses to soil water deficits 
(including nutrients) take a “slow-fast-slow” shaped curve in 
terms of main physio-biochemical indices change and this is 
in agreement with Plant Growth Grand Periodicity, which 
also illustrates this fact and wide plasticity for plants [36-53]. 
Surely, concerted expression of corresponding genes in plant 
gene regulatory network system makes it possible that we 
can see the phenotype and phenotype change under given 
temporal-spatial condition [91-96].  

3. PLANT GENE REGULATORY NETWORK SYS-

TEM UNDER ABIOTIC STRESSES 

 Recent progress in molecular biology and bioinformatics 
(especially, DNA microarray technology), genomics, pro-
teomics, metabolomics and transcriptomics) has provided 
insight into plant gene regulatory network system, which is 
mainly composed of inducible-genes (environmental factors 
and developmental cues), their expression programming and 
regulatory elements (cis-element and trans-element), corre-
sponding biochemical pathways and diverse signal factors 
[97-103]. The genetic information for drought tolerance is 
expressed in many prokaryotes and lower eukaryotes, but 
only in very few higher plants. In higher plants, only seeds 
can survive for extended periods without water. Exceptional 
among higher plants is the small group of angiosperm plants 
termed 'resurrection plants' which can recover from complete 
dryness within one day of contact with water [116]. Under 
the condition of soil water deficits, related stress factors al-
ways result in overlapping responses, including anatomical, 
physiological, biochemical, molecular biological changes, 
which make plant gene regulatory network system more 
complicated and difficult to explore. Much information with 
respect to this topic is from the model plant, Arabidopsis 
thaliana. Main aspects will be illustrated below. 

3.1. Typical Environmental Stress-responsive Transcrip-

tional Elements 

 Plants can sense, process, respond to environmental 
stress and activate related-gene expression toincrease their 
resistance to stress. Environmental stress-inducible genes 
can be mainly divided into two types in terms of their protein 
products: one type of genes, whose coding products directly 
confer the function of plant cells to resist to environmental 
stress such as LEA protein, antifreezing protein, osmotic 
regulatory protein, enzymes for synthesizing betaine, proline 
and other osmoregulators; the other type of genes, whose 
coding products play an important role in regulating gene 
expression and signal transduction such as the transcriptional 
elements for sensing and transducing the protein kinases of 
MAP and CDP, bZIP, MYB and others [103-105]. Though 
these stress genes could be induced, they have not tissue 
specificity. At the same time, the protein of most different 
genes coding drought-resistance is rich in Gly, Pro and other 
hydrophilic amino acids, but the content of Trp and Cys is 
lower than others. Li et al. (1997) found that the content of 
Pro was 38 percentage in the 41.5kD drought-induced-
protein in wheat seedlings, but it had not Trp and Cys [117].  

 Transcriptional elements are defined as the protein com-
bining with the specialized DNA sequence of eukaryotic 
promoters or the protein having structural characteristics of 
known DNA-combining region, whose main function is to 
activate or suppress transcriptional effect of corresponding 
genes [61-69]. It is a critical factor for the transduction of 
stress signal. The transcriptional elements would be synthe-
sized under the stress, and it could deliver and amplify the 
signal to regulate the genes expression to change the physio-
logical function performance. There are two kinds of tran-
scriptional elements according to their characters of expres-
sion: first, constitutive transcription elements, which could 
express normally in stress such as HvCBF2 in barley [118, 
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119]; the other is an inducible transcription element, whose 
expression mainly occurs in stress environment. Most tran-
scription elements are the second type. It is proved that there 
are four function domains by protein analysis: DNA-binding 
domain, transcriptional regulatory domain (including activa-
tion and inhibitory domains), oligomerization site and nu-
clear localization signal. These domains can regulate the 
gene expression with the function domains of other tran-
scriptional elements or promoter cis-acting elements in spe-
cific time [120]. But there are not sufficient evidences to 
prove how these transcription elements regulate the target 
gene expression and depict a legible stress-signal-responsive 
system.  

 Up to now, hundreds of transcriptional elements of envi-
ronmental stress-responsive genes in higher plants have been 
isolated, which regulate and control the stress reaction re-

lated to drought, salinity, cold, pathogen and heat. In the 
genome of Arabidopsis and rice, they have about 1300-1500 
genes for coding transcriptional elements, most of which 
have not been identified functionally. Recent study has 
shown that the transcriptional elements involved in plant 
stress responses mainly include four kinds: APETALA2/ 
EREBP, bZIP, WRKY, and MYB [70-79]. Some typical 
plant transcriptional elements have been summarized in  
Table 1 for reference. 

3.2. Complexity of Plant Gene Regulatory Network Sys-
tem: Specificity and Crosstalk 

 Many transcriptional element families participate in plant 
stress responses, each of which has many members with 
highly-conservative DNA-binding domain, composing a 
complicated, temporal-spatial network system for plant gene 

Table 1. Typical Transcriptional Elements Related to Abiotic Stresses in Plants and Crops 

Plant Materials  Factors  Binding Sites/Factor Types 

Arabidopsis thaliana ABI5/AtDPBF ABA response elements(ABREs)/bZIP 

A.thaliana  AtDPBF2  ABA response elements(ABREs)/bZIP 

A.thaliana  AtDPBF3/AREB3  ABA response elements(ABREs)/bZIP 

A.thaliana AtDPBF4  ABA response elements(ABREs)/bZIP 

A.thaliana AtDPBF5/ABF3  ABA response elements(ABREs)/bZIP 

A.thaliana ABF1  ABA response elements(ABREs)/bZIP  

A.thaliana  ABF2/AREB5  ABA response elements(ABREs)/bZIP 

A.thaliana  ABF4/AREB2  ABA response elements(ABREs)/bZIP 

A.thaliana  GBF3  ABA response elements(ABREs)/bZIP 

A.thaliana  AB53  RY/sph elements/B3 domain proteins 

A.thaliana  ATMTB2  MTC 

A.thaliana  ATHB6  HD-Zip 

A.thaliana  ATHB7  HD-Zip 

A.thaliana  ATHB12  HD-Zip 

A.thaliana  ABI4  AP2 

Oryza  TRAB1  ABA response elements(ABREs)/bZIP 

Oryza  OsVPI  RY/sph elements/B3 domain proteins 

Zea mays  VP1  MYB 

Triticum  EmBP-1  ABA response elements(ABREs)/bZIP 

Avena  AtVPI  RY/sph elements/B3 domain proteins 

Helianthus  DPBF5,-2,-3  ABA response elements(ABREs)/Bzip 

Phaseolus  ROM2(repressor)  ABA response elements(ABREs)/Bzip 

Phaseolus  PIARF  RY/sph elements/B3 domain proteins 

Craterestinma  Cpvp1  RY/sph elements/B3 domain proteins 

Daucus  C-ABI3  RY/sph elements/B3 domain proteins 

Populus  PtABI3  RY/sph elements/B3 domain proteins 
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expression and regulation [81-86]. The specific amino acid 
sequence of DNA-binding domain decides the specificity of 
distinguishing and combining with cis-acting elements. Dif-
ferent members of TGA/OBF families have different DNA-
binding specificity, protein-protein interaction and express-
ing profiles. Chromatin immunoprecipitation techniques in-
dicated that tobacco TGA1a in vivo combined with xenobi-
otic-responsive promoters, but could not combine with PR 
promoter with as-1 cis-element [103-105]. Arabidopsis 
TGA2 could be responsive to SA signal, but not be respon-
sive to xenobiotic stress signals.  

 Much analysis of genomic expression profiling by DNA 
microarray indicates that the mRNA coding transcriptional 
element genes in many plants are usually induced to express 
and accumulated [91, 98]. Most transcriptional element 
genes involved in plant stress responses have not only com-
pletely different expression profiles, but also some overlap-
ping expression profiles, showing the complexity, specificity 
and crosstalk of plant gene regulatory network system [58-
63]. In other words, one kind of stress may simultaneously 
activate many transcriptional elements and one transcrip-
tional element may be activated by many types of plant 
stress responses. For instance, CBF3/DREB1a can be re-
sponsive rapidly to cold, at the same time, regulated by cir-
cadian clock [71-78], which reflects the functional comple-
ment between plant cold-responsive pathway and circadian 
clock-regulated circle in terms of CBF3/DREB1a functions 
[36, 54, 88, 94-105]. The gene, SbPRP derived from 2-week-
old soybean seedlings, encodes 126 amino acids, which have 
a signal peptide in N-terminal. It is mainly in leaf and epi-
cotyl, and its transcription is regulated by water-stress salt-
stress and plant hormone at the same time [121].  

 Shinozaki et al. (2003) thought that four signal pathways 
regulating the gene expression were involved in plant drought, 
cold and salinity responses, in which two were ABA-
dependent (I and II), and two were non-ABA-dependent (III 
and IV). The gene expression depends on ABA accumula-
tion in plants, which would change with the content of ABA. 
There are some conservative ABA responsive elements in 
these genes, whose characteristic sequence is PyACGTG 
(G/T)C. It can regulate the stress gene expression induced by 
ABA. Yamaguchi-Shinozaki et al. (1989) found two conser-
vative cis-acting elements, motif 1(GTACGTGGC) and mo-
tif 2(CGG/CCGCGCT) after comparing four rab16 gene 
promoters of rice. Through analysis they found that motif 1 
is the cis-acting factor to ABA reaction [122-125]. The gene 
expression of non-ABA-dependent pathway would be af-
fected by drought and cold beside ABA. It means that ABA 
is unnecessary for its expression. Some studies indicated that 
it had a DREB transcriptional element in non-ABA-
dependent pathway, which can distinguish the DRE element 
in the gene promoter. DRE/CRT is a cis-acting element in 
higher plants to respond the drought and cold stress, whose 
characteristic sequence is CCGAC. There are many elements 
associated with DRE found now. It is proved that the in-
volvement of these elements in the stress response is without 
depending on ABA-dependent gene expression [126-129]. 

 The process of stress signal sensing and transducing, 
transcriptional regulating, and functional expressing was 
existent in these pathways [106-115]. Zhu T (2003) and Zhu 

JK (2000, 2003) concluded that molecular mechanism of 
plant stress responses (drought and salinity) included three 
main steps, i.e. stress signal input, transducing process, and 
regulatory product output through the study of Arabidopsis 
drought and salinity for many years. Results of many genetic 
mutants and key intermediate molecules from his lab sup-
ported his view powerfully. Recent related anti-drought data 
(dynamic change of anti-oxidative enzymes and soil water 
stress threshold) from my lab also proved the point [58-66]. 
From plant developmental context, plant responses to envi-
ronmental stresses have a universal law, which has been re-
flected completely by Plant Growth Grand Periodicity curve. 
Our study on dynamic changing of wheat anti-oxidative en-
zymes under soil water deficit have indicated that wheat with 
different genotypes responded to soil water stress by taking 
a“ slow- rapid- slow” characteristic curve during wheat life 
cycle. This is the physiological basis for water-saving agri-
culture and dry land farming, which also provides substantial 
evidence for the above viewpoint [34, 37, 46, 49, 50, 91, 95, 
103, 105-115]. 

4. A POSSIBLE MODEL FOR STRESS SIGNAL 
TRANSDUCTION PATHWAY IN HIGHER PLANTS 

UNDER ABIOTIC STRESSES 

 Animals must change their behavior to fit the living envi-
ronment fluctuates. The same case happens on higher plants 
and sessile higher plants must also change behavior to in-
crease fitness as the local environment fluctuates. A stronger 
spatial dimension network underlies signal transduction; for 
instance, and higher plants must be able to detect gradients 
in signals (such as light) and resources (such as nitrate and 
water). Higher plant development itself also is decidedly 
polar [7-11]. The spatial dimension is satisfied in many 
ways. Higher plant cells place receptors, channels, G pro-
teins, and kinases, in specific membranes. Some signaling 
protein complexes are permanent, such as relatively stable 
and perhaps hardwired COP9 signalosome. Other signaling 
protein complexes are likely to be ephemeral and formed 
immediately as a result of signaling [12-16]. There are at 
least 300 receptor kinases in Arabidopsis, and most of them 
are membrane bound. Incompatibility and disease defense 
signal transduction use receptor kinases. After ligand binding 
and autophosphorylation, such kinases may act as nucleation 
sites for the construction of ephemeral signaling complexes 
that contain many proteins [21-25].  

 Although there are some differences in different higher 
plants, a common signal model for stress transduction path-
way exist in higher plants [104-115] (Fig. 1). This model 
begins with the perception of signals from environments, 
followed by the generation of second messengers (such as 
inositol phosphates and reactive oxygen species). Second 
messnengers can modulate intracellular Ca2+ levels, often 
initiating a protein phosphorylation cascade that finally tar-
gets proteins directly involved in cellular protection or tran-
scription factors controlling specific sets of stress-regulated 
genes. The products of these genes may participate in the 
production of regulatory molecules like the plant hormones 
abscisic acid (ABA), ethylene, and salicylic acid (SA). Some 
of these regulatory molecules can, in turn, initiate a second 
round of circulation.  
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5. PANT GENE REGULATORY NETWORK SYSTEM 

AND PLANT DROUGHT RESISTANCE IMPROVE-

MENT 

  Pant Gene Regulatory Network System is very complex. 
More information is obtained from the model plant, Arabi-
dopsis thaliana. The transcriptional elements induced by 
stress signals decide which gene expression should be in-
creased and the function of different transcriptional elements 
in plants is synergetic and complementary for each other. It 
is important to remember the fact that some transcriptional 
elements may regulate several metabolic pathways and one 
metabolic pathway may need orchestrated regulation from 
some transcriptional elements, which is the nature of plant 
gene regulatory network system [100-115]. So, in some 
cases, only introducing a transcriptional element can not 
obtain targeted phenotype and may lead to metabolic unbal-
ance in plants. In addition, because of coordinated evolution 
of transcriptional elements and their regulating metabolic 
pathways the genetically-modifying strategy for the same 
transcriptional element could produce different phenotypes 
in different plant species. Besides, some transcriptional ele-
ments not only regulate metabolic pathways, but also influ-
ence transport and allocation of secondary metabolites. Plant 
secondary metabolism plays an important role in plant re-
sponding to environmental stresses. Long-step progress has 
taken place in terms of introducing transcriptional elements 
to regulate targeted pathways. These issues need deeper ex-
ploration to establish an efficient genetically-modifying sys-
tem by transcriptional elements and their network system for 
improving plant stress resistance and global eco- environ-
ment and feeding the world [53-63]. Potential genes mediat-
ing resistance to soil water stress and related abiotic stress in 
plants have been listed in Table 2 for reference. 

 The plant stress resistance mainly depends on varying 
proteins directly. There are many kinds of anti-proteins upon 
water stress, but we must point out that, in evolutionary 
terms, the possibility of producing specific proteins normally 
is very low except seriously drought-stress. Changing the 

relative content of different proteins in plants is the main 
way for resisting the stress, which is reflected in many plants 
such as NADP-malic enzymes in wheat and rice. It has an 
internal molecular basic of the drought-resistance in the 
drought-resistance species [127-130]. 

6. CONCLUDING REMARKS AND PERSPECTIVES 

 Plants have more refine mechanisms to regulate them-
selves from molecular level to ecosystem to respond to envi-
ronmental changing. For instance, there are many coding-
protein genes downstream only for osmotic regulation in 
abiotic stress resistance (Table 3). Plants are always in the 
state of passiveness for confronting environmental succes-
sion and the related issue is more complicated, which is the 
main cause that plants are behind animals in the study of 
most fields [52-56]. 

 Charting plant gene regulatory network system under soil 
water deficits is a great challenge. Nowadays, there are in-
deed many favorable conditions for charting this blueprint, 
including much available data from Arabidopsis, rice, grass, 
yeast and fruit fly, but the range of tested plants is very much 
limited, many stress-responsive genes have not been unified 
in terms of their refine functions, and many genes participat-
ing in environmental stresses are interacted and overlapped, 
which have led to incorrect placing of key genes (gene effec-
tors) and signal molecules in the whole plant gene regulatory 
network system. Besides, much data are from under condi-
tion of one type of stresses. It is a fact that plants always 
confront more than two kinds of individual environmental 
stresses or their combination simultaneously in field [91-
115]. Although drawing this dimensional plant gene regula-
tory network system with great details and complete path-
ways is impossible currently, the basic draft for this blueprint 
could be summarized in Fig. (2). This draft was established 
in combination with recent advance in this hot topic and 
from the context of development, which will provide instruc-
tions for further investigation and insights into understanding 
of plant refine plasticity for abiotic environmental stresses. 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A framework for the signal transduction of abiotic stresses in higher plants. 
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Table 2. Potential Genes Mediating Resistance to Soil Water Stress and Related Abiotic Stress in Plants 

Gene Gene Action Species Phenotype 

adc Polyamine synthesis Rice  Drought resistance 

Apo-Inv  Apoplastic invertase  Tobacco  Salt tolerance, high “osmotic pressure”  

AtGolS2  Galactinol and raffinose accumulation  Arabidopsis  Reduced transpiration 

AtHAL3 Phosphoprotein phosphatase Tobacco Improved salt, osmotic and Lithium tolerance of  

cell cultures 

AtHAL3a  Phosphoprotein phosphatase  Arabidopsis  Regulate salinity and osmotic tolerance and plant growth  

ATP-PRT ATP-phosphoribosyltransferase Alyssum His accumulation and Nickel tolerance 

AtTPS1 trehalose-6-phosphate synthase Tobacco Drought resistance; sustained photosyntehsis 

BADH-1  Betaine aldehyde dehydrogenase  Carrot Salinity tolerance 

BADH-1  Betaine aldehyde dehydrogenase  Rice Cd tolerance 

BADH-1  Betaine aldehyde dehydrogenase  Maize Salinity tolerance 

BADH-1 Betaine aldehyde dehydrogenase Tobacco Heat tolerance in photosynthesis 

BADH-1 Betaine aldehyde dehydrogenase Tobacco Salinity tolerance 

BADH-1  Betaine aldehyde dehydrogenase  Tomato  Maintenance of osmotic potential  

betA  Choline dehydrogenase (glycinebetaine synthesis)  Maize Drought resistance at seedling stage and high yield  

after drought 

betA  Choline dehydrogenase (glycinebetaine synthesis)  Tobacco  Increased tolerance to salinity stress  

CHIT33, CHIT42 Endochitinase synthesis Tobacco Salt and metal toxicity resistance (& disease) 

CMO Choline monooxygenase (glycine betaine synthesis)  Tobacco Better in vito growth under salinity and osmotic 

(PEG6000) stress 

codA  Choline oxidase (glycine betaine synthesis)  Arabidopsis  Increased stress tolerance  

codA  Choline oxidase (glycine betaine synthesis)  Arabidopsis  Salt tolerance in terms of reproduction 

codA  Choline oxidase (glycine betaine synthesis)  Arabidopsis  Seedlings tolerant to salinity stress and increased  

germination under cold  

codA  Choline oxidase (glycine betaine synthesis)  Brassica juncea Tolerance to stress induced photoinhibition 

codA  Choline oxidase (glycine betaine synthesis)  Rice  Increased tolerance to salinity and cold  

codA  Choline oxidase (glycine betaine synthesis)  Rice  Recovery from a week long salt stress 

codA  Choline oxidase (glycine betaine synthesis)  Tobacco Freezing toleance 

codA  Choline oxidase (glycine betaine synthesis)  Tomato Chilling tolerance in yield and oxidative stress tolerance 

codA  Choline oxidase (glycine betaine synthesis)  Tomato Chilling tolerance 

COR15a  Cold induced gene  Arabidopsis  Increased freezing tolerance  

COX Choline oxidase (glycine betaine synthesis) Rice Salt and 'stress' tolerance 

Ect A…ect C Edtoin accumulation in chloroplasts Tobacco Salt and cold tolerance 

GS2  Chloroplastic glutamine synthetase  Rice  Increased salinity resistance and chilling tolerance  

IMT1  Myo-inositol o-methyltransferase (D-ononitol  

synthesis)  

Tobacco  Better CO2 fixation under salinity stress. Better  

recovery after drought stress.  

LWR1, LWR2 Solute accumulation (proline) Arabidopsis Growth, osmotic adjustment, water status 

M6PR Mannose-6-phosphate reductase Arabidopsis Mannitol accumulation under salt stress leading to  

salt tolerance 
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(Table 2) contd…. 

Gene Gene Action Species Phenotype 

M6PR Mannose-6-phosphate reductase Arabidopsis Mannitol accumulation and salt tolerance due to  

chloroplast protection 

mt1D  Mannitol-1-phosphate dehydrogenase (mannitol synthesis)  Arabidopsis  Increased germination under salinity stress  

mt1D  Mannitol-1-phosphate dehydrogenase (mannitol synthesis)  Petunia Chilling tolerance 

mt1D  Mannitol-1-phosphate dehydrogenase (mannitol synthesis)  Tobacco  Increased plant height and fresh weight under salinity 

stress  

mt1D  Mannitol-1-phosphate dehydrogenase (mannitol synthesis)  Tobacco  No contribution to sustained growth under salinity  

and drought stress.  

mt1D  Mannitol-1-phosphate dehydrogenase (mannitol synthesis)  Wheat Drought and salinity tolerance of calli and plants 

mt1D & GutD Mannitol-1-phosphate dehydrogenase & glucitol-6-

phosphate dehydrogenase 

loblolly pine High salt tolerance due to mannitol and glucitol  

accumulation 

mtlD Mannitol-1-phosphate dehydrogenase (mannitol synthesis) Populus  

tomentosa 

Salinity tolerance 

Osm1 …Osm4  Osmotin protein accumulation  Tobacco  Drought and salt tolerance in plant water status and  

proline accumulation  

Osm1 …Osm4  Osmotin protein accumulation  Strawberry Proline accumulation & salt tolerance 

Osmyb4 Cold induced transcription factor Arabidopsis Accumulation of compatible solutes 

Osmyb4 Specifically cold inducible Tobacco Freezing and Chilling tolerance 

Osmyb4 Cold induced transcription factor Tomato Drought but not cold resistance 

OsP5CS2 Highly homologous to P5CS Rice Cold and salinity tolerance 

otsA  Trehalose-6-phosphate synthase (trehalose synthesis)  Tobacco  Increased leaf dry weight and photosynthetic activity  

under drought. Increased carbohydrate accumulation.  

otsB  Trehalose-6-phosphate synthase (trehalose synthesis)  Tobacco  Increased leaf dry weight and photosynthetic activity  

under drought. Increased carbohydrate accumulation.  

P5CR Pyrroline carboxylate reductase (proline accumulation) Soybean Antioxidants activity under stress 

P5CR Pyrroline carboxylate reductase (proline accumulation) Soybean Amino acid accumulation 

P5CS  Pyrroline carboxylate synthase (proline synthesis)  

(tomato)  

Citrus Osmotic adjustment and drought resistance 

P5CS Pyrroline carboxylate synthase (proline synthesis)  Petunia Drought resistance and high proline 

P5CS Pyrroline carboxylate synthase (proline synthesis)  Potato Salinity tolerance 

P5CS Pyrroline carboxylate synthase (proline synthesis)  Rice  Increased biomass production under drought and  

salinity stress  

P5CS Pyrroline carboxylate synthase (proline synthesis)  Rice  Reduced oxidative stress under osmotic stress  

P5CS Pyrroline carboxylate synthase (proline synthesis)  Rice  Resistance to water and sainity stress 

P5CS Pyrroline carboxylate synthase (proline synthesis)  Soybean  Resistance to osmotic stress and heat  

P5CS Pyrroline carboxylate synthase (proline synthesis) (tomato)  Soybean Drought resistance, high RWC, high proline 

P5CS Pyrroline carboxylate synthase (proline synthesis) (tomato)  Sugarcane Drought resistance via antioxidant role of proline 

P5CS Pyrroline carboxylate synthase (proline synthesis) Tobacco Increased biomass production and enhance flower  

development under salinity stress 

P5CS Pyrroline carboxylate synthase (proline synthesis) Tobacco Freezing tolerance 

P5CS Pyrroline carboxylate synthase (proline synthesis) Wheat Drought resistance due to antioxidative action 



276    Current Genomics, 2009, Vol. 10, No. 4 Ni et al. 

(Table 2) contd…. 

Gene Gene Action Species Phenotype 

P5CS Pyrroline carboxylate synthase (proline synthesis)  

(tomato)  

Yeast Reduced growth under none-stress and some  

promoted growth under mild stress 

pdc1  Pyruvate decarboxylase overexpression Rice  Increased submergence tolerance  

pdc1; pdc2 Pyruvate decarboxylase overexpression Arabidopsis Hypoxic stress survival 

PPO Polyphenol oxidases suppression Tomato Drought resistance 

SAMDC S-adenosylmethioninedecarboxylase (polyamine  

synthesis) 

Rice Better seedling growth under a 2 day NaCl stress 

SAMDC S-adenosylmethioninedecarboxylase (polyamine  

synthesis) 

Tobacco drought, salinity, Verticillium and Fusarium wilts  

resistance 

SMT selenocysteine methyltransferase Arabidopsis, Indian 

Mustard 

Selenium hyperaccumulation tolerance 

SPE Spermidine synthase Arabidopsis Chilling, freezing, salinity, drought hyperosmosis 

spe1-1; spe2-1 Spermidine non-accumulating Arabidopsis Decreased salt tolerance 

SST/FFT Fructan accumulation Potato Reduced proline accumulation at low water status 

TaCRT Ca2+-binding protein Tobacco Better water status, WUE and membrane stability 

TPP1 Trehalose synthesis Rice Salt and cold tolerance 

TPS; TPP Trehalose synthesis Arabidopsis Drought, freezing, salt and heat tolerance 

TPS1 Trehalose synthesis Tomato Drought, salt and oxidative stress tolerance 

TPS1 Trehalose synthesis Potato Delayed wilting under drought 

TPS1 & TPS2 Trehalose synthesis Tobacco Maintenance of water status under drought stress 

TPSP Trehalose synthesis Rice Drought, salt and cold tolerance expressed by  

chlorophyll fluorescence 

WCOR15 Cold induced gene Tobacco Increased freezing tolerance 

 

Table 3. Some Examples of the Osmotic Regulating Genes Downstream in Abiotic Resistance  

Components  Metabolic Functions  Gene/Proteins 

ROS scavenging  Increase in ROS scavenging enzymes  GP, PHGPX 

Chaperones  Heat-/cold-/salt-shock proteins; protein folding   

Hsp,Csp,Ssp,DnaJ   

Fructan  Osmoprotection  SacB 

Trehalose  Osmoprotection   

Tps;Tpp,trehalase   

Glycine betaine  Protein protection and carbon sink  codA 

Proline  Substrate for mitochondrial respiration; redox control  P5CS/P5CR 

Ectoine  Osmoprotectant  EctA,BC 

K+-transporters  High affinity K+ uptake  Hkt1,Hak1 

K+-channels  Low affinity or dual affinity K+ uptake  Akt1, Akt 

H2O channel proteins  Membrane cycling control  TIP 
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Fig. (2). The basic draft for plant gene regulatory network system. 

 In a word, precise elucidation of plant gene regulatory 
network system under abiotic stresses is of importance to 
molecularly engineering plant resistance, because of which 
many excellent scientists world-wide have been engaged in 
this frontier field, resulting in a long-step progress. There are 
also many issues remained to be solved and needed to make 
efforts. Scope of tested plants needs to be extended; compre-
hensive study on a combination of environmental stress fac-
tors in laboratories and in field should be given much atten-
tion; system development viewpoint and computer simula-
tion analysis method should be also applied. The combina-
tion of molecular biology, biotechnology and plant physiol-
ogy (especially in field) is also the key. With accumulation 
of data from being extended plant range, plant gene regula-
tory network system under environmental stresses will be 
clearer and clearer. 
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